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Abstract

In this paper, we obtain common random fixed point theorems for two pairs of occasionally weakly compatible self
random mappings under contractive conditions involving two generalized altering distance functions in a complete
separable metric space.
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1. Introduction and preliminaries

During the last fifty years there have been so many exciting developments in the field of random operator theory.
Probabilistic functional analysis is an important mathematical discipline because of its applications to probabilistic
models in applied problems. Random fixed point theorems for random contraction mappings on separable complete
metric spaces were first proved by Spacek [21] and Hans [11], [12]. The survey article by Bharucha-Reid [7] in 1976
attracted the attention of several mathematician and gave wings to this theory. Itoh [13] extended Spacek’s and
Hans’s theorem to multivalued contraction mappings.

The Banach contraction mapping principle is one of the pivotal results of analysis. There are a lot of the
generalizations of the Banach contraction mapping principle in the literature (see e.g. [1], [2], [9], [10], [18], [19],
[20]) and others. Khan et al. [16] addressed a new category of contractive fixed point problems for single self-map
with the help of a control function that alters distance between two points in a metric space which they called an
altering distance.

Definition 1.1 [16]
A function @ :[0,0) — [0,0) is called an altering distance function if the following conditions are satisfied:
. p(t)=01=0,

2. @ is a continuous monotonically non-decreasing.

Khan et al. [16] proved the following result:

Theorem 1.2 [16]
Let (X,d) be a complete metric space, ¢ :[0,00) —[0,0) be an altering distance function, and 7" : X — X
be a self-mapping which satisfies the following inequality:
p(d(Tx,Ty)) < co(d(x, y)), M
forall x,y € X and for some O <c <1.Then T has a unique fixed point.
Remark 1.3
Letting ¢(¢) =t in Theorem 1.2, we obtain the Banach contraction principle.
Alber and Guerre-Delabriere [2] introduced the notion of weakly contractive mappings in Hilbert spaces.

Definition 1.4 (Weakly contractive mapping).
Let (X,d) be a metric space. A mapping 7 : X — X is said to be a weakly contractive if for x, y € X

d(Tx,Ty) <d(x,y)—p(d(x,y)), 2)
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where @ :[0,00) — [0,00) is an altering distance function.

Remark 1.5 If we put @(¢) = kt , where 0 <k <1, then (2) reduces to (1).

Rhoades [20] extended some of Alber’s and Guerre-Delabriere’s work and obtained the following result:

Theorem 1.6
Let (X,d) is a complete metric space and 7 : X — X is a weakly contractive mapping, Then T  has a unique
fixed point.

Afterward, Beg and Abbas [6] proved a generalization of the corresponding theorem of Rhoades [20] for a pair of
mappings in which one is weakly contractive with respect to the other . This is further generalized by Azam and
Shakeel [4] in convex metric spaces.

Definition 1.7
Let X be a metric space . A mapping 7 : X —> X is called weakly contractive with respectto f : X — X if
for x,ye X

d(Tx,Ty) < d(fx, fy) —o(d (fx, /),
where @ :[0,00) — [0,00) is continuous and nondecreasing such that ¢ is positive on (0,0),®(0) =0 and
limp(t) = .
>0

In [9] Choudhury introduced the concept of a generalized altering distance function in three variables which can
extend to 72 variables defined as follows:

Definition 1.8
Let ‘{’n denote the set of all functions §/ satisfying the following conditions:

1. y is continuous.

2. W is monotone increasing in all the variables

3. w(t,ty),t,...,t,) =0 ifand onlyif t, =¢, =t; =...=¢,=0.
We define @(x) =y (x,x, x,...,x) for x €[0,00). Clearly, ¢(x) =0 ifand onlyif x=0.
Examples of i/

L y(t,t,,t,....t,)) = kmax{t,t,,t,,...,t,} for k>0.

2. Wt tyslynt)) =1 52+ 12 AL, A, Ayena, 2],
In addition, Choudhury [9] proved the following common fixed point theorem:
Theorem 1.9 [9]

Let (X,d) be a complete metric space and S,7 : X — X are two self mappings such that the following
inequality is satisfied:

@1 (d(SX, Ty)) < Vll (d(xa y):d(xa SX), d(ya TJ’)) - V/Z (d(xa y)a d(xa Sx)ad(% Ty))a
forall x,y € X, where i/, and ¥/, are generalized altering distance functions and

@,(x) =w,(x,x,x). Then S and T have a common fixed point.

Branciari [8] established the following fixed point theorem which opened the way of the study the mappings
satisfying a contractive condition of integral type.

Theorem 1.10 [8]
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Let (X,d) be a complete metric space, ¢ € (0,1) and f: X — X a mapping such that, for each x,y € X
J'd(fx,fy) d(x,y)

#(t)dt < c j #(t)dt,

0 0

where ¢:[0,00) — [0,0] is a Lebesgue-measurable mapping which is summable (i.e. with finite integral) on each
&
compact subset of [0,00) such that for &> 0,.[0 @(t)dt > 0. Then f has a unique fixed point z € X such that

xeX,limf'x=z.

n—>o0

Throughout this paper, Let (€2,X) be a measurable space, (X,d) is a complete separable metric space and C a
nonempty closed subset of X . A mapping &:Q — C is called measurable if f_l(Bm €X for every Borel
subset B of X . A mapping T :QQxC — C is said to be random mapping if for each fixed x € C , the mapping
T(.,x):Q — C is measurable. A measurable mapping & : Q) — C is called a random fixed point of the random
mapping T : QxC — C if T(w,&(w)) = &(w) foreach we (2.

Definition 1.11
A mapping 77(w): Q2 — X is said to be a random coincidence point of random operators S,7 :Qx X — X if

17(w) is measurable and S(w,n7(w)) =T (w,n(w)), w € Q. A measurable mapping &(w): € — X is said to
be a point of coincidence of S and 7 if there exists a measurable mapping 7(w):Q — X so that

s(w) = S(w,n(w)) =T (w,n(w)), we Q.

Definition 1.12 [14]
Let X be a separable complete metric space. Random operators S,7 :Qx X — X are weakly compatible if

T(w,&(w))=S(w,&(w)), for some measurable mappings &, then T(w, S(w, E(w))) = S(w, T(w,E(w)))
for every we Q.

Quite recently, Al-Thagafi and Shahzad [3] introduced the concept of occasionally weakly compatible mappings .

Definition 1.13 [3]
Two self-mappings S,7 : Qx X — X are said to be occasionally weakly compatible (owc) if and only if there

exists a coincidence point of S and T at which S and 7' commute.
Remark 1.14
The notion of occasionally weakly compatible is a proper generalization of weakly compatible. Every weakly

compatible mappings with coincidence points are occasionally weakly compatible, but the converse is not true (for
example see [3]).

Lemma 1.15[15]
Let X be a nonempty set, and let f and g be owc self-mappings of X .If f and g have a unique point of

coincidence w = fx = gx, then W is the unique common fixed point of f and g .

The following lemma shows that contractive conditions of integral type can be considered as contractive conditions
involving as altering distance.

Lemma 1.16

Let ¢: [0£0) —[0£0) be as in Theorem 1.10. Define O(b) = J:)gé(t)dt,b €[0,0). Then @ is an altering

distance.
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Proof. @ :[0,00) —[0,) is well-defined and increasing since ¢ is Lebesgue measurable, summable and

positive. Moreover, ®@(0) =0 and ®(b) >0 for every b> 0. The continuity of @ follows from the continuity
of the Lebesgue integral. The proof of the lemma is completed.

Random fixed point theorems for weakly compatible random operators under generalized contractive conditions are
studied by Beg [5]. Afterward, Nashine [17] presented a random version improvement of Theorem 1 in [9].

In continuation of these results, we obtain several common random fixed point theorems for two pairs of
occasionally weakly compatible random self mappings satisfying contractive inequalites which involving generalized
altering distance functions.

2 . Main Results
Theorem 2.1

Let C be a nonempty closed subset of a separable complete metric space (X,d) . Let S,T,E and

F:QxC— C be four self random mappings defined on C such that for x,y € C, we Q, the following
conditions are satisfied:

Sw,X)c Fiw,X), Tlw,X)c E(w,X). 3)

@ (d(S(w,x),T(w, y))) S v, (d(E(w,x),F(w, y)),d(E(w,x),S(w,x)),d(F(w,y),T(w,)))
¥ (d(E(W, X),F(W, y)),d(E(W, X),S(W, X)),d(F(W, y),T(W, y))); 4)

where ¥/,,¥/, € '¥; and ¢,(x) =y, (x,x,x). Then each of the pairs (S, E) and (7, F') has a unique point of
coincidence. Moreover, if each of the pairs (S,E) and (T, F) is owc, then S,7,E and F have a unique

common random fixed point.

Proof. We will prove that

limd(,(9),,.,(0v) =0.
Let the function 7), : € — C be an arbitrary measurable function on Q . By (3) there exists a function
7, : Q2 — C such that for we Q, F(w,n,(w))=S(W,7,(Ww)) and for this function 77, : Q2 — C we can
choose another function 77, :  — C such that for w € Q, E(w,n,(w)) =T (w,n,(w)) and so on. By using the
method of induction we construct a sequence of measurable mappings {fn (W)} from Q to C as following:

Sonn (W) = F(W,17,,,,(W)) = S(w, 17, (W),

&oW)y=Ew,n,, ,w)=Tw,n,,,,(w),weQ,n=0,1,2,.. )
Let a,(w) =d(s,(W).g,,(W))

Putting X =17),, (w),y= Mt (W) in (4), we obtain

P (d(S(w, 175, (W), T(W,17,,,,(W)) Sy (d(E(w,1n,,(W)), F(W,17,,,,(W)))
A (E(W,1,, (W), S(w,1,,(w)))
SA(F (W15, (W), T(W,17,,,,(W))))
=YL (d(EW,17,, (W), E(W,17,,,,(W)))

LA (E(w,n,,(w)), S(w,n,,(w)))
4
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s d(F(W5 772n+1 (W))a T(W’ 772n+1 (W))))a
It follows by (5) that

A (a2n+1 (W)) < 14 (a2n (W) sy, (W) oy (W))_ v, (aQn (W) sy, (W) o (W)) . (6)

If a,, <a,,,,, then by using the property that {/, is monotone increasing in all variables and

Y, (azn N7 a2n+1) # (0 whenever a,. (w) # 0, we have in (6) that

@1(a,,, (W) <y, (ay,, (W), ay,, (W), @y, (W) ¥, (a,, (W), a,, (W), a,,,, (W)
= (a,,, (W) —v,(a,,(w),a,,(w),a,,,,(w))
<g¢(a,,,(W)).

Thus, we have a contradiction, so that
a,,,(w)<a,, (w). (7)
Again, putting X =17,, (w),y= Ly (W) in (4), we obtain
a(a,) <yp(ay, ,(W),a,, (W), a, (W), (@, ,(W),a,, ,(W),a,,(W))

By the same argument we obtain

ay, (W) £ a5, (W). ©)
From (7) and (9), we have

a,,<a,.

(®)

n+l

Hence, {an (W)} is a decreasing sequence and bounded so is convergent, then there exists a(w) > 0 such that

lima,(w)=a(w),we Q. (10) form (6) and (7), we have
?1(ay,, (W) = ¢ (a,, (W) — @, (a,,,,(W)), (1)

where ¢1 (X) = ‘//1 (xa X, X) and ¢2 (X) = lr//2 (xa X, X) .
Similarly, form (8) and (9), we have

@ (a,,(W) < @ (ay, , (W) — @, (a,,(W)). (12)
Combining (11) and (12), we obtain

p(a,, (W) <o (a,(wW)-o,(a,,(w),

or equivalently

@ (a,,(W) <@g (a,W)-g(a,,(w)). (13)

Summing up in (13), we obtain

o (a, (W) <@ (a,(w)) <oo.

Hence

lim,(a,(w)) = 0. (14)

Now, from (10),(14) and the continuity of ¢, , we obtain ¢,(a(w)) = 0, which implies that a(w) =0,we Q,
that is

lima,(w) = d(g,(W),&,,, (W) = 0. (15)

n—»ow0

Now, we will prove that for we €, {fn (W)} is a Cauchy sequence in C. By (15), it is sufficient to prove that

{&,, (W)} is a Cauchy sequence. We proceed by negation, suppose that {&, (W)} is not a Cauchy sequence, then

there exists € > 0 for which we can find two sequences of positive integers {m (i)}, {n(i)} such that for positive

5



Mathematical Theory and Modeling WWWw.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) ey
Vol.3, No.2, 2013 ST

integer i we have

n(i) > m(i) > i, d((:Zm(i)(w)’ §2n(i) w)ze, d(":gzm(i) (w), §2n(i)—l w)<e. (16)
Using (16) and the triangle inequality, we obtain

& A&/ W)y W) S Ay (WG D+ G, (W), (W)
<E+d(8,3)-1(W)s 831y (W)).

Letting 7 — 00 in the above inequality we have
limd(&,,) (W), &,y (W) = &, we Q. (17)
n—»0

In addition, we have

d(§2n(i)+l (w), §2m(i) (w) < d(§2n(i)+l (w), §2n(i) (W) + d(§2n(i) (w), §2m(i) (m),

and

d(érzn(,‘) (w), §2m([) (w)) < d(fzn(,‘) (w), érzn(i)u (w))+ d(gzn([)u (w), éZm(i) (w)).

Letting i — o0 in the above two inequalities, using (15) and (17) we obtain
limd(&,,0 (W); 85,y (W) < €.
and ’H°°
£<lim d(§2n(i)+1 (w), §2m(i)(w))'
or equivalently .
lim d(§2n(i)+1 (w), §2m(1’) (w) =¢. (18)
In the same way, v:; ;ave

d(§2n(i) (w), gzm(iH (w) < d(éZﬂ(i) (w), 52»1([) (w)+ d(éZm(i) (w), §2m(i)—l (w)).

and

d(égzn(i) (w), gzm(l‘) (w) < d(§2n(i) (W), §2m(i)—1 (w)+ d(":gzm(i)—l (w), §2m(i) (w)).

Again, letting i — 00 in the above two inequalities, using (15) and (17) we obtain
ELIE d(fzn(i)(w)a ‘fzm(i)_1 (w)=e. (19)
Setting X = 17,,,;, (W), ¥ = 1,0 (W) in (4) forall i =1,2,..., we obtain
P(d(SW,175,,0) (W), T (W, 173,571 (W)))) < vy (A (E (W, 17,57 (W), F (W, 773, (W)
S dCEOn 1,0y (W))y S (W, 115,07 (W)
> d(F(w, ’72m(i)—1(w))9T(W9 772»1([)71(W))))
=v (dCEW, 1, W) E (W, 7131 (W)))
S CEOn 1,0y (W))y S (W, 115,07 (W)

> d(F(w, ’72m(i)—l(w))9T(W9 772m(i)—1(w))))'
It follows by (5) that

P (A2, (W5 20y (W) S, (A (82 (W), 21 (W)
(S50 (W), €2 1y01 (W)))

s (S, (11-1(W)s Sy (W)

W, (d (S, W)s Sy (W)

,d (§2n(i) (w), fzn(i)ﬂ (w)))

oA (8511 (W) S iy (W))).
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Letting  — 00 in the above inequality, using (15), (18), (19) and the continuity of ¥/, and ¥/, , we have

0.(6) S ¥, (60,0 -, (£,0,0)< 9, () 7, (£:0,0),
which implies that ¥, (£,0,0)= 0, this leads to a contradiction since & > 0. It follows that {,, } is a Cauchy
sequence in C and hence {fn} is also a Cauchy sequence in the closed subset C of a separable complete metric
space X , then there exists &(w):Q — C such that

{E, W)} —=>{EWw)}asn— o forweQ, (20)
and consequently the subsequences {F(w, Npii W)}, {S(w, M, w)y . {Ewm n, +2(W))} and
{T(w,n,,.,(W)} of {& (W)}, for we Q also converge to {&(w)}. Also the closeness of C implies that
&(w) is a mapping from Q to C'.
Since S(w, X) < F(w, X) then there exists #(w) € C such that

E(w)=F(w,h(w)), we Q. (21)
Putting x =17,, (w), ¥ = h(w) in (4), we obtain

2,(d (S (w17, (W), T (W, W)) <y, (d (E(w,17,, (W), F (w, h(w)))

L A(E(w,17,, (W), S(W, 7, (W)

L d (F(w, h(w)), T (w, h(w))))

=Y, (d(EW, 17, (W), F (W, h(w)))

S d(EW,17,,(W)), S(W,17,,(W)))

d (F(w,h(w)), T (w, h(w)))).
Taking the limit on both sides of the above inequality as 7 —> 00, and using (21) we obtain

@ (d(E(W), T (w, h(w)))) <y, (d(S(W),S(W)), d(5(w), &5 (W)

,d (E(w), T(w, h(w))))

—y,(d(E(W),5(W)),d(S(w),5(W))

,d(E(W), T (w, h(w)))).

It follows that

@ (d(S(W), T (w, h(w)))) < v,(0,0, d(S (W), T (w, 1(w)))) =¥, (0,0, d (S (W), T (w, h(w))))
<@ (d(EW),T(w, h(w)))),

which is a contradiction. It follows that
E(w) =T (w, h(w)) forw € Q. (22)
From (21) and (22), we have
S(w) = F(w,h(w)) =T (w, h(w)).
Therefore &(W) is a point of coincidence of F' and T .
Again, since &(w) =T (w,h(w)) e T(w, X) < E(w, X), there exists f(w) € C such that

s(w) = E(w, f(w)) forw € Q. (23)
Putting X = f(w),y = Myt (W), by the same argument we can show that
S(w, f(w)) = g (w) forw € Q. (24)

From (23) and (24), we have

s(w)=E(w, f(w)) = S(w, f(w)).

7
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Therefore £(w) is a point of coincidence of £ and S .
Finally, for the uniqueness of the point of coincidence.
Let p(w):Q — C be measurable mapping such that such that E(w, p(w)) = S(w, p(w)), w e Q

Setting x = p(w) and y = h(w) in (4) we obtain
P (d(S(w, p(W)), T (w, h(w))) <y, (d(E(w, p(w)), F(w,h(w)))
L d(E(w, p(w)), S(w, p(w)))
A (F(w,h(w)), T (w, h(w))))
—,(d(E(w, p(W)), F(w, h(w)))
d(E(w, p(w)), S(w, p(w)))
L d (F(w,h(w)), T (w, h(w)))),
which yields
@ (d(S(w, p(W)),& (W) <y, (d(S(w, p(W)),£(W))),0,0)
—y,(d(S(w, p(W)),£(0))),0,0)
<@ ((Sw, p(w)),5(W)))
It follows that &(w) = S(w, p(w)) = E(w, p(w)), we Q.
Similarly, we can show that &(w) is the unique point of coincidence of F' and T .
Hence, the pairs (E,S) and (F,T) have a unique point of coincidence &(w).
If the pairs (£,S) is owc (respectively, (F,T) is owc), then by Lemma 1.15, £(w) is the unique common
random fixed point of £ and S (respectively of /' and T ). The proof of the theorem is completed.

Remark 2.2
Theorem 2.1 remains true if one replace the following contractive condition in lieu of the existing one.

@ (d(S(w, ), T(w, ) < v, (d(E(W, X), F(w, y)),d(E(W, x),S(W, x)),d (F(w, p),T(w, y))

1
s [A(S(w ), 1w, ) + d(E(w, ), T(w, ))])
) (d(E(W’ X),F(W, y))’d(E(W’ X), S(Wa X)),d(F(W, y)’T(Wa y))

1
57 [A(SOW ), E(m )+ d(Ew %), T 1))
where ¥, /, € ¥, and @,(x) =y, (x,x,x,X).

Remark 2.3
Theorem 2.1 is a random version improvement, extension and generalization of Choudhury [9] for pairs of owc
random mappings using considering a generalized altering distance functions.

Theorem 2.4
Let C be a nonempty closed subset of a separable complete metric space (X,d). Let S,T,E and

F :QxC — C be four self random mappings defined on C such that for x,y € C, we ),
Sw,X)c F(w, X), T(w,X) c E(w, X),

and satisfying one of the following conditions:

(D) a(Ad(Sw,x),T(w, )< v (XA (E(w, x), F(w, ) Ad(E(w, x),5(w, ) Ad(F(w, »),T(w, y))))

8
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_V/z(e(d(E(Wa X),F(W, y)))ae(d(E(Wa X),S(W, x))),@(d(F(w, y)’T(Wa y)))),
where € € W, and v, y, € '¥; with @, (x) =y, (x,x,X).

D) g(Ad(S(w,x), (W, )< v (Ad(E(w, x), F(W, 1)) Ad(E(W, x),S(W, %)) Hd(F (W, 3),T(W, »)))
1
5 [O(d(S(w, x), F(w, y)))+ O(d(E(w, x),T(w, »)))])
—u, (Ad(E(w, %), F(w;, ) Ad(E(w, x),SW; X)) ) Ad(F(w, 1),T(; )

1
s 5 [O(d(S(w, x), F(w, y)) + O(d(E(w, x), T (w, »)))Dy

where where 8 € ', and v, i, € ¥, with ¢,(x) =y, (x,x,x,X).
Then each of the pairs (S, E) and (7', F') has a unique point of coincidence. Moreover, if each of the pairs
(S,FE) and (T, F) isowc, then S,T,E and F have a unique common random fixed point.

Proof. Applying the same steps of the proof of Theorem 2.1 and Remark 2.2, then the claim of 2.4 follows simply.

Theorem 2.5

Let C be a nonempty closed subset of a separable complete metric space (X,d). Let S,T,FE and

F:QxC — C be four self random mappings defined on C such that for x,y € C, we ),
Sw,X)cF(w,X), Tlw,X)c E(w,X),

and satisfying one of the following conditions:

00 L(p]<d<S<w,x>,T<w,y>>> (0)dt < qu(M](x,y» (1)

0
(M, (x,y))
- g,

0

where M]()C, y) = (d(E(W,)C),F(W, y)),d(E(W,X),S(W,X)),d(F(W, y)’T(W’ y))) and
vy, € Y5 with ¢,(x) =y, (x, x,x).

an Lrpl<d<S<w,x>,T<w,y>» (1)t < I:q(Mz(x,y» (1)t~ I:/2<M2<x,y>> 0\,
where M,(x,y)=(d(E(w,x), F(w,y)),d(E(w,x),S(w,x)),d(F(w,y),T(w,))

1 .
75 [d(S(W7 X), F(Wa y)) + d(E(W7 X), T(Wa y))]) and V/l > ‘//2 € lIJ4 with (01 ()C) = l/ll ()C, X, X, )C).
The function ¢ :[0,00) — [0, 0] is a Lebesgue-measurable mapping which is summable (i.e. with finite integral)

&
on each compact subset of [0,00) such that for & > O,IO @(t)dt>0, .
Then each of the pairs (S, E) and (T, F’) has a unique point of coincidence. Moreover, if each of the pairs
(S,E) and (T,F) isowc, then S,T,E and F' have a unique common random fixed point.
b
Proof. By lemma 1.16, the functions @ :[0,0) — R, D(b) = .[o @(t)dt is an altering distance function. Setting in

the above two inequalities the following

D (g, (d(SOw, %), T(w, ) = [

0

@ (d(S(w,x),T (w,y)))

#(1)dt
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M, (x.9))

o, (M, ()= [ gy =12

M, (x.9)

Vs ( .
Dy, (M, (e y))= [ (o)t i =12
then the proof of Theorem 2.5 follows by the same way of Theorem 2.1 and Remark 2.2.

Remark 2.6
A number of fixed point results may be obtained by assuming different forms for the functions ¥/, and 4. In

particular, fixed point results under various contractive conditions are obtained from Theorem 2.1.
For example, we derive the following corollary of Theorem 2.1.

Corollary 2.7
Let C be a nonempty closed subset of a separable complete metric space (X,d). Let S,T,E and

F:QxC — C be four self random mappings defined on C such that for x,y € C and w € €,
Sw,X)c F(w,X), T(w,X) c E(w, X), (25)

and satisfying one of the following conditions:
NS, ), T(w, )] < k[d(Ew,x), F(w, )] + K [d(E(w, x),S(w,x))I
+h[d(F(w, y), T(w, )], (26)

where 0 <k, +k, +k, <1 and »>0.
VDA (S(w,x), T(w, ) < k[d(E(w,x), F(w, )] +k[d(E(w,x),S(w, x))I
+ k3 [d(F(Wa y): T(Wa y))]r
s [d(S(W, xX), F'(w, y)) + d(E(w, x), T (W, y))

! 2
where 0 <k, +k, +k; +k, <1 and > 0.

Then each of the pairs (S, E) and (7, F') has a unique point of coincidence. Moreover, if each of the pairs

I, 27)

(S,E) and (T,F) is owc, then S,T,E and F' have a unique common random fixed point.
Proof. Consider in case (V) the following

v,(a,b,c)=ka +k,b" +ky,

w,(a,b,c)=1—-k)ka +k,b" +ki'],
with k =k, +k, +k;, and consider in case (VI) the following

v (a,b,c,d)=ka" +k,b" +k,c" +k,d",

w,(a,b,c,d)=(1-K)[ka +kb" +kec +kd’],
with k = kl + k2 + k3 + k4. Then (26) and (27) can be obtained from (4) and the contractive condition in Remark
2.2, The corollary follows by applying Theorem 2.1 and Remark 2.2.
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