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Abstract
In this paper implementation of the extended Dantzig - Wolfe method to solve a general quadratic programming
problem is presented ,that is, obtaining a local minimum of a quadratic function subject to inequality constraints. The
method terminates successfully at a KT point in a finite number of steps. No extra effort is needed when the function
is non-convex.
The method solve convex quadratic programming problems. It is a simplex like procedure to the Dantzig - Wolfe
method[1]. So, it is, the same as the Dantzig — Wolfe method when the Hessian matrix of the quadratic function is
positive definite[7].
The obvious difference between our method and the Dnatzig — Wolfe method is in the possibility of decreasing the
complement of the new variable that has just become non-basic.

In the practical implementation of the method we inherit the computational features of the active set methods using
the matrices H, U and T, and in particular the stable features [5]. The features (i.e, the stable features) are achieved

by using orthogonal factorizations of the matrix of active constraints when the tableau is complementary.

0. _Introduction:

In our work we give full description to an algorithm applying the extended Dantzig-wolfe method as a model of the
quadratic programming problems. [16].In section (1), general description of the algorithm of the Extended Dantzig-
Wolfe method is given. In section (2) , we describe the steps to be followed when the current tableau is
complementary. This is followed by describing the moves to be carried when the current tableau is non-
complentary. Section (3) is summed up by outlining the main steps of the algorithms in a compact form that helps in

writing a computer code to apply the method.
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Section (4), describes the practical features of applying the algorithm. In that section we aim at producing an
efficient code and is done by making use of the informations carried over from previous steps, the matrices H, T and
U such updating factors of matrices (A = QR) rather than refactorizing them. Also we will try there not to carry out

unnecessary calculations.

In section (5) we show how to update the QR-factors of AI(K) when the tableau is complementary. We update the

T
factors L' DF LK of G;K) at each iteration when the tableau is complementary.
As our method is a feasible-point method, in section (6), we show how to obtain an initial feasible point. The
literature is full of methods for obtaining initial feasible points, but we prefer to follow the same steps as in [16].

1. General Description of the Algorithm of the Extended Dantzig-Wolfe Method:-

The description is given in two parts. The first part is to describe the steps to be carried out after a complementary
tableau. The second part shows the moves to be followed when we are at a non-complementary tableau. In each part
we show how the basic variables are updated and how decisions are made regarding the next move. The theoretical
tools upon which the justification of the algorithm relies, were provided in chapter three.
Suppose at the kth iteration the tableau is complementary. Thus the basis matrix will have the form:

G -4% 0

-4 0 0
L R |

(K)

At this stage the basic variables x, A ) and v;K) , P&mn, are known. (Note: these values of the basic

variables were carried over from the previous iteration, but not recalculated). The next step is to find the index

which satisfies the minimality.

min AEK) (1.1)
ien

If ﬂ,;K) > 0, then the algorithm terminates at g(K) which is a KT-point. If not, then the system:

G —-4% of|d” 0
—4°" 0 0]]dy | = |e, (1.2)
a0 afjat] Lo
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. . K . . .
is solved to obtain Qx(K) R dﬂ(m and d (V ) , the next step is to select the index P, which solves:

v(K)
min —2 (1.3)
v dy® '
(k)
dvp >0
/1(1() v (K)
If dA)) <0 and ——< Ll (1. 4)

(K) — (K)
dA® "~ v
Then the next tableau is complementary with the following basic matrix:

G — A% 0
— 4% 0 0
A0

Where Al(kﬂ) is resulting by removing @, from Al(k) and Aékﬂ) results from adding @, to Az(k). Thus the

index set 77 is updated by removing q.

The basic variables are now updated to

ﬂ(K)

(k+1) _ g
v _ I (1.5)

q
E(KH) — _diK)V;KH) (1. 6)

(K+1) _ 2(K) (K),,(K+1)

is —ls _dzs W 1.7
=y W (PenUig)) (.8

If (1.4) is not satisfied, then a non complementary tableau is obtained. The resulting basis matrix takes the form:

G -4% 0 0
&)
M;KH) _ _AIT OT €, OT
_Qp] (_) (_)

0
(K+D)T
— A 0 0 I
Where A;Kﬂ) is resulting by removing 4@, from A;K). The index set is thus updated by removing q and

adding P;. The new values of the basic variables are given by:
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(K)

(K+1) _ Vp

¢ _—dv;’f) (1.9)

K+1 K K
B Ly e 00

(K+1) (K) (K)_  (K+I
A =1, —d; Vf, ) (1. 11)
D U —aE (PenUle) 0.

2 . The Move From Non-Complementary Tableau:-

Suppose at the kth iteration the tableau was complementary, and the condition ﬁ(qK) <0 is fulfilled. Let the

iterations after the kth is r add P;, P,, ...... , P, respectively to 77 before restoring complementarity. Then , the

current basic matrix M [(;K“) is given by the formula:

G -4 —w 0 0
ART 0 0 e 0
M=t 0O 0 0 0
- ay, 0" 0o o0 0
AKT 0 0 0 I
Where W = [Qprfl yeres ]

Note 2.1. There is a slight modification from the representation of M éKH) In sections (4), (5) and (6) which is just

+r) ﬂ(KJrr) A(KH’)

. . K
a permutation of that one. At this stage )_c( , A AL (f+r)

v and v Pe nU{q}, are known.

The first step is to solve the system

_ Nl . -
G -4 -w 0o o]|l% —~ay,
A7 00 e 0|7 o
M = T 0 0 0 01l/df"|=|0 2.1)
—a,, 000" 0 0|[g%n| |0
AFT 0 0 0 I]|l,xn| [0 ]
L =vp
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. . K K K .
for the basic variables c_li ) , i; " , C_ZEV " and di;f“) ,P¢ nU{q}. Before moving to the next step we

define o as follows:

1if (@ >0) ord®" =0 and d* <0)

—1 if (@%" <0) ord*™ =0 and ¥ >0)

The next move will be to obtain P,,; which solves

. V;Kw)
r?elrl;l o W 2.2)
o'd"ivhrLo i
(K+r) v(K+r)
(K+r) q Pr+1
it od <0 and < (2.3)
A (K+r) (K+r)
q
od 3 od s

Then the next tableau is complementary and given by the form:

(K+r+l1)
G — Al 0
T
M;K+r+1) — _AI(K+r+1) 0 0
T
—A§K+r+l) 0 I

Where,
AI(K+r+1) — [Al W :QP,]

(K+r+l)
> A2

Here A, results from Al(K) by removing a results from adding a to A;K”). The new basic

variables are updated and given by the following equations:

(K+7r)
(K+r+l) _ q
ﬂ'Pr - dAK) 2.4)
q
K 1 K
LC( +rel) £( +7) _dx(mr)igﬂrﬂ) (2.5)
(K+r+1) _ a(K+r) (K+7) 9(K+r+1)
A = QU0 — g Ko p0 D (S e np) (2.6)
(K+r+1) _ _(K+7r) (K+7) 9(K+r+1)
Vp =V, —dvp Ap) , Pen 2.7
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On the other hand, if (2.3) is not satisfied, then the resulting tableau is still non-complementary with M éK“”)

having the form:

\

G —A® —w' 0 0
— 45T 0 0 e O
M= - 0 0 0 0
~dap, 00 0" 0 0
B A2(K+r+1)7 0 0 0 I |

where A;K“H) is obtained from Az(K“) by removing a » ]and w' = E » W] The basic variables are

updated and given by the system:

ﬁgﬁrﬂ) :% 2.8)
prel
)_C(K+r+1) — &) _dx(mr)ﬁgﬂm) (2.9)
41(1<+r+1) _ il(1<+r) _QA(K+r)25D[r<+r+l) (2.10)
igﬂrﬂ) — igﬂrﬂ) _iW(K+r)A§JIV‘(+r+1) @.11)
v;)KJrrH) _ v;)K+r) _dgﬁw)ﬂgfwm Pen 2.12)

Where ,the index set is then updated by adding P,
In the following we give the detailed outlines of the algorithm. It combines the steps described in the previous
sections in one whole unit. It references to the numbers of some of the conditions and equations appeared in (1. 1)

and (1.2). the algorithm assumes the availability of an initial basic feasible point. The steps are:
1) Given Lc(l) , ﬂ,fl) , vgl) and 77, set K=1
2) Apply by (1.1) and (1.2) and solve the output for q .

") otherwise apply by (1.3) and (1.2) and solve the output for P;.

3) If /1§K) >0 terminate with x = x
4) If (1.4)is satisfied remove q from 77; update the basic variables using (1.5) to (1.8); set K = K + /and go to 2)

otherwise remove q from 77; update the basic variables using (1.9) to (1. 12);

5) Letr=1, kk =k, KK+ r andadd P, to 7.
17



Mathematical Theory and Modeling WWWw.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) ey
Vol.3, No.2, 2013 ST

6) Apply by (2.2), (2.1) and solve the output for P,.; .

7) If (2.3) is satisfied, update the basic variables using (2.4) to (2.7) set K=K+1 and go to 2), otherwise update the
basic variables using (2.8) to (2.12).

8) Letr=r+ 1 and go to 5). (See[8]).

3. Practical Application Of The Algorithm:-

The algorithm presented in the previous section represents a general outline of a method rather than an exact
definition of a computer implementation. In this section we discuss the computational work performed by the
algorithm, and try to achieve efficiency and stability as possible as we can. In doing so we follow, with slight
modifications, the work of Gill and Murray which has been applied to active set methods since midseventies until
now (see [4,5,6]). The slight modifications are made to cope with the new forms of the matrices used in our method
when G is indefinite. In the case when G is positive (semi definite) our method (which is in this case the Dantzig-
Wolfe method) and the active set methods are considered to be equivalent, is pointed out. In[12] The auther gave a
detailed description of that equivalence. He also remensioned this equivalence in [2].

The major computational work of the algorithm is in the solution of (1.2) and (2.1). We do not solve them directly;
instead, we make use of the special structure of the matrices involved. We use the matrices H, T and U defined in

(3.7). Thus, accordingly the solution of (1.2.) is given by:

d =-Te, 3.1
d =Ue, (3.2)
d® =AD" gx® (3.3)

(K+r) _ (K+r) (K+r)
d’ ' =HWd, +qudvq —Ha, (34
And there for we get :

(K+r) T (K+r) (K+r) T
A =T'Wd, " -Ued, ~"+Ta, @5

Q(K“’) =A2(K+r)T d(KH’) (36)

v —X
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Hence H, U,and T define the inverse of the upper left partition of the basis matrix when the tableau is
complementary. This calls for making them available at every complementary tableau. In other words they are to be

updated from a complementary tableau to another.

H=z(z"Gz)'z"
T=8-7(z"Gz)' 2"Gs (3.7)

-1
U=S"Gz(z"Gz)' 2"GS - S"GS
Refering to (3.7), H, T and U are given by:
H= Z‘K)(Z‘K)T GZ(K))’IZUOT
T = §® _ 75 (Zuo" GZ(K))_lz(K)T GS®
-1
U=S5%" GZ(K)(Z(K)T GZ‘K)) 7®" GgE _ ¢ G¢K)
Where S® and Z™) satisfy
SET 4 = 1 (3.8) and
T
Z5 4% =0 (3.9)
The choice of S and Z®) to satisfy (3.8) and (3.9) respectively is generally open. Here we take the choice
given in :
S=QR"T , Z=0Q, (3.10)
K(z'G6z)<k(G) (3.11)
which is, according to (3.10) and (3.110 is advantageous as far as stability is concerned.

For the sake of making this section self contained we show how S " and Z™ are obtained in away suitable to

this section.

Let:
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R(k)
QR4 ={ 0 (3.12)

represent the QR factorization of AI(K) , Where AI(K) is nxL,. Thus Q(K) is nxnand R% is an

L, x L, upper triangular matrix partition Q) into
K k UPp g p

(K)
0% =

(K)

2

where Q) is L, xn and Q% is (l’l —LK)Xn. Thus, from (3.11) we have
oM AR = R® (3.13) and
oM 4% =0 (3.14)
so from (3.13) and (3.14) we define S® and ZX) by:

SK) = QU R (3.15)

and ZX) = Tng)T (3.16)

Where 1 is the identity matrix whose columns are reversed. (This choice is meant for simplifying the work) .
(1.3.3).

Thus we conclude by saying that the computation is focussed on using the QR - factorization of AI(K) , (when the

kth iteration is complementary). So updating these factors is required at each iteration when the tableau is

complementary. This to be shown in [9].

4. Updating The QR-Factors Of 4" ;-

In this section we show how to update the QR-factors of Al(K) , when the tableau is complementary. Following

the stream of our discussions, two cases are to be considered separately. The case when the (K+1)th iteration results
in a complementary tableau, and the case when complementarity is restored at the (K+r+1)th iteration after r

successive non-complementary tableaux.
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In the first case the factors of AI(K) are updated to give those of AI(K”) , and this is the case when a column, @ p

say, is deleted from A, In the second case the factors of A" are used to give those of A", and this is

the case when one column, @, say, is deleted from Al(K) and then r other columns are added to AI(K) . We follow
the same steps carried in [5] with the appropriate modification in the second case.

In the first case, let Al(KH) be the nX (L K~ 1) matrix obtained by deleting the qth column, g, from Al(K) .

Suppose the QR-factorization of AI(ZK ) s given by:

R(K)
Q(K)Al(K) :|: . :|

Partition AI(K) into:
(K) _ (K) (K)

q

where A" is nx(g—1) and A is nX(LK —q). Let R™ have the form

R, a R,
RW — QT y éT ,
0 0 R

2
where R, is (¢ —1)x(q—1) upper triangular, R, is (g —1)x (LK - q) , Ry, is (LK - q)x (LK - q)
upper triangular, ¢ is a (q —L) -vector, [ isan (LK - q) vector and ¥ is a scalar.

Since A% = [AI(IK) Al(zK)], 0% A" will have the form:

=
=

o 1o
2

=

A

Now, let Ql\ be the product of the plane rotations which gives:

\ET _ R )
Q{sz H
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where R’ is (LK - q)x (LK — q) upper triangular. In this case O, is an (LK —-q+ l)x (LK -q+ 1)
orthogonal matrix

Thus if

I 0 O q-L

Q0'=10 QO 0| L,—qg+1
0 I| n-L,

Which is orthogonal, then

Ry, ng q-1
Q|Q(K)A1(K+1) -lo R L, —q
0 0 |n-L,+1

So we obtain Q%™ =0' Q%) and

R, R
reo < T ] @

K
Thus, only the rows from the qth to the L, th of Q (k) are altered in obtaining Q(KH) , so if Q(KH) is

partitioned into

(K+1) L
(k+) _ | &4 K-1
0 - 4.2)
K+1
Qé Y=Ly,
then éKH) , in particular, takes the form

T
(K+1) _ q
2 (K)
1
(K)

Note also that the first g-1 rows of Q1 are not changed. This fact might be helpful as far as efficiency is
concerned if we want to think of an other alternative of choosing ¢ in (1.1), such an alternative is

q:max{i:/il.<0,1£i£LK}
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So that increase the number of rows of QI(K) and R which are unaltered in iteration (K+1), which in turns

reduces the effort, especially when L, is relatively large.

We now consider the second case when complementarity is restored at the (K+r+1)th iteration. Let

W = [Qpr,,.,—gfpl]. Let Al(K”) be obtained from AI(K) by removing @, . Thus
QU [A(K+1) : W] 4.3)

Premultiplying both sides of (4.3) by Q"™ (defined in (4.1) we get

0 W, |n—L

K+1

Q(K+1)A(K+r+1) _ |:R(K+1) VVI:| L,

where VVl = Ql(KH) w
and W, =00 W

and R is defined in (4.1)

let

R
a1

Define the QR-factorization of W,. Here Q, is (h - L, + 1) X (n L, + 1) and orthogonal, and R, is X r

upper triangular.

If

Q\\zl 0] L,-1
0 O, |n-L,+1

Then
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R(K+1) VVl' LK _1

Q"Q(K+1)A(K+r+1) — 0 R2 7’
0 0 |n—Ly—-r-1

Thus we obtain the QR-factorization of AT with

Q(K+r+1) — Q"Q(K+1) — Q"Q'Q(K)

and

R(K+1) VVI'

0 R

R (K+r+l) _

5. Updating The LDL"-Factors Of G{* :-

;

The factors L' DS L of GX) are updated at each iteration when the tableau is complementary. Near the
A p p y

end of this subsection we show that Gﬁf) is always positive definite (on the assumption that G;K) is positive semi-

definite). Updating these factors is very stable when G;K) is positive definite as we shall see. This fact is counted

as one of the good numerical features of the method. We consider the case when the (K+1)th iteration results in a

complementary tableau. Unfortunately, in the other case when complementarity is restored at the (K+r+1) iteration,

we are unable till now to explore a way of using the factors of G;K) in obtaining those of G;K“H) . However
n—L ¢ — 7, the dimension of G;K”H) , decreases with r, in which case the effort of refactorizing GEIKHH)

might not be so much, especially when 7 — L is itself small. ~This calls for choosing the starting L, so that

n— L1 is small. In the case when the number of constraints is greater than n, L; is chosen to be equal to n; that is

@ s a vertex. With this choice GS) =0, and in the second iteration we might expect a

the initial guess X
constraint to be deleted from the active set (which is the case when the second iteration is complementary).

Otherwise the third iteration will definitely restore complementarity at another vertex leaving Gf) =0. In the

former case the dimension of Gf) is 1. In general the dimension of G;K) keeps on increasing when constraints
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are deleted, and updating the factors is straight forward as will be shown. On the other hand the dimension of G;K)

keeps on decreasing when constraints are added to the active set, and in this case we are faced with refactorizing the
factors.

We return to the case when the (K+1)th iteration is complementary . In this case, as (4.3) shows we get :

T
&+ _| 4
2

and using (3.16) we have
gK) _F G;KH)T _ [Z(K)q]
the matrix G;KH) is given by:

GP  z%'Gq

(K+1) _ 7 (K+D)T (K+1) _
G, =7 GZ = qTGZ(K) qTGq

It can be shown that when a symmetric matrix is augmented by a single row and a column, the lower-triangular

factor is augmented by a single row. Define:

L(K+1) — |:L(K) (_):| D(K+1) — D(K) Q
1" 1|

If we substitute (4.1) and (4.2) into the identity

r
G;KH) — L(K+1)D(K+1)L(K+1) ,

we obtain L and d , as the solution of the equations

n—Lg+
[Op®] = Z(K)TGq
and

d”_LKH =2TG2—LTD(K)L

The numerical stability of this scheme is based on the fact that, if GEIKH) is positive definite, the element d_ L+l

must be positive. In this event (4.5) ensures that arbitrary growth in magnitude can not occur in the elements of L .
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Before ending this subsection we show that when the kth iteration and the (K+1)th iteration are complementary then

G;K”) must be positive definite.
Let the tableau be complementary at the kth iteration. Let AI(K) be the matrix whose columns correspond to the

active constraints, and ZEK) < 0. The increase of v , changes faccording to

f=f% +4,v, —O.5uquq2 (5.1

(u,, =€lUe,)

_ (K) _
}“q - }“q UggVq

and X changes according to
X = g(m +Te,v, (5.2)

For the next tableau (i.e. the (K+1)th) to be complementary u gq Mustbe negative, and the new value

(K)
pE | e

q
qu

of v, must not violate feasibility.

Thus, using (5.1), we have

=-u,, >0

which reflects the fact that f possesses a positive curvature along the direction 7'e ¢

.
Now let A" ™ be obtained from A by removing a, and let Z%* be defined so that Z*™ 4% =0

(K+D)T

Premultiply both sides of (5.2) by 4 to get

AX D Te =0

—q
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showing that T'e g lies in the space spanned by the columns of Z (X+D) , SO

Te,=Z""h (5.3)

(e iz 0 and d’f

PR —->0, then fis minimum

v, dvq

for some (n L, + 1) - vector si. Since along T'e, at v

(K+1)

along Te, at x , where

K+l
NS

(K+1)

(K)
x +Teyv,

D

We therefore conclude, in the active set methods sense, that the direction O & =7 e qv;m solves the equality

problem.
minimize 0.58' GS+ 5 (G;C(K) + g)

subject to AE 0=0 (5.12)
(K+1

)
, = ZESED thus §a™ ) solves the problem

using (5.3) 6K = Z2& Dy

minimize O.SQZ (Z(K”)T GZ(KH)EA +éf1 (Gg(K) + g),

(K+1) _ 7 (K+D)T (K+1)
(KD = 7D Gz

from which we conclude that G is positive definite.

6. Finding an Initial Feasible Point:-

In this section we are not going to describe a fully detailed method of obtaining an initial feasible point, since linear
programming literature is full of such techniques.
The method of finding a feasible point has been resolved in linear programming by a technique known as phase 1

simplex (See[11]). The basis of the technique is to define an artificial objective function, namely:

F)=-Yla]x-b,).

Jev(x)
where V(X) is the set of indices of constraints which are violated at the point X, and to minimize this function
T
j

with respect to X, subject to the constraints a . x—b. >0, j¢&v(x) . The function F'(x) is linear and is

J
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*
known as the sum of infeasibilities. If a feasible point exists the solution x of the artificial problem is such that
~ %
F(x)=0.
In the case when m exceeds n, a non-feasible vertex is available as an initial feasible point to phase 1 and the simplex

method is applied to minimize F (x). This process will ultimately lead to a feasible vertex. Direct application of

this method to finding a feasible point in the case when m is less than n is not feasible since, although a feasible point
may exist a feasible vertex will not. Under these circumstances artificial vertices can be defined by adding simple
bounds to the variables, but this could lead to either a poor initial point, since some of these artificial constraints
must be active, or exclusion of the feasible region.

A way out of this dilemma is described in [4,5]. In [2] the number of methods including the above one have been
described.

Gill and Murray in[3.4,5] are advantageous in that it makes available the QR-factorization of the initial matrix of

active constraints which is then directly used in our algorithm.
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