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Abstract 

prey-predator is defined as an interaction between the prey and predator in ecosystem.  However, over-harvesting 

of wildlife resources is an important challenge facing protected area in Africa, a better understanding of the 

nature would improve the way in which it is managed. 

This paper describes Modelling harvested prey–predator model incorporating a prey refuge in which a prey and 

predator species are affected by over-harvesting. The intention is to investigate the impacts of over-harvesting 

and make a possible suggestion on how to alleviate the problem. The results obtained from theoretical and 

numerical analysis of the prey-predator with harvesting showed that, overharvesting affect the prey-predator 

species negatively. However, the results obtained from numerical analysis of the prey-predator model with 

control strategies showed that catchibility coefficient and prey refuge has a great impact on both prey and 

predator species on their population densities.  
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1.Introduction 

The prey-predator models has become one of the great interest to researchers in mathematics and ecology 

because they deal with number of factors in environmental problem, such as community morbidity and how to 

control it and optimal harvest policy to sustain a community (Sagamiko, 2015; A. B. Ashine, 2017.). Therefore, 

the developed mathematical model of prey-predator interaction of Lotka-Volterra model has motivated extensive 

study in the area of ecological modelling. 

In dynamical system a definite activity done by individual area causes severe destruction to the ecosystem of that 

area. If such activity is unavoidable then the prevailing authority of the area should plan a regular policy which 

would keep the destruction of the ecosystems minimal (Kar, 2006). One of such activity is harvesting, which has 

a strong impact on the dynamic evolution of a population subjected to it however, it has been observed that over 

exploitation and over-harvesting of population species are commonly practiced in fishing, forestry and wildlife 

management which is done for the purpose of economic progress (Katsukawa, 2002). It is also agreed that 

biological species of prey–predator system is harvested unscientifically and exported with the aim of positive 

economic profit which regularly decreases the resources and eventually the ecosystems collapse.  

 (Ghosh, 2010; Kar, 2006) argued that using optimal harvesting efforts as controls can help discontinuities cyclic 

behaviour of the system of the prey-predator which may results to a required state of the ecosystem. 

The study of the consequences of hiding behaviour of prey on the dynamics of predator-prey interactions can be 

recognized as a major issue in applied mathematics and theoretical ecology. However, prey refuge in Game 

reserve and National parks is mostly practiced by Wildebeest, Cape buffaloes that help them to protect from 

predator attack, hence reduces their predation rate. Therefore, under such situation it is expected that the addition 

of a small prey refuge stabilizes prey-predator interactions, the addition of a large refuge leads to almost 

changeability (i.e. random like prey population outbreak) (Li, 2013).  Hence this study employed Holling Type II 
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functional response on its model in which the rate of consumption of predator was assumed to depends on the 

availability of prey density as the only source of food.  

2. Model and its Properties 

In this section, we consider two different populations, the prey (x(t)) and predator (y(t)) interaction incorporating 

a prey refuge in which the model is formulated using deterministic differential equation and its stability analysis 

is done using Jacobian Matrix while simulation is done using MATLAB software  

2.1 Model Assumptions  

The ecological setup considers the following assumptions as follows; 

(i) Both prey and predator are continuously harvested  

(ii) Predator depend on the prey as its favourite food. Thus, in absence of f prey the predator goes to 

extinction 

(iii) We also assumed that there is a refuge habitat where prey species are secured from predation and 

non-refuge habitat in which the prey are visible to predation  

(iv) In absence of harvesting on both species, prey is assumed to grow logistically to the carrying 

capacity    

(v) The rate of increase of the predator depends on the amount of biomass predator converts as food  

Then from the above assumptions, we assume  x(t) and  y(t) represent the population density of prey and 

predator respectively at time t. with assumption we use Holling type (II) function response to formulate the pre-

predator model as follows 

                                      
 dx

dt

= r (1 −
x

K
) x −

α(1 − p)xy

1 + a(1 − p)x
− q1h1x                        (1) 

 
dy

dt
= −μy +

α(1 − p)xy

1 + a(1 − p)x
− q2h2y 

Where x(t) > 0  and y(t) > 0 , also α, K, μ, a, b   are all positive constants and r is the intrinsic growth rate of the 

prey. K is the carrying capacity of the prey in the absence of the predator and harvesting, the term  
α(1−p)xy

1+α(1−p)x
  is 

the functional response of the predator which is a Holling type (II) response functional of the predator, μ is the 

death rate of the predator, 
α

a
  is the maximum number that can be eaten by each predator per unit time, b is the 

predators for each captured prey, q1 and q2 are catchibility coefficient of the prey and predator respectively. P is 

the proportion of prey population not exposed to predation, that it protects px and leaves (1 − p)x of the prey 

available to predation.  Note that p ∈ [0, 1] 

 

 3. Model analysis 

 3.1 Boundedness of the system  

The solution of the prey-predator model developed in (1) represents the populations of living individuals and 

they have their ecological meaning that is to say they must be positive and bounded. 

Lemma: All solutions of the system (1) which starts with ℛ2+ are uniformly bounded. 
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Proof: To prove the theorem, we define a function   

                                                 W(t) = x(t) +
α

αb
y(t)                                               (2)  

which simplifies to  

                                                      W(t) = x(t) +
1

b
y(t)                                             (3) 

Where W(t) represents total population of the prey and predator species, we differentiate equation (3) with 

respect to t above as;  

                                                   
dW

dt
=
dx

dt
+
1

b

dy

dt
                                                       (4) 

Then substitute equation (1) into equation (4)  

   
dW

dt
= r (1 −

x

K
) x −

α(1−p)xy

1+a(1−p)x
− q1h1x +

1

b
(−μy +

α(1−p)xy

1+a(1−p)x
− q2h2y)     (5)  

Then equation (5) will be simplified as follows; 

dW

dt
= r (1 −

x

K
) x −

α(1 − p)xy

1 + a(1 − p)x
− q1h1x +

1

b
(−μ − q2h2)y 

+
α(1 − p)xy

1 + a(1 − p)x
 

Then all terms of interspecific competition are cancelled out 

dW

dt
= r (1 −

x

K
) x − q1h1x +

1

b
(−μ − q2h2)y 

Also, on simplification we have  

dW

dt
= rx −

𝑟𝑥2

𝐾
− q1h1x +

1

b
(−μ − q2h2)y 

We let  E1 = q1h1 and E2 = q2h2 

Then we have the simplified equation as follows     
dW

dt
= (r − E1) x −

r x2

K
−
1

b
(μ + E2) y 

Let the arbitrary constant to be Ω then the equation above will be written as follows  

dW

dt
= (r − E1) x −

r x2

K
−
1

b
(μ + E2) y + ΩW(t) − ΩW(t) 

Thus; 
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dW

dt
+ ΩW(t) ≤ (r − E1) x −

r x2

K
−
1

b
(μ + E2) y + Ω(x(t)+

1
b
y(t))                             (6) 

Using the concept of perfect square  

dW

dt
+ ΩW(t) ≤ (r − E1 + Ω) x −

r x2

K
−
1

b
(μ + E2 − Ω) y 

Then it follows  

dW

dt
+ ΩW(t) ≤

𝐾

4 𝑟
(r − E1 + Ω)

2  −
r 

K
(x2 − (𝑟 − E2 + Ω)

𝐾

𝑟
)
2

−
1

b
(μ + E2 + Ω) y 

But   
K

4 r
(r − E1 + Ω)

2 = max [
r 

K
(x2 − (r − E2 + Ω)

K

r
)
2

] 

Also letting the   
K

4 r
(r − E1 + Ω)

2 = m1 

Thus  

                                                     
dW

dt
+ ΩW(t) ≤ m1                                                                         (7)  

Solving equation (7) differential inequality using integrating factor I = eΩt yields  

                                                        𝑊(𝑡)eΩt ≤
m1

Ω
+ 𝐶e−Ωt                                                     (8)   

At  t = 0 equation in (8) becomes   

                                               W(0) =
m1
Ω
+ (W(0) −

m1
Ω
) e−Ω(0)                                                (9) 

As t → ∞         (8) 

0 ≤ 𝑊(𝑡) ≤
m1
Ω

 

 

Therefore  𝑊(𝑡) is bounded and from positivity of x and y it follows  

0 ≤ 𝑥(𝑡) ≤
m1

Ω
    

and  

0 ≤ 𝑦(𝑡) ≤
m1
Ω
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3.2 Analysis of the stability of the equilibrium points  

In this section, we establish condition for the existence of equilibrium pons of the model equation (1) the system 

has at least four equilibrium points obtained by setting   
dy

dt
= 0  and  

dx

dt
= 0 by so doing we get the possible 

equilibrium points of the system as; 

(i) E0(0,0) is the extinction of both species, prey and predator  

(ii) E1(x, 0) is the  predator extinction   

(iii) E2(0, y) is the prey extinction  

(iv) E3(x, y)  the coexistence or equalibrium point of the system   

But E0(0,0) point is trial. The existence of the rest of the fixed equilibrium points are described below  

(i) The existence of 𝐄𝟏(𝐱
∗, 𝟎) with 𝐱∗ > 𝟎  

Let y = 0 the system of equation reduces to  

0 = r (1 −
x∗

K
)x∗ − q1h1x

∗ 

On simplifying we have  

x∗ (r −
rx∗

K
− q1h1) = 0 

Thus x∗ =
K(r−q1h1)

r
 

Therefore E1(x
∗, 0) = (

K(r−q1h1)

r
 , 0) 

From the expression of x∗ we observe that harvesting has negative impact on the prey growth hence affect the 

prey population density. However, for the predator free equilibrium point  E1(x
∗, 0) to exist 𝑟 − q1h1 > 0 which 

implies r > q1h1. Therefore, in absence of predator the intrinsic growth rate of prey population should be greater 

than harvesting rate. Hence increasing harvesting of prey species results into decreasing of predator which 

affects survival of predator species. This is the fact prove that predator depends on the prey as their only source 

of food.  

 

(ii) The existence of 𝐄𝟐(𝟎, 𝐲
∗) with 𝐲∗ > 𝟎  

Let x = 0 the system of equation (1) reduces to 𝑦∗(−μ − q1h1) = 0  from which we obtain 𝑦∗ = 0  

which implies 

 

                                          E2(0, y
∗) = E0(0,0)                                                                              (10)   

The results above imply that the predator depend on prey as their only source of food. Thus, in 

absence of prey, predator populations become exist. 

 

(iii) Co-existence of equilibrium point  𝐄𝟑(𝐱
∗, 𝐲∗)  

We equate the equation (1) equals to zero that is to say  
dy

dt
= 0  and  

dx

dt
= 0 then the system reduces 

the following equations; 

r (1 −
x

K
) x −

α(1 − p)xy

1 + a(1 − p)x
− q1h1x = 0 

                 −μy +
α(1 − p)xy

1 + a(1 − p)x
− q2h2y = 0 

Using MAPLE software, the co-existence point will be as;  
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x∗ =
μ + H2

((μ + H2)a − αb)(p − 1)
 

y∗ = −
b

((μ + H2)a − αb)(p − 1)
(−r (

((μ + H2)a − αb)(p − 1)K − μ − H2

((μ + H2 )a − αb)(p − 1)K
) + H2) 

                                                    

For       H1 = q1h1 and H2 = q2h2 

Thus, the existence of the point  

              E3(x
∗, y∗) = (

μ+H2

((μ+H2)a−αb)(p−1)
, −

b

((μ+H2)a−αb)(p−1)
(−r (

((μ+H2)a−αb)(p−1)K−μ−H2

((μ+H2)a−αb)(p−1)K
) + H2)  )       (11) 

From the expression of E3(x
∗, y∗) we observe that predators death rate and harvesting affect the convention 

factor b (predator biomass to the prey) of newly born predator negatively   which in turn results into negative 

effects on predator population density. However, the co-existence equilibrium point (non -trivial) exist if 

((μ + H2)a − αb) > 0 implying that  
αb

a
<  μ + H2 . Therefore, in the absence of both populations birth rate of 

predator should be greater than the sum of death rate and harvesting of predator. Increasing harvesting to 

predator population causes rapid decrease of predator which results in increasing of prey population density.  

3.3 Stability analysis of the equilibrium points  

The stability of the equilibrium points is analyzed by computing the Jacobian matrix and determining the 

eigenvalues of the Jacobian matrix of each fixed point E0(0,0), E1(x
∗, 0), E2(0, y

∗)  and    E3(x
∗, y∗).The 

equilibrium points are asymptotically stable if the real parts of the eigenvalues of each jacobian matrix are 

negative. From the system equation (1) the general Jacobian matrix of the equations is given by;  

𝐽(𝐸𝑖) =

(

 
 

𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦)

 
 

 

This will be described as follows; 

                   𝐽(Ei) = (

r (1 −
x∗

K
) −

r x∗

K
−

α(1−p)2x∗y∗a

 (1+a(1−p) x∗)
2 −

α(1−p) x∗

1+a(1−p) x∗

bα(1−p)y∗

1+a(1−p) x∗
−

α(1−p)2x∗y∗a

 (1+a(1−p) x∗)
2 −μ +

bα(1−p) x∗

1+a(1−p) x∗

)                                          (12) 

Hence from the Jacobian matrix 𝐽(𝐸𝑖) above the equilibrium point;  

 

(i) 𝐄𝟎(𝟎, 𝟎) is given by  

J(E0) = (
r 0
0 −μ

) 

Thus, using Maple software, the eigenvalues of the Jacobian matrix 

  J(E0) are  r and − μ However, 𝐸0(0,  0) is saddle point under condition that r > 0  and all 

saddles are unstable. 

 

(ii) For predator free equilibrium point  𝑬𝟏(𝒙
∗, 𝟎)= (

𝐊(𝟏−𝐪𝟏𝐡𝟏)

𝐫
, 𝟎) 

   The corresponding matrix is written as  

                          𝐽(𝐸1) =

(

 
 
2𝑞1ℎ1 −

𝛼𝐾(1 − 𝑞1𝐾)(1 − 𝑝)

𝑟 + 𝛼𝐾(1 − 𝑞1𝐾)(1 − 𝑝)

0 −𝜇 +
𝛼𝑏(𝑟 − 𝑞1ℎ1)(1 − 𝑝)

𝑟 + 𝛼𝐾(𝑟 − 𝑞1ℎ1)(1 − 𝑝))

 
 
                                    (13)  
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Eigenvalues of E1(x
∗, 0) are 2𝑞1ℎ1 and  

−𝜇 +
𝛼𝑏(𝑟−𝑞1ℎ1)(1−𝑝)

𝑟+𝛼𝐾(𝑟−𝑞1ℎ1)(1−𝑝)
 hence J is locally asymptotically stable if  

                                            
𝛼𝑏(𝑟 − 𝑞1ℎ1)(1 − 𝑝)

𝑟 + 𝛼𝐾(𝑟 − 𝑞1ℎ1)(1 − 𝑝)
< 𝜇                                                                (14) 

 

(iii) The corresponding Jacobian matrix of the equilibrium point    𝐄𝟐(𝟎, 𝐲
∗)  

 

                                        𝐽(E2)  =  (
𝑟 0
0 −𝜇

)                                                                                        (15) 

Hence, we find that  E0(0, 0) =     E2(0, y
∗) hence the eigen values for Jacobian matrix J(E2) are r 

and −μ  where r > 0  therefore the point at equilibrium     E2(0, y
∗) is unstable saddle.  

(iv) For co-existence equilibrium point  𝐄𝟑(𝐱
∗, 𝐲∗)  

 

The jacobian matrix J(𝐄𝟑) is given by 

                                                         (
E11 E12
E21 E22

)                                                                                    (16) 

Where  

 

                          E11 = r (1 −
r

K
) −

r(H2 + μ)

G2K
−
G1α(1 − p(G4 − G3))

G1 + a(H2 + μ)
+ M                            (17)   

 

M =
G2

2α(1 − p)(H2 + μ)(G4 − G3)a

(G1(G2 + a(1 − p)(H2 + μ)))
2  

 

Therefore, on simplification of equation (17)  

 

r (1 −
r

K
) −

r(H2 + μ)

G2K
−

G1Q

G1 + a(H2 + μ)
+

G2
2(H2 + μ)Qa

(G1(G2 + a(1 − p)(H2 + μ)))
2 

 

 

Where  

Q = (G4 − G3)α(1 − p) 
 

G1 = a(H2 + μ) − αb 

 

G2 = (1 − p)[a(H2 + μ) − αb] 
 

G3 =
bH1

(H2(−1 + p) + μ(−1 + p))a(−1 + p) − α(−1 + p)b(−1 + p)
 

G4 =
br (((H2(−1 + p) + μ(−1 + p))a(−1 + p) − α(−1 + p)b(−1 + p)) K − H2 − μ)

[(H2(−1 + p) + μ(−1 + p))a(−1 + p) − α(−1 + p)b(−1 + p)]
2
K

 

Again for  

                                                                    E12 = −
α(H2 + μ)

aμ + aH2 + [a(H2 + μ) − αb]
                                       (18) 

 

              E21 =   
bα(1 − p)M

1 + G5
−

b(α(1 − p))
2
(μ + H2)Ma

(1 − p)[a(μ + H2) − αb](aG5 + 1)
2
                               (19) 
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where 

 M =
br (((H2(−1 + p) + μ(−1 + p))a(−1 + p) − α(−1 + p)b(−1 + p)) K − H2 − μ)

[(H2(−1 + p) + μ(−1 + p))a(−1 + p) − α(−1 + p)b(−1 + p)]
2
K

− D 

 

 

G5 =
μ + H2

[a(μ + H2) − αb]
 

And  

D =
bH1

((μ + H2) − αb)
 

                                             E22 = −μ +
bα(H2 + μ)

2a(H2 + μ) − αb
                                                  (20) 

 

The stability of the J(E3) is stated using the characteristic of polynomial equation techniques using trace and 

determinant techniques proposition as follows  

 

Preposition 3.1: suppose the jacobian matrix is evaluated at the co-existence equilibrium has characteristic 

polynomial equation  

(21)                                      λ2 − (trace(J(E3))) λ + determinant (J(E3))=0   

 

Such that trace (J(𝐄𝟑)) =E11+E22 and  determinant (J(E3))= E11E22-E12E21 

The co-existence equilibrium point is locally stable or stable spiral if 

 trace(J(E3)) < 0   and determinant(J(E3)) > 0 . Also, the interior equilibrium point is Centre (neutral stable) 

if trace(J(E3)) = 0   and determinant(J(E3)) > 0 

 

 4. Global stability of equilibrium point   

 Points E1and E2 is shown by linearizing the system of equation (1) and defining appropriate Lyapunov 

function to separately described each equilibrium point. The linearizing process is done using jacobian 

technique such that; 

                                                                              
dXi

dt
= J(Ei)Xi                                                                                 (22)    

 

Where J(Ei) is the Jacobian Matrix and Xi is the small perturbation on xi. Therefore, the system (1) reduces 

to the following linear system; 

                   
dX

dt
      = [r (1 −

x∗

K
) −

rx∗

K
−

α(1 − p)y∗

(1| + a(1 − p)x∗)2
] X − [

α(1 − p)x∗

(1 + a(1 − p)x)
] Y           (23)  

    
dY

dt
= [

𝑏𝛼(1 − 𝑝)𝑦∗

1 + 𝑎(1 − 𝑝)𝑥∗
−
αb(1 − p)2y∗𝑥∗𝑎

(1| + a(1 − p)x∗)2
] X + [−𝜇 +

α(1 − p)x∗

(1 + a(1 − p)x)
] Y 

 

The Lyapunov function is chosen as  

                                                                            V(X, Y) =
X2

2
+
Y2

2
                                                                              (24)  

The function V(X, Y) is positive definite function since V(X, Y) ≥ 0 for any values of (X, Y) and it is minimum at 

the origin that is V(0, 0) = 0 the time derivative of V(X, Y) is given by  
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dV(X, Y)

dt
=
∂V

∂X
.
dX

dt
+
∂V

∂Y
.
dY

dt
                                                                  (25) 

By substituting equation (23) and the partial V into (25) we obtain the relation below; 

 
dV(X, Y)

dt
= X [(r (1 −

x∗

K
) −

rx∗

K
−

α(1 − p)y∗

(1| + a(1 − p)x∗)2
) X − (

α(1 − p)x∗

(1 + a(1 − p)x)
)Y] +                                               

Y [(
bα(1−p)y∗

1+a(1−p)x∗
−
αb(1−p)2y∗x∗a

(1|+a(1−p)x∗)2
) X + (−μ +

α(1−p)x∗

(1+a(1−p)x)
) Y]                                                                                   (26)   

 

(i) For fixed 𝐄𝟏(𝐱
∗, 𝟎) 

We substitute the equation E1(x
∗, 0) = (

K(r−q1h1)

r
 , 0) into equation (26) above as follows  

                       
dV(X, Y)

dt
= X2(q1h1 − r) − (

α(1 − p)(r − q1h1)

1 + αK(1 − p)(1 − q1h1)
)                                (27)   

 

Therefore, from the equation (27) the equilibrium point E1(x
∗, 0) is asymptotically stable if it 

satisfies the condition that  

 

                                                                             q1h1 − r < 0                                                          (28)   
 

Thus, using simple algebraic mathematical manipulation results into r > q1h1 

Hence in absence of the equilibrium point E1(x
∗, 0) is globally stable if the intrinsic growth rate of 

the prey population is greater than the harvesting rate. 

 

(ii) For steady state 𝐄𝟑(𝐱
∗, 𝐲∗) 

Here, we substitute equation (11) into equation (26) to obtain  

                                                         
dV(X, Y)

dt
= E11X

2 + (E12 + E21)XY                                   (29) 

With usual notation for E11, E12  and E21 . Therefor the point is globally stable if the condition 

below holds  

 

                                           
dV(X, Y)

dt
= (E11X

2 + (E12 + E21)XY) < 0                                 (30)                 

5. Numerical Results and Simulation     

Numerical simulation in this paper is done in two cases using MATLAB software. The two cases are phase 

diagram and variation of catchibility coefficient of prey and predator on harvesting rate. The corresponding 

parameter used in the developed model in equation (1) is described in table (1) below;  
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Table 1: The table of the corresponding parameters for developed model in equation (1) with their sources; 

 

Parameter  Parameter Names  Parameter values  

K 

R 

α 

μ 

p 

q1 

q2 

h1 

h2 
B1 

B2 

A 

a 

 

Carrying capacity of the prey 

Intrinsic growth rate of the prey  

 

Predator’s death rate  

Prey refuge  

Catchibility coefficient of prey  

Catchibility Coefficient of predator 

Harvesting rate 

Harvesting rate  

Cost weight  

 

600 (Assumed) 

1 

0.00000674 

0.01 

0.6 Chosen from  p ∈ [0, 1] 
0.06 

0.0375 

2 

4 

100 

200 

1000 

0.02  

 

Case 1 phase diagram of the model in equation (1) after numerical simulation was  

(i) Phase diagram for equilibrium point E1(x
∗, c) 
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(ii) Phase diagram for equilibrium point  E3(x
∗, y∗) 

 

 
 

Figure (1) above indicate that in the absence of predator while presence of over-harvesting the dynamic 

equilibrium point of E1(x
∗, c) is unstabe while the dynamic behaviour of co- existence equilibrium point 

E3(x
∗, y∗)    is spiral unstable surrounded by a stable convergence lines at point as shown in figure (2). 

 

 

Case II:  Effects of harvesting without any control strategy 

 

In this section we present figures of harvesting prey and predator species without control 

using the parameter described in Table 1. 

 

(i) The effect of varying catchibility coefficient on harvesting of prey with effect of prey 

refuge on prey population density; 
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Figure 3 illustrate that at a minimum prey refuge p and high catchibility coefficient   q1  the population density of 

prey decreases as we see in the figure 3 above.   However the Red line shows the catchibility q1  =0.185 and prey 

refuge p = 0.3 with only approximately 320 number of prey species , the  Green line  has catchibility coefficient  

q1  = 0.175 and prey refuge 0.4  with approximately 350 number of prey species , the yellow line shows the 

catchibility coefficient q1  =0.095 and p = 0.5 with approximately 450 number of prey species  and blue line 

shows catchibility coefficient q1 = 0.06 and prey refuge p= 0.6 with approximately 500 number prey species, 

while at maximum prey refuge and low catchibility coefficient q1  the population density of prey increases. 

Therefore, from figure 3 we observed that the high the prey refuge and the lower the catchibility coefficient the 

greater the number of the prey species are saved as shown in the figure above thus we conclude that prey refuge 

and harvesting have a great impact on prey population density. 

 
(ii) The effect of varying catchibility coefficient on harvesting of predator with effect on 

predator population density 
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Figure 4 illustrate that at a high catchibility coefficient q2the population density of predator decreases, while at 

low catchibility coefficient q2the population density of predator increases. Therefore, from figure 4 we observed 

that harvesting have a great impact on predator population density as we discussed in theoretically. 

 

6.  Discussion, Conclusion and Recommendation 

In this paper, we presented Modelling and Numerical simulation of harvested prey predator model incorporating 

a prey refuge using a deterministic differential equation. The aim was to analyze the effect of harvested prey-

predator species we observed that overharvesting, prey refuge and variation of catchibility coefficient of both 

prey and predator species has great impact on both species on their population growth. 
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