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Abstract  

This study involves the study of the long-term behaviors of rainfall as it is affected by changes to forest area and 

the rise in global temperature. Global temperature and forest cover are considered annually while the amount of 

rainfall are considered seasonally to best capture the effects of severe weather hazards such as drought and 

puberty. A differential equation model was developed and verified using the mean global temperature annually, 

forest area, the daily amounts of rainfall. The rise in global temperature as well as the decline in forest area can 

be, as shown in the seminar, represented by logistic equations. Rainfall is, however, represented as a periodic 

function; hence, second order differential equation, of which the solution is periodic, is used to represent the rate 

of change in the amount of rainfall. In addition, by correlation analysis, the predator-prey terms of forest, global 

temperature and rainfall are presented in the models. 
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Chapter 1 Introduction 

Human beings have become a component in the earth's system, driving and accelerating global warming through 

the rapid release of green house gases (GHGs) into the atmosphere. Climate change is a major concern affecting 

all organisms. Over the past 30 years, global surface temperature has been rising approximately 0:20C per 

decade. Severe weather conditions such as drought and flood have been known to result from high global 

temperature. The amount of greenhouse gases (especially carbon dioxide) in the atmosphere depends inversely 

on the amount of forest area. Today, forest cover has decreased from the past due to timber demands for building 

and manufacturing, [?] and to land usage for agriculture. 

Analysis of climate change and its extreme is becoming more important as it clearly affects the human society 

and are essential for exploration of ecological and societal changes. Climate change is an irreversible 

consequence of the global warming phenomenon. Global warming, or the greenhouse effect, has been brought 

about by an increase in greenhouse gases (GHG) in the atmosphere. Climate change will impact on bio-physical 

systems and ultimately will have consequences to human well being. Understanding climate change is 

fundamental to prepare and to cope with future risk. Climate change is not uniform over space and time and its 

impact on bio-physical system varies from place to place. Therefore, it is necessary to understand climate change 

at the local scale and aim to get site-specific information. Climate change, which is induced by global warming, 

has become a global concern because it has the potential to impact many systems and sectors which would 

threaten human well being. 

The El Nino phenomenon has played an important role on the behavior of rainfall in different areas of the world; 

it is also a major cause of extreme weathers in many regions of the world [?]. Changes in global temperature, 

therefore, lead to variations in the amount of rainfall in different areas of the world, an amount which depends on 

the level of forest transpiration. Deforestation is the single largest cause of forest area diminution, even 

compared to natural disasters such as wildlife. The amount of rainfall is an important indicator for severe 

weather conditions such as drought and flood. 

Many mathematical models in ecology have been developed to describe the relationship between carbon dioxide 

and global warming, forest and carbon dioxide or greenhouse gases, climate change and extreme weathers, 

species (or population) survival and pollution, i.e., industrialization, species (or population) survival and forestry 

or biomass resources and industrialization, population, and pollution. There is also a study to control the amount 

of pollution in the environment in order to restrain the global carrying capacity of population. In another study, 
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the dynamic of the relationship between biomass (which can be viewed as forestry resources), industrialization, 

population, pollution, and pollution released by the biomass resources (which obviously includes carbon dioxide) 

was written in the form of a system of differential equations. Furthermore, there is a mathematical model related 

to the competition among rain forest species using the Lotka-Volterra predator-prey model [?]. However, a 

mathematical model that simultaneously represents the relationship between global temperature, amount of forest 

area and amount of rainfall has never been presented.  

1.1 Statement of the Problem  

Changes in global climate would significantly affect human health, natural aquatic and terrestrial ecosystems, 

and agricultural ecosystems. World-wide attention recently has turned to these issues and scientists from many 

disciplines and many countries are working to assess the potential magnitude and direction of the changes and 

the risks to the biota. This study is intended to answer the following basic questions: 

1. Can we formulate a mathematical model that describes the relationship between global    temperature 

dynamics, forest area and amounts of rainfall? 

2. What are the impacts of the rise in global temperature and decline in forest area on stability of    

seasonal rainfall? 

3. Is there the interaction between global temperature, forest area and rainfall? 

1.3 Objective of the Study 

1.3.1 General Objective: 

The general objective of this study is to develop a mathematical model of the effects of global climate change 

and decreasing in forest cover on seasonal rainfall. 

1.3.2 Specific Objectives: 

The principal objectives of this study are: 

➢ To develop a mathematical model that describe the relationship between global climate change 

and decreasing forest area on seasonal rainfall 

➢ To study the effects of the rise in global temperature and decline of forest area on the stability 

of seasonal rainfall 

➢ To know the interactions between global temperature, forest area and rainfall 

 1.4 Significance and Beneficiaries 

This study provides reliable information on how we can use the mathematical modeling to know the effects of 

global temperature and decreasing forest cover on seasonal rainfall. The outcome of the study benefits building 

and running of a model is a process by which theory and observations are mathematically evaluated, codified and 

integrated. Also, initiate other researchers to identify and then assimilate observational measurements that are 

initially incomplete. 

Chapter 2     Literature Review 

The first global models (models of world dynamics) were developed by J.W. Forrester and D.H. Meadows in the 

1970's. They produced mostly qualitative results and represented first systematic attempts to analyze global 

trends. These models evolved into a more quantitative integrated assessment (IA) approach in global modeling. 

The Intergovernmental Panel on Climate Change (IPCC) was jointly established by the World Meteorological 

Organization and the United Nations Environment Programed in 1988, in order to: 

(i) Assess available scientific information on climate change, 

(ii) Assess the environmental and socio-economic impacts of climate change, and 

(iii) Formulate response strategies.  

Also, James Walsh and Richard McGehee model the climate dynamically. In James Walsh, (1991), proposed a 

mathematical model climate dynamics to extend the work of Richard McGehee, (1969). Global climate is 

determined by the radiation balance of the planet. The Earth warms through the absorption of incoming solar 

radiation (or insolation). For the global climate model, the variable of interest is the annual global mean surface 
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temperature T = T(t). The annual global mean insolation is known as the solar constant Q. The incoming energy 

absorbed by the Earth is then modeled by the term Q(1-𝛼), where 𝛼 is the average global insolation reflected 

back into space. The loss of energy is modeled by a linear approximation A + BT, with parameters A and B. and 

finally its model equation for the annual global mean temperature is then given by  

𝑅
𝑑𝑇

𝑑𝑡
= 𝑄(1 − 𝛼) − (𝐴 + 𝐵𝑇) 

where the left-hand side of this equation represents the change in energy stored in the Earth's surface. The 

parameter R is the heat capacity of the Earth's surface. 

Bampfylde et al., (2005) introduces a mathematical model related to the competition among rain forest species 

using the Lotka-Volterra predator-prey model. Dubey and Narayanan, (2010) models a dynamic of the 

relationship between biomass, industrialization, population, pollution, and pollution released by the biomass 

resources was written in the form of a system of differential equations. 

Md. Hamidul Islam and Md. Abdus Salam et al.,(2011) uses a mathematical model to compute the crucial roles 

of water vapor in global warming by expressing the temperature T as a function of carbon dioxide C, that is T(t) 

= f(C). The developed differential equation is, 

                          
𝑑𝑇

𝑑𝑡
=

𝑑𝑇

𝑑𝐶

𝑑𝐶

𝑑𝑡
= 𝑘

𝑑𝐶

𝑑𝑡
 

The term (
𝑑𝑇

𝑑𝐶
= 𝑘) denotes the change of temperature per unit change in CO2 concentration in the atmosphere. 

This model of global warming is without the effect of water vapor. 

However, a mathematical model that simultaneously represents the relationship between global temperature, 

amount of forest area and amount of rainfall has never been presented.  

Chapter 2 Mathematical Preliminary 

In this chapter, we state some theorems and give the definitions of terminologies which are most crucial for the 

seminar as an input.  

2.1 Existence and Uniqueness Theorem 

Before one spends much time attempting to solve a given differential equation, it is wise to know that solutions 

actually exist. We may also want to know whether the solution is uniquely satisfy the equation with the given 

initial condition. We consider here the autonomous system in Rn. i.e., a collection of equations that do not 

explicitly contain the independent variable. More generally, autonomous systems have the form   

                                               𝑥′ = 𝑓(𝑥)                                        (2.1.1) 

Where 𝑥′ = [

𝑥1

𝑥2...
𝑥𝑛

]    and 𝑓 =

[
 
 
 
 
 
𝑓1(𝑥1, 𝑥2, … 𝑥𝑛)

𝑓2(𝑥1, 𝑥2, … 𝑥𝑛)
..
.

𝑓𝑛(𝑥1, 𝑥2, … 𝑥𝑛)]
 
 
 
 
 

 

Theorem 3.1.1. (Existence and Uniqueness Theorem): Assume D is an open subset of 𝑅 × 𝑅𝑛,  𝑓: 𝐷 → 𝑅𝑛  is a 

continuous. Then for each 𝑡0 ∈ 𝑅 and 𝑥0 ∈ 𝑅𝑛, the IVP 

𝑥′ = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0                                                                                  (2.1.2) 

 Has a solution x.  if in addition,  𝑓 has continuous first order partial derivatives  with respect to 𝑥1, 𝑥2, … 𝑥𝑛 on 

𝑅𝑛, then the above IVP has a unique solution. The following known lemma is useful for the prove of this 

theorem. 

Lemma 2.1.2. Assume that f is continuous n-dimensional vector function on the rectangle 

𝑅 ≔ {(𝑡, 𝑥): 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, ‖𝑥 − 𝑥0‖ ≤ 𝑏}  

and assume that 𝑓(𝑡, 𝑥) satisfies a uniform Lipchitz condition with respect to 𝑥 on R. 

Let 𝑀 ≔ 𝑚𝑎𝑥{‖𝑓(𝑡, 𝑥) ‖: (𝑡, 𝑥) ∈ 𝑅} and 𝛼:= 𝑚𝑖𝑛 {𝑎,
𝑏

𝑀
}  Then the IVP has a unique solution  𝑥 on [𝑡0, 𝑡0 +

𝛼] 

Proof.(i) Existence 

Given 𝑓(𝑡, 𝑥) as well as(𝑡0, 𝑥0), demarcate a neighborhood N around the central point and use it to define the 

constants 𝑎′, 𝑏′Picard mapping 𝑝 and ℎ0a point of contraction mapping A. 

The function 𝑔: 𝑅 × 𝑅𝑛 → 𝑅𝑛 given by 
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                                                    𝑔(𝑡, 𝑥) = 𝑥 + ℎ0(𝑡, 𝑥) 

is therefore always well defined in neighborhood of (𝑡0, 𝑥0). Applying the Picard mapping, 

(𝑃𝑔)(𝑡, 𝑥) = 𝑥 + (𝐴ℎ0)(𝑡, 𝑥) = 𝑥 + ℎ0(𝑡. 𝑥) = 𝑔(𝑡, 𝑥) 

Which proves that, 𝑔 is a solution of a differential equation which satisfies the initial condition 𝑔(𝑡0, 𝑥) = 𝑥 as 

long as 𝑡 is in a neighborhood of the point 𝑡0 defined by |𝑡 − 𝑡0| ≤ 𝑎′ and 𝑥 is any point such that |𝑥 − 𝑥0| ≤ 𝑏′. 

(ii) Uniqueness 

Let(𝑡0, 𝑥0) ∈ 𝐷; then there are positive numbers 𝑎 and 𝑏 such that the rectangle 

𝑅 ≔ {(𝑡, 𝑥): |𝑡 − 𝑡0| ≤ 𝑎, ‖𝑥 − 𝑥0‖ 1 ≤ 𝑏} ⊂ 𝐷  

By the hypothesis of the theorem, 𝑓(𝑡, 𝑥) satisfies a Lipchitz condition with respect to x on R with Lipchitz 

constant.      𝐾 ≔ 𝑚𝑎𝑥{‖𝐷𝑥𝑓(𝑡, 𝑥)‖: (𝑡, 𝑥) ∈ 𝑅}  

Where ‖. ‖ is a matrix norm corresponding to the norm ‖. ‖1. 

Let 𝑀 ≔ 𝑚𝑎𝑥{‖𝑓(𝑡, 𝑥)‖: (𝑡, 𝑥) ∈ 𝑅} and let 𝛼 ≔ 𝑚𝑖𝑛 {𝑎,
𝑏

𝑚
} then by Picard-Lindale theorem, the IVP (2.1.2) 

has a unique solution on [𝑡0 − 𝑎, 𝑡0 + 𝑎] 

Bounded function: Let f be a real valued function defined on a domain𝐷. The function 𝑓 is said to be bounded 

on 𝐷 if and only if there is a positive number 𝑀 such that 𝑓(𝑥, 𝑦) ≤ 𝑀 for all (𝑥, 𝑦) ∈ 𝐷. 

Definition 2.1.1. A solution 𝜑: 𝑡 → 𝜑(𝑡)𝑜𝑟 𝑥′ = 𝑓(𝑥) is called periodic with period 𝑇  or 𝑇 -periodic if 𝜑(𝑡 +

𝑇) = 𝜑(𝑡) for all t. If, moreover,𝜑(𝑡 + 𝜏) ≠ 𝜑(𝑡) for any 𝜏 ∈ (0, 𝑇) then 𝑇 is called the minimal period. 

         Linearization 

In this section we will see the behavior of solutions of non-linear system 

                                 𝑥′ = 𝑓(𝑥)                                                                                         (2.1.3)                                             

Near an equilibrium x0 by relating to the (2.1.3) directly to a linearized system 

𝑥′ = 𝐷𝑓(𝑥0)(𝑥 − 𝑥0) 

about that same equilibrium, where 𝐷𝑓(𝑥0)is the 𝑛 × 𝑛 matrix of partial derivatives of 𝑓. 𝐷𝑓 = (
𝜕𝑓𝑖

𝜕𝑥𝑗
⁄ )

𝑛

 

evaluated at 𝑥0 . A linear system of first order ordinary differential equations is defined by       

                                                          𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)                                           (2.1.4)        

 

where the unknown 𝑥 is a map on an interval of R, say Γ, taking values in a normed vector space 𝐸 over a field 

𝐾, defined differentiable on a sub interval of Γ. The name linear for system the above equation is an abuse of 

language. The associated linear system of (2.1.4) is                                                                                    𝑥′(𝑡) =

𝐴(𝑡)𝑥(𝑡)                                                         (2.1.5) 

Another way to distinguish systems (2.1.4) and (2.1.5) is to refer to the former as a non -homogeneous linear 

system and the latter as an homogeneous linear system. 

2.2 Equilibrium Solutions and Stability  

Stability: The quality of being steady and not changing or being disturbed in any way. Consider the general 

population equation. 

                                        
𝑑𝑥

𝑑𝑡
= (𝛽 − 𝛿)𝑥                                     (2.2.1)      

Where  𝛽 and 𝛿 are the birth and death rates, respectively, in births or deaths per individual per unit of time. The 

question of whether a population 𝑥(𝑡) is bounded or unbounded as 𝑡 → ∞ is of evident interest. In many 

situations like the logistic populations, the birth and death rates are known functions of 𝑥. Then equation (2.2.1) 

takes the form   

                                                         
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥)                                              (2.2.2)  

This is an autonomous first order ordinary differential equation one in which the independent variable t does not 

appear explicitly. The solutions of the equation𝑓(𝑥) = 0 play an important role and are called critical points of 

the autonomous differential equations (2.2.2). If𝑥 = 𝑐 is a critical point of (2.2.2), then the differential equation 

has the constant solution 𝑥(𝑡) = 𝑐. A constant solution of a differential equation is sometimes called an 

equilibrium solution (one may think of a population that remains constant because it is in "equilibrium" with its 

environment). Thus the critical point If 𝑥 = 𝑐 , a number, corresponds to the equilibrium solution If 𝑥(𝑡) = 𝑐, a 

constant valued function.   

Stability of critical points 
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A critical point 𝑥 = 𝑐 of an autonomous first order ordinary differential equation is said to be stable provided 

that, if the initial value 𝑥0 is sufficiently close to c, then 𝑥(𝑡) remains close to c for all 𝑐 > 0. More precisely, the 

critical point c is stable if, for each휀 > 0, there exists 𝛿 > 0 such that                             |𝑥0 − 𝑐| < 𝛿                                                                             

 

implies that |𝑥(𝑡) − 𝑐| < 𝛿 for all t > 0. The critical point x = c is unstable if it is not stable.  

Theorem 2.2.1 (Stability Theorem) Assume A is an n × n constant matrix. 

(i) If A has an eigenvalue with positive real part, then the trivial solution is unstable on [0, ∞). 

(ii) If all the eigenvalues of A with zero real parts are simple (multiplicity one) and all other eigenvalues of A 

have negative real parts, then the trivial solution is stable on[0, ∞). 

(iii) If all the eigenvalues of A have negative real parts, then the trivial solution of 𝑥 = 𝐴𝑥 is globally 

asymptotically stable on[0, ∞). 

Definition 2.2.1 let 𝑥0 be an equilibrium point for𝑥0 = 𝑓(𝑥). A continuously differentiable function V defined 

on an open set  𝑈 ∈ 𝑅𝑛 with  𝑥0 ∈ 𝑈 is called a Liapunov function for 𝑥′ = 𝑓(𝑥) on U provided 𝑉(𝑥0) > 0; 

𝑉(𝑥) > 0 for 𝑥 ≠ 𝑥0, 𝑥 ∈ 𝑈 and 

                                       𝑔𝑟𝑎𝑑𝑉(𝑥). 𝑓(𝑥) ≤ 0                                                          (2.2.3) 

for 𝑥 ∈ 𝑈. If the inequality (2.2.3) is strict for𝑥 ∈ 𝑈: 𝑥 ≠ 𝑥0, then V is called a strict Liapunov function for 𝑥0 ∈

𝑓(𝑥) on U.   

Note that (2.2.3) implies that if𝑥 ∈ 𝑈 , then  
𝑑

𝑑𝑡
𝑉(∅(𝑡, 𝑥)) = 𝑔𝑟𝑎𝑑𝑉(∅(𝑡, 𝑥)). 𝑓(∅(𝑡, 𝑥)) ≤ 0, 

As long as ∅(𝑡, 𝑥) remains in 𝑈, so 𝑉 is decreasing along orbits as long as they stay in 𝑈 .  

Here is Liapunov's stability theorem: 

Theorem 2.2.2:  (Liapunov's Stability Theorem) If V is a Liapunov function for 𝑥′ = 𝑓(𝑥) on an open set 𝑈 

containing an equilibrium point𝑥0, then 𝑥0 is stable. If V is a strict Liapunov function, then 𝑥0 is asymptotically 

stable [2]. 

Proof: Assume V is a Liapunov function for (3.1.1) on an open set U containing an equilibrium point𝑥0. Pick r > 

0 sufficiently small so that 𝐵(𝑥0, 𝑟) ⊂ 𝑈 and define 

𝑚 = 𝑚𝑖𝑛{𝑉(𝑥): |𝑥 − 𝑥0| = 𝑟} > 0 

Now                                        𝑊 = {𝑥: 𝑉(𝑥) <
𝑚

2
} ∩ 𝐵(𝑥0, 𝑟) 

   Is open & contain𝑥0, choose 𝑥 > 0 so that 𝐵(𝑥0), 𝑠 ⊂ 𝑊, for 𝑥 ∈ 𝐵(𝑥0), s,  

𝑉(∅(𝑡, 𝑥)) ≤
𝑚

2
 

as long as ∅(𝑡, 𝑥) remains in 𝑊 since 𝑉(∅(𝑡, 𝑥)) is decreasing. Thus ∅(𝑡, 𝑥)cannot intersect the boundary of 

𝐵(𝑥0, 𝑟) for𝑡 ≥ 0, so ∅(𝑡, 𝑥) remains in 𝐵(𝑥0, 𝑟) for 𝑡 ≥ 0, and 𝑥0 is stable. 

Now suppose 𝑉 is a strict Liapunov function, but𝑥0 is not asymptotically stable. Then there is an 𝑥 ∈ 𝐵(𝑥0, 𝑠) so 

that ∅(𝑡, 𝑥) does not go to 𝑥0 as 𝑡 → ∞t. Since the orbit is bounded, there is an𝑥1 ≠ 𝑥0, and a sequence 𝑥𝑘 → ∞ 

so that∅(𝑡𝑘, 𝑥) → 𝑥1𝑎𝑠  𝑘 → ∞. 

Note that by semi-group property for orbits  

∅(𝑡𝑘 + 1, 𝑥) = ∅(1, ∅(𝑡𝑘, 𝑥)) 

As 𝑘 → ∞                                   𝑉(∅(𝑡𝑘 + 1, 𝑥)) = 𝑉(∅(1, ∅(𝑡𝑘 , 𝑥))) → 𝑉(∅(1, 𝑥1)) < 𝑉(𝑥1) 

So there is an integer 𝑁 for which       𝑉(∅(𝑡𝑁 + 1, 𝑥)) < 𝑉(𝑥1) 

Choose 𝑘 so that 𝑡𝑘 > 𝑡𝑁 + 1    then  

𝑉(𝑥1) ≤ 𝑉(∅(𝑡𝑘, 𝑥)) < 𝑉(∅(𝑡𝑁 + 1, 𝑥)) 

a contradiction. We conclude that x0 is asymptotically stable. 

2.3 Logistic Equation 

A differential equation of the form 

                                                        
𝒅𝑷

𝒅𝒕
= 𝒂𝑷 − 𝒃𝑷𝟐                                                                 (2.3.1)      

That models a population 𝑃(𝑡) with births (per unit time) proportional to 𝑃 and deaths proportional to 𝑃2, where 

the coefficients 𝑎 and 𝑏 are positive is called the Logistic Equation. The logistic equation
𝑑𝑃

𝑑𝑡
= 𝑎𝑃 − 𝑏𝑃2, 𝑎 >

0, 𝑏 > 0 is an autonomous first order differential equation. The finite limiting population is the characteristic of 

logistic populations.  
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The solution of the logistic initial value problem                                                            

                                                                
𝑑𝑃

𝑑𝑡
= 𝑎𝑃 − 𝑏𝑃2, 𝑃(𝑡0) = 𝑝0                (2.3.2) 

Is                                         𝑃(𝑡) =
𝑎𝑃0

𝑏𝑃0+(𝑎−𝑏𝑃0)𝑒−𝑎(𝑡−𝑡0)                     (2.3.3) 

One method of solving (2.3.2) is separation of variables.  

𝑑𝑃

𝑑𝑡
= 𝑎𝑃 − 𝑏𝑃2 

⟹ ∫
𝑑𝑃

𝑃(𝑎 − 𝑏𝑃)

𝑃

𝑃0

= ∫ 𝑑𝑡
𝑡

𝑡0

 

But decomposing the left side of 
𝑑𝑃

𝑃(𝑎−𝑏𝑃)
= 𝑑𝑡 in to partial fractions gives  

              
1

𝑃(𝑎−𝑏𝑃)
=

1
𝑎⁄

𝑃
+

𝑏
𝑎⁄

𝑎−𝑏𝑃
  

=
1

𝑎
(
1

𝑝
−

−𝑏

𝑎 − 𝑏𝑝
) 

∴
1

𝑎
∫

𝑑𝑃

𝑃

𝑃

𝑃0

−
1

𝑎
∫

−𝑏𝑑𝑃

𝑎 − 𝑏𝑃

𝑃

𝑃0

= ∫𝑑𝑡

𝑡

𝑡0

 

Solving we have   

[
1

𝑎
ln 𝑃 −

1

𝑎
(−𝑏) ln(𝑎 − 𝑏𝑃)(

1

−𝑏
)]

𝑃0

𝑃

= 𝑡 − 𝑡0 

1

𝑎
ln (

𝑃

𝑃0

) −
1

𝑎
ln (

𝑎 − 𝑏𝑃

𝑎 − 𝑏𝑃0

) = 𝑡 − 𝑡0 

ln(𝑃(𝑎 − 𝑏𝑃0))

𝑃0(𝑎 − 𝑏𝑃)
= 𝑎(𝑡 − 𝑡0) 

∴ 𝑃0(𝑎 − 𝑏𝑃)𝑒𝑎(𝑡−𝑡0) = 𝑃(𝑎 − 𝑏𝑃0) 

We can now solve for P(t) 

𝑃0𝑒
𝑎(𝑡−𝑡0) = 𝑃𝑏𝑃0𝑒

𝑎(𝑡−𝑡0) + 𝑃(𝑎 − 𝑏𝑝0) = 𝑃[𝑏𝑃0𝑒
𝑎(𝑡−𝑡0) + (𝑎 − 𝑎𝑃0)] 

𝑖. 𝑒 𝑃(𝑡) =
𝑎𝑃0

𝑏𝑃0 + (𝑎 − 𝑏𝑃0)𝑒
−𝑎(𝑡−𝑡0)

 

This represents the logistic function and it has an upper limit of  

lim
𝑡→∞

𝑃(𝑡) =
𝑎𝑃0

𝑏𝑃0

=
𝑎

𝑏
 

Thus a population that satisfies the logistic equation does not grow without bound like a naturally growing 

population modeled by the exponential equation𝑃′ = 𝑘𝑃. Instead, it approaches the finite limiting 

population
𝑎

𝑏
, 𝑎𝑠 𝑡 → ∞.  

The autonomous differential equation 

                                                
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥2 − ℎ                                            (2.3.4)              

(with a, b, and ℎ all positive) may be considered to describe a logistic population with harvesting. For instance, 

we might think of the population of fish in a lake from which ℎ fish per year are removed by fishing. We can 

rewrite eqn.(2.3.4) in the form 

𝑑𝑥

𝑑𝑡
= 𝑘𝑥(𝑀 − 𝑥) − ℎ 

Which exhibits the limiting population 𝑀 in the caseℎ = 0 of no harvesting, where 𝑘 = 𝑏 and 𝑀 =
𝑎

𝑏
 are 

constants. 

Predator-prey model: The classical mathematical model of a predator-prey model was developed in the 1920s 

by the Italian mathematician Vito Volterra (1860-1940) in order to analyze the cyclic variations observed in the 

shark and food fish populations in the Adriatic Sea. For this consider a predator-prey situation involving two 

species: one species the predators-feeds on the other species and the prey-which in turn feeds on some third food 

item readily available in the environment. A standard example is a population of foxes and rabbits in a 
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woodland; the foxes (predators) eat rabbits (the prey), while the rabbits eat certain vegetation in the woodland 

[1]. 

Chapter 3 Modeling the Effects of Global Climate Change 

In this chapter, we present model description and formulation. The mathematical theory of climate is a branch of 

the theory of climate, which investigates the behavior of the climate models solutions on the arbitrarily large 

time scales by the use of a collection of mathematical methods. This seminar relies on the hypothesis that 

changes in global temperature, forest area and amount of rainfall are related. 

3.1 The assumptions 

The following assumptions are made in order to construct the model: 

(i) The behavior of global temperature is apparently increases exponentially. However, the global temperature 

cannot possibly increase forever. It should be bounded at some temperature level. 

(ii) Today the forest area have been decreased exponentially from the past. Since the forest area cannot decrease 

below zero and cannot be larger than the maximum area of the studied region, be an example of a logistic decay. 

(iii) The amount of rainfall is apparently seasonal and therefore periodic. The second order differential equation 

with periodic solution should be considered to capture the seasonal rainfall. 

3.2 Model Formulation and Analysis  

From the model description, assumptions and definition of variables and parameters in section (4.1), the 

formulated models are as follows: The dynamics of the global temperature are assumed by a logistic equation 

instead of an exponential equation. When the exponential growth behavior is unbounded, the logistic growth 

with bounded behavior should be considered instead. The relationship leading to the logistic equation form 

is
𝑑𝑇

𝑑𝑡
∝ 𝑇 𝑎𝑛𝑑 𝑇2 . Therefore, we assume the equation 

𝑑𝑇

𝑑𝑡
 to be 

                                                          
𝑑𝑇

𝑑𝑡
= 𝑎𝑇(1 −

𝑇−𝑚𝑇

𝑏𝑇
)(𝑇 − 𝑚𝑇)                                         (3.2.1) 

Eq. (3.2.1) can be rearranged in the form       

𝑑𝑇

𝑑𝑡
= 𝑘1 + 𝑎1𝑇 − 𝑏1𝑇

2 

Where 𝑎1 = 𝑎𝑇 (1 +
2𝑚𝑇

𝑏𝑇
) , 𝑏1 =

𝑎𝑇
𝑏𝑇

⁄  𝑎𝑛𝑑 𝑘1 = −𝑎𝑇𝑚𝑇(1 +
𝑚𝑇

𝑏𝑇
⁄ ) 

The dynamics of forest area are also assumed by a logistic equation instead of an exponential equation. Similar 

to the previous one, the well-known relationship for the logistic equation is
𝑑𝐹

𝑑𝑡
∝ 𝐹 𝑎𝑛𝑑 𝐹2, then 

                                       
𝑑𝐹

𝑑𝑡
= −𝑎𝐹(1 −

𝐹−𝑚𝐹

𝑏𝐹
)(𝐹 − 𝑚𝐹)                                           (3.2.2) 

Eq. (3.2.2) can be rearranged in the form  

𝑑𝐹

𝑑𝑡
= 𝑘2 − 𝑎2𝐹 − 𝑏2𝐹

2 

Where 𝑎2 = 𝑎𝐹 (1 +
2𝑚𝐹

𝑏𝐹
⁄ ) , 𝑏2 = −

𝑎𝐹
𝑏𝐹

⁄  𝑎𝑛𝑑 𝑘2 = 𝑎𝐹𝑚𝐹 (1 +
𝑚𝐹

𝑏𝐹
⁄ ) 

The amount of periodic rainfall will be represented by the following second order differential equation 

                                              
𝑑2𝑅

𝑑𝑡2 = −𝑒𝑠
2(𝑅 − 𝑐)                                                           (3.2.3) 

Since the other two variables can be represented by first order differential equations, this second order equation 

representing the behavior of rainfall will be reduced to two first order differential equations. Introducing an 

intermediate variable S as the rate of change of rainfall, the amount of periodic rainfall will be represented by the 

following system of first order differential equations. 

                                                               
𝑑𝑅

𝑑𝑡
= 𝑆                                                        (3.2.4) 

𝑑𝑆

𝑑𝑡
= −𝑒𝑠

2(𝑅 − 𝑐) 

3.2.1 Stability analysis  

In this part of the seminar we present the stability of non-negative equilibrium in Equation (3.2.1)-(3.2.4). 

Theorem 3.2.1 Equation (3.2.1) has stable equilibrium point. 

Proof: Observe that when 
𝑑𝑇

𝑑𝑡
= 0 we have the equilibrium points 𝑇 = 𝑚𝑇 and 𝑇 = 𝑚𝑇 + 𝑏𝑇 

The exact solution of Eq. (3.2.1) is 
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𝑇(𝑡) = 𝑚𝑇 +
𝑏𝑇𝐴

𝐴 + 𝑏𝑇𝑒−𝑎𝑇𝑡
 

Where 𝐴 = (𝑏𝑇(𝑇0 − 𝑚𝑇))/(𝑏𝑇 − 𝑇0 + 𝑚𝑇  𝑎𝑛𝑑 𝑇(0) = 𝑇0. 

We obtain lim
𝑡→∞

𝑇(𝑥) = 𝑚𝑇 +𝑏𝑇  hence, 𝑚𝑇 + 𝑏𝑇 is the stable equilibrium point and 𝑚𝑇 is the minimum global 

temperature and 𝑏𝑇 is the difference between two equilibrium points. 

Theorem 3.2.2 Equation (3.2.2) has stable equilibrium point. 

Proof: Similar to Eq. (3.2.1) and (3.2.2) has the equilibrium points at 𝐹 = 𝑚𝐹   and𝐹 = 𝑚𝐹 + 𝑏𝐹 

The exact solution for Eq. (3.2.2) is 

𝐹(𝑡) = 𝑚𝐹 +
𝑏𝐹𝐵

𝐵 + 𝑏𝐹𝑒𝑎𝐹𝑡
 

Where 𝐵 = (𝑏𝐹(𝐹0 − 𝑚𝐹))/(𝑏𝐹 − 𝐹0 + 𝑚𝐹)  and𝐹(0) = 𝐹0  

We obtain lim
𝑡→∞

𝐹(𝑡) = 𝑚𝐹  Hence, 𝑚𝐹 is the stable equilibrium point and also the minimum forest area.  

Theorem 3.2.3 The system of equation (3.2.4) has a stable solution. 

Proof: This equation can be written in the form 

(𝑅′
𝑆′

) = (
0      1

 −𝑒𝑠
2     0    

) (
𝑅
𝑆
) + (

0
𝑐𝑒𝑠

2) 

𝑅(𝑡) = 𝑐 + 𝐶1 cos(𝑒𝑠𝑡) + 𝐶2sin (𝑒𝑠𝑡) 

Where 𝐶1 = 𝑅0 − 𝑐, 𝐶2 =
𝑆0

𝑒𝑠
, 𝑅(0) = 𝑅0, 𝑆(0) = 𝑆0 

The critical point is the solution to the system 

{
𝑆 = 0

−𝑒𝑠
2𝑅 + 𝑐𝑒𝑠

2 = 0
 

Solving the system we obtain the critical point (𝑐, 0) 

Now use the change of variable 

𝑅 = 𝑢 + 𝑐, 𝑠 = 𝑣 

to translate the critical point to the origin (0, 0) 

                                              
𝑑𝑅

𝑑𝑡
=

𝑑𝑢

𝑑𝑡
= 𝑣                                                                            (3.2.5) 

                          
 𝑑𝑠

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
= −𝑒𝑠

2(𝑢 + 𝑐) + 𝑐𝑒𝑠
2 = −𝑒𝑠

2𝑢                              

Then we get                                   
𝑑𝑢

𝑑𝑡
= 𝑣    

                                                              
𝑑𝑣

𝑑𝑡
= −𝑒𝑠

2𝑢                                                                   (3.2.6) 

The characteristic equation of the coefficient matrix, say  

𝐴 = (
0 1

−𝑒𝑠
2 0

) 

Is det(𝐴 − 𝜆𝐼) = 𝜆2 + 𝑒𝑠
2 = 0 

Solving we obtain𝜆1,2 = ±𝑒𝑠𝑖. Since all the Eigen values of A have zero real parts by theorem 3.3.1 the above 

system of equation has a stable solution. 

3.3 Modified models with predator-prey terms 

The amount of forest area, amount of rainfall and global temperature are used to obtain the correlations between 

the rates of change of each variable, 
𝑑𝑇

𝑑𝑡
,
𝑑𝐹

𝑑𝑡
,
𝑑𝑅

𝑑𝑡
,
𝑑𝑆

𝑑𝑡
 and the other terms including the cross products or the 

predator-prey terms. Note that under our preliminary hypothesis, the rates of change in forest area and rainfall 

are affected by the global temperature. On the other hand, there can be many other factors affecting the rate of 

global temperature change such as waste gases from industry or transportation, etc. The cross product terms 

between global temperature and others are not shown in the dynamics of the global temperature. 

The modified models with predator-prey terms are 

𝑑𝑇

𝑑𝑡
= 𝑎𝑇 (1 −

𝑇 − 𝑚𝑇

𝑏𝑇

) (𝑇 − 𝑚𝑇) 

                       
𝑑𝐹

𝑑𝑡
= −𝑎𝐹 (1 −

𝑚𝐹

𝑏𝑓
) (𝐹 − 𝑚𝐹) + 𝑒𝑓𝑅 + 𝛼𝐹𝐹𝑅 + 𝛽𝐹𝑇𝐹 − 𝜋𝐹𝑇𝑅                  (3.3.1)         

𝑑𝑅

𝑑𝑡
= 𝑓𝑅𝑆 − 𝛼𝑅𝐹𝑅 − 𝜋𝑅𝑇𝑅 + 𝛾𝑅𝐹𝑆 + 𝜇𝑅𝑇𝑆 + 𝛿𝑅𝑅𝑆 
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𝑑𝑆

𝑑𝑡
= −𝑒𝑆

2(𝑅 − 𝑐) + 𝛽𝑆𝑇𝐹 + 𝜋𝑆𝑇𝑅 − 𝛾𝑆𝐹𝑆 − 𝜇𝑆𝑇𝑆 − 𝛿𝑆𝑅𝑆 

The new parameter, 𝑒𝑓, represents the rate of change in forest area caused by the amount of water (rainfall) 

absorption. 

The terms 𝐹𝑅 in Eq. (3.3.1) represent the proportion of the amount of rainfall in the forest and FS is the 

proportion of the rainfall difference rate (or the rate of change in rainfall) in the forest. The coefficient𝛼𝐹 , is the 

growth rate of the forest affected by the proportion of rainfall in the forest. The constant 𝛼𝑅 is the rate of 

decrease that indicates some amount of rainfall remaining in the forest. The parameters, R and S, are both the 

difference rates representing the changing behavior of the rain falling in the forest.  

The TF terms in Eq. (3.3.1) indicate the proportion of the forest cover at each temperature level. The 

parameters,𝛽𝐹 and 𝛽𝑆, are the difference rate of the forest cover and the rainfall difference rate, respectively. 

The TR terms in Eq.(3.3.1) represent the proportion of rainfall at each temperature level, TS is the proportion of 

the rainfall difference rate at each temperature level. 

The parameter𝜋𝐹 is the decay rate of the forest caused by water absorption at each temperature level. 𝜋𝑅 And 𝜋𝑆 

are the decreasing and increasing rainfall difference rates, respectively, affecting by the proportion of rainfall at 

each temperature level. The parameters, 𝜇𝑅 and  𝜇𝑆 , are the difference rates with which the rainfall changes its 

behavior at each temperature level. 

The RS terms in Eq. (3.3.1) represent the relationship between the rainfall difference rate and the amount of 

rainfall. Consider the situation where the rainfall amount is near the saturation point; the rainfall difference rate 

could either be substantially reduced or slightly increased. Conversely, at the low level of rainfall, the rainfall 

difference rate could either be substantially increased or slightly reduced. The parameters 𝛿𝑅 𝑎𝑛𝑑 𝛿𝑆 are, 

respectively, the difference rate of the amount of rainfall and the rainfall difference rate affected by the 

relationship between the change in the behavior of the rainfall and the amount of rainfall. 

 

Chapter 4 Conclusion 

The relationship between global temperature dynamics, forest area and amounts of rainfall has been 

mathematically formulated. In this study, there are two models representing the long-term behaviors of rainfall as 

affected by the rise in global temperature and the decline in the forest cover. The hypotheses for this study are 

the logistic patterns of global temperature and the amount of forest cover, and the periodic behavior of the 

rainfall pattern. Since the behavior of rainfall is seasonal the increase in global temperature and decreasing in 

forest cover cause water management difficult and eventually affect to drought and flood. 

In the second part of the study, the model is refined to cover interactions between variables. The parameter 𝜋𝑆 

indicates that the rainfall difference rate is affected by the proportion of rainfall at each temperature level. 

Therefore, global temperature influences the fluctuation of rainfall. The model on the rainfall pattern can further 

be improved to capture the fluctuations in the annual rainfall amount. To do so, the amplitude of the periodic 

functions representing the rainfall amount has to fluctuate. It would also be interesting to project the amount of 

rainfall to the future and to work on some scenario analysis using varying reforestation policies. 
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