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Abstract 

This paper investigates the properties of solution to the nonlinear Bratu’s problem. Approximate solution of the 

strongly nonlinear problem is obtained using the rapidly convergent Adomian decomposition method. The result 

shows that the problem has two solutions, bifurcated and has no solution depending on the value of the Frank-

Kameneskii parameter. Of particular interest is the determination of the bifurcation point using Adomian 

decomposition method.  
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1. Introduction 

Studies on fuel ignition in thermal combustion theory have been on the increase over the last few years. 

The reason for the increased study is to ensure the safety of working environment especially when working with 

combustible fluid in some petro-chemical engineering processes. Combustion problems are generally 

characterized by strong nonlinearity and singularity, as such in most cases exact solution of combustion 

problems are very difficult to get. Therefore, researchers working in this area have resolved to approximate 

solutions by either analytical or numerical method. 

Over the years, Bratu’s problem has been a benchmark for many numerical and analytical methods in 

the literature [1-10]. Here, Bratu’s problem is treated as an eigenvalue problem and approximate solution is 

obtained using modified Adomian decomposition method. In this paper attention is focused on the work done in 

[10] in which Adomian decomposition method was applied to Bratu’s problem. The study was a major 

breakthrough in that Adomian decomposition was applied for the very first time to the strongly nonlinear 

problem arising from combustion problems. However, the paper was limited to predetermined value of the 

Frank-Kameneskii parameter and in the context of thermal ignition [11], the important properties associated with 

the problem cannot be determined. In standard form, the problem is given by 

 

10,0
2

2

 xe
dx

ud u     (1) 

With the following boundary conditions 

      100 uu     (2) 

Exact solution of the problem can be written as  
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2. Method of Solution 

Integrating (1) together with the first boundary condition in (2), we get 

    

x x

udxdxexxu
0 0

    (5) 

where  0u  is a constant to be evaluated using the boundary condition 

  
  01 u .    (6) 

The standard Adomian decomposition method [12] assumes a series solution of the form 

     





0n

n xuxu     (7)  

Substituting (7) in (1), one obtains 
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Here nA  represents the nonlinear term
ue . From (8) the zeroth component gives 

 
  xxu 0     (9) 

So that the recurrence relation for the problem is  

    

x x

nn dxdxAxu
0 0

1     (10) 

The Adomian polynomial for the nonlinear term is given as 
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Using mathematica, the partial sum 

    



k

n

n xuxu
0

    (12) 

is given as the approximate solutions. To obtain the eigenvalues, the partial sum (12) is solved subject to (6), so 

as to obtain an expression for the unknown constant   in the form 
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Then (13) is Taylor’s series expanded about   up to the quadratic term and solved, this returns two rational 

functions for the unknown constant in terms of . The numerical results are given as Tables 1-2. 

 

Table 1: Convergence of the two solutions with increasing partial sum when 5,1  k  

 
1u  2u  

 0.549445 6.1348 

 0.549444 3.32281 

 0.549444 4.06463 

 0.549444 4.06484 

 0.549444 4.06484 

 0.549444 4.06484 

 

Table 2: Computation showing single solution at with increasing partial sum c   

 
21,uu  

c  Absolute error
 

 3.4641, 3.4641 2.196152422706 1.322154767 

 3.58114, 3.58114 2.741603437062 0.776703753 

 3.80917, 3.80917 3.03355132742305 0.484755863 

 4.01023, 4.01023 3.2338336873713 0.284473503 

 4.17804, 4.17804 3.383964733123 0.134342457 

 4.31811, 4.31811 3.50206042609 0.016246764 

Table 1 show the convergence of the two solutions to the problem whenever c   while Table 2 confirms 

that the problem has a single solution at the critical point with increasing partial sum. As observed from the table 

the absolute error reduces with increasing partial sum.  All these properties can be found at different stages of the 

solution shown in Figure 1 
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Figure 1: - A slice of the bifurcation of the approximate solution for k=13  

 

3. Concluding remarks 

The aim of this paper is to investigate the properties of solution to the Bratu’s problem. Approximate solution to 

the nonlinear boundary valued problem is obtained using Adomian decomposition method. Although, the results 

obtained are convergent and well-behaved but for future research on Bratu problem, the combination of 

Adomian decomposition method together with Pade  ́approximants is suggested so as to understand the blow up 

dynamics.  
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