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Abstract

Ebola virus disease is transmitted from human to human through physi-
cal contact of body fluid of infected or dead case. It can also be transmitted
indirectly through contact with contaminated surfaces. This risk is however
low and can be minimised through cleaning the surfaces by the use of disin-
fectants. In this paper we investigate the transmission dynamics of the 2014
Ebola virus disease in west Africa. We use a four compartmental network of
Susceptible individuals (S), Exposed individuals (E), Infectious individuals
(I) and the Removed individuals (%) without demographic factors. The re-
moved compartment is further split into two compartments i.e the recovered
individuals (R) and the dead and buried individuals (D). We give the math-
ematical model that describe the transmission dynamics of the 2014 Ebola
virus disease in West Africa. The results of the model analysis indicate that
the threshold value for the transmission dynamics equals the relative removal
rate. It is shown that provided that the susceptible ratio is kept below the
relative removal rate then the epidemic will not occur.
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1 Introduction

Infection with Ebola virus causes a severe disease in humans known as Ebola virus
disease. There are five species of the genus Ebolavirus, these are Zaire Ebolavirus,
Sudan Ebolavirus, Reston Ebolavirus, Tai forest Ebolavirus and Bundibugyo Ebolavirus.
The 2014 outbreak of Ebola virus disease in west Africa was caused by the Zaire
Ebolavirus. Ebola virus is a Biosafety Level Four (BSL-4) pathogen and requires
special containment measures and barrier protection particularly for healthcare
workers. The virus can survive in liquid or dried material for many days [4]. They
are inactivated by gamma irradiation, heating for 60 minutes at 60°C' or boiling
for five minutes and are sensitive to sodium hypochlorite bleach and other disinfec-
tants. Freezing or refrigeration will not inactivate the Ebola virus. The incubation
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period for the Ebola virus disease is 2 to 21 days. The case-fatality ratio of the Zaire
Ebolavirus infections is estimated to be between 44% and 90% [4]. Ebola virus is
highly transmissible by direct contact with infected blood, secretions, tissue organs
and other body fluids from dead or living infected persons. The principle mode of
transmission in human outbreaks is person-to-person transmission through direct
contact with a symptomatic or dead Ebola virus disease case. Burial ceremonies
and handling of dead bodies play an important role in transmission [6].

The 2014 Ebola virus disease outbreak is the largest outbreak of the Ebola virus
disease ever which had an exponential growth with a doubling rate of 34.8 days [5].
The outbreak begun in December 2013 in Guinea and spread to Liberia in March
2014, Sierra Leone in May 2014 and later to Nigeria and Senegal and as of 2™
October 2014, 8,997 cases of Ebola virus disease including 4,493 deaths had been
reported by the World Health Organization (WHO) in seven countries i.e. Guinea,
Liberia, Sierra Leone, Nigeria, Senegal, Spain and USA [4]. As the epidemic evolved
and more staff deployed in the affected countries to support the epidemic control,
the risk of importation of Ebola virus disease cases to European Union and other
countries increased. However, the risk of Ebola virus from an Ebola virus disease
patient arriving in the EU as a result of a planned medical evacuation was consid-
ered to be low when appropriate measures were strictly adhered to but could not
be excluded in exceptional circumstances [4]. The key parameter that describe the
spread of the infection is the basic reproduction number (Ry). If Ry < 1, then the
epidemic will stop and the Ebola virus will go extinct. However, if Ry > 1 then the
epidemic will grow. The estimates for Ry from the outbreaks of Congo in 1995 and
Uganda in the year 2000 ranged between 1.3 and 2.7 [1].

Our goal in this paper is to understand the dynamics of the 2014 Ebola virus epi-
demic in west Africa. Since Ebola virus disease is a communicable disease that
spreads much faster than the natural demographic processes, we will model the
2014 epidemic using a four compartmental network of Susceptible individuals (S),
Exposed individuals (E), Infectious individuals (I) and the Removed individuals
() without demographic factors. The removed compartment will further be split
into two compartments i.e the recovered individuals (R) and the dead and buried
individuals (D). We will then estimate the reproduction number in the absence of
control measures.

The framework of the model is given in figure 1

(s f—=—{E }—

Figure 1: Flow chart describing the dynamics of the Ebola Virus Disease
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2 The Mathematical Model

The mathematical model for the system is given by;
dS
— = —[(t)SI
= =501
dE
dt
dl
dt
dR
dt
dD
dt

— B(t)SI — oE

= 0E —4I (1)
= (1—anl

= ayl

where « is the case fatality rate, o is the progression rate from exposed to infectious
compartments, v is the removal rate and « is the disease mortality rate.

In the above SEIR model, susceptible individuals in contact with the virus enter the
exposed compartment E at a rate 5. Individuals in this compartment are assumed
to be asymptomatic and uninfectious but undergoes a mean incubation period of
% before progressing to the infectious class I at a rate o. Infectious individuals
progress to removed compartment at a rate y. The Removed compartment consist
of both the recovered individuals R and the individuals who are dead and buried
D.

The transmission rate in the absence of control measures is given by 4(t) = 5. After
the introduction of control measures at 7 < ¢, the transmission rate decays as a
function of time at a rate k. Thus

B(t) - 5efk(t7‘r)

2.1 Basic Reproduction Number R,

The basic reproduction number is the most important quantity in infectious disease
modeling. It is among the quantities most urgently estimated for emerging infec-
tious diseases in outbreak situations and its value provides insights when designing
control interventions for established infections. It has been shown that the basic
reproduction number is mathematically characterised by regarding infections as a
demographic process where producing offspring is not seen as giving birth in the
normal demographic sense but as causing a new infection through transmission.
This process is termed epidemiological birth. In natural way this leads to viewing
the infection process in terms of consecutive generations of infected individuals [3].
In epidemic modeling, generations are the waves of secondary infections that flow
from each previous infection. Thus the first generation of an epidemic comprise of
all the secondary infections that result from the infectious contact with the index
case who is regarded as generation zero. Therefore if R; denotes the reproduction
number of the i*" generation, then Ry will denote the number of infections gener-
ated by the index case [2]. These numbers are small and are subject to sampling
errors, we however determine the mean value hence we find an average over a large
number of epidemics. The first step when determining this number is to construct
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the next generation matrix (NGM) of the epidemic. In the construction of the next
generation matrix, one begins by identifying those equations in the system that
describe the production of new infections and the changes in state among infected
individuals. This set of equations is referred to as the infected subsystem. We then
linearlise the system over the disease free equilibrium (DFE), the linearlization in-
dicates that R, characterises the potential for the initial spread of the infectious
agent when it is introduced into a fully susceptible population and therefore we
assume that the change in the susceptible population is negligible during the initial
spread.

The right hand side of the system is split into the transmission matrix (T) and
the transition matrix (V). The basic reproduction number is then obtained as the
spectral radius of the next generation matrix (TV=!) i.e Ry = p(TV 1) [3].
Consider the system 1 above. Since the system is closed and

R+D=1—(S+ E+1I) and that R and D are partitioned by the constant «
then the system is a three dimensional system and may be expressed as;

dE

= B(t)SI —oF
dI

pri oE —~I

ds

= = —p)sI

The infected sub system is given by;

dE
— =B)SI - oE
dI
pri cE —~I
or
dX [ BSI oE
E‘( 0 >+<—0'E+’y[> (2)

where X = (E, I)T
Linealising the system 2 about the DFE we get the Jacobian matrix

where

&
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and

From which

o

and the next generation matrix (K) is given by

K=TvV 1= %’-%
0 0

=2 |=q =
2= O
\/

which is a singular matrix hence the spectral radius equals the trace of the matrix.
Thus

Ry="1

2.2 Epidemic Threshold

Theorem 2.1. Let (S, E,1,R) where ® = R+ D, be the solution of the system 1
in Q= {(S,E,I,R) e RS, E, IR >0,S+E+I+R =1} then if Sy is greater

than the relative removal rate (p = % ), then the number of infected individuals will
first increase to the maximum value
S(t
Fmaz = So — S(t) + pln (SL)) where §=F+1
0

and then decrease to zero as t — oo while S(t) is a decreasing function with a
limiting value S which is a root of the equation

3(0) + S(0) — S + pln <%> =0

Proof. Let # = R + D be the total number of removed individuals either though
death or recovery from the disease then the system 1 becomes

B~ —pws 3)
% = p(t)SI—ocFE (4)
% = oE—~9I (5)
% = 9l (6)

37


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) DOI: 10.7176/MTM !ﬁ'—.i.l
Vol.9, No.2, 2019 IIS E

Dividing equation 3 by 6 yields

ds _ —psi
dR  4I
_ =2
P
where p= % is the relative removal rate.

1 1

—dS = ——dR

S p

Integrating both sides in the limits from 0 to t, we get
S(t)) 1
In| —=)=——R(t
@m P

—R(t)

S(t) = S(0)e 7

or

Thus S(t) >0 V ¢ > 0 hence there will be susceptible individuals at the end of
the epidemic i.e. the epidemic will not end due to lack of susceptible individuals.
Dividing equation 5 by 3 we get

al oE—nl ¥ oF

45~ _BSI ~B3S  BSI (™)

Dividing equation 4 by 3, we get
dE _ BSI—oF

dS  —pBSI
_9E _
~ BSI
From which
gD _dv
BSI — dS

substituting this value into equation 7 yields

a _~v _,_4d&

dS — BS ds
or

LY N

dS = dS  BS
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d3

P _
ds S ! ®)

where p = T is the relative removal rate and ¥ = I + FE is the total number of

infected individuals.

From equation 8 we note that § is an increasing function of S when S < p and a
decreasing function of S when S > p. Since S is a monotonically decreasing function
then § will decrease monotonically when S < p and increase when S > p. Thus if
infected individuals are introduced into a susceptible population with Sy > p then
the number of infected individuals will increase monotonically as S decreases to the
threshold value S = p after which the number of infected individuals will decrease
to zero as t — oo (see figure 2).
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Figure 2: Trajectories of the Solution for Sy = 0.92, E;=0.08, Iy = R(0)=0
and p = 0.36

Integrating both sides of equation 8 with respect to S from zero to t, we get

/Otd‘jz/ot(g—l)ds

3(0)-30) = st (g7 ) ~ 51+ 50
3(t) = 3(0) + S(0) — S(t) + pin (%)

as t — oo the equation reduces to

3(0) + S(0) — S + pln (%) =0

whose root S, is the number of susceptible individuals at the end of the epidemic.
O
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3 Conclusion

We observe from the above analysis that the epidemic does not end due to lack of
susceptible individuals but rather it ends when there are no more infectious individ-
uals in the population. If the ratio of the susceptible individuals (S) is greater than
the relative removal rate (p) then the number of infected individuals will increase
monotonically as S decreases to the threshold value p after which the infected pop-
ulation will decay to zero as time progresses. This is demonstrated by figure 2. In
this figure, Sy = 0.92 which is greater than p = 0.36. It is observed that the infected
population grows monotonically (red and green curves) until the susceptible popu-
lation decreases to the threshold value of 0.36 after which the infected population
decays to zero as a function of time. In figure 3 below Sy = 0.82 which is less than
p = 1.5 and it is observed that the infected population decays monotonically as a
function of time for all time. Figure 4 demonstrates a case where Sy = p that is the
initial susceptible ratio equals the relative removal rate. The results indicates that
in this case the infected population cannot increase but will decay to zero as time
progresses.
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Figure 3: Trajectories of the Solution for Sy = 0.82, FEy=0.18, Iy = R(0) =0

and p=1.5
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Figure 4: Trajectories of the Solution for Sy = 0.9, Ey = 0.1, I, = R(0) =0

and p=0.9
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