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Abstract 

Consumer price index is a social and economic indicator that measures changes over time in the general level of 

prices of consumer goods and services that households acquire, use or pay for consumption. Rising CPI also 

often leads to the central bank to raise interest rates, tightening money supply, reduce the money supply and 

other measures to tighten monetary policy, which flow into reduction of capital stock funds for greater returns, 

often accompanied by high inflation. The study seeks to determine a time series exponential smoothing method 

which fit the CPI and use it forecast the future values of CPI. Minitab software is used to analyze the CPI from 

March 2013 to November 2018. Out three exponential smoothing methods, it is realized that the method which 

best fit the series is the Winters’ additive method with exponential smoothing constants for the level, trend and 

seasonal variation as 𝛼 = 0.7, 𝛾 = 0.2 and 𝛿 = 0.2 respectively. This method is chosen on the basis that it has 

the lowest MAPE, MAD and MSD. The validity of the model is further checked by comparing the fitted values 

with the actual values. The errors in prediction were very minimal. The model is therefore recommended for 

forecasting CPI of Ghana in the next twelve months.  

Key words: Consumer price index, exponential smoothing, ARIMA 

DOI: 10.7176/MTM/9-3-01 

Publication date: March 31st 2019 

 

1.0 Introduction  

The consumer price index (CPI) in Ghana measures changes in the prices paid by consumer for a 

basket of goods and services. In another words, CPI is a social and economic indicator that measures 

changes over time in the general level of prices of consumer goods and services that households 

acquire, use or pay for consumption. If the CPI rises faster than wages, the purchasing power which is 

the amount we can buy with our cedi decreases and therefore affects our cost of living.  

The CPI is a key economic indicator since a rising CPI is an early warning signal of imminent 

economic challenges since it triggers a rise in inflation. A rising inflation affects the policy rate of the 

central bank (Bank of Ghana) and results increase in interest rates of loans. The CPI actually controls 

the policy direction of the central bank. Apart from its role as a guide for future central bank policies, 

the CPI release can be useful in predicting the course of national politics, due to the tendency of voters 

to punish governments which cannot help them at times of rising food prices or prices of petroleum 

products (Forexfraud.com, 2019). 

The CPI has more macroeconomic consequences also which include pension benefits and large-scale 

spending plans. Since pension obligations and other large-scale spending plans are often pegged to the 

CPI, even very minor changes in the CPI can alter the prices of financial portfolios by millions of 

pounds (Powell et. al., 2016). 

In trying to build a formidable and resilient economy, it is imperative to know the long run behavior of 

the CPI and it is in the light of this that the study is being conducted to find the appropriate time series 

model for forecasting the CPI of Ghana using data from March 2013 to December 2018. A lot of 
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methods have been used to analysis and forecast time series data, such as autoregressive model 

autoregressive moving average (ARIMA) model and exponential smoothing models (Jie et al., 2015) 

but this study seeks to find the suitable exponential smoothing model for CPI and use it to forecasts for 

the next ten (10) months. 

1.1 Literature Review 

A lot of intensive works have been done using times series modeling. One of the most popular and 

frequently used stochastic time series models is the autoregressive integrated moving average 

(ARIMA) and the popularity of the ARIMA model is mainly due to its flexibility to represent several 

varieties of time series with simplicity as well as the associated Box-Jenkins methodology (Zhang, 

2003, Hipel and McLeod, 2003).  

 

Adams et al., modeled Nigeria’s consumer price index using ARIMA model. The Box-Jenkins 

Autoregressive Integrated Moving Average (ARIMA) models were estimated and the best fitting 

ARIMA model was used to obtain the post-sample forecasts. It was discovered that the best fitted 

model was ARIMA (1, 2, 1). The model was validated by Ljung-Box test (Q = 19.105 and p>.01) with 

no significant autocorrelation between residuals at different lag times. Finally, the five years forecast 

was made, which showed an average increment of about 2.4% between 2011 and 2015 with the 

highest CPI being estimated as 279.90 in the 4th quarter of the year 2015. 

 

Papalaskaris et al., 2016, employed seasonal autoregressive integrated moving average (SARIMA) 

(0, 0, 0)(0, 1, 1)12 model to perform short term of monthly rainfall in parts Greece and North-Eastern 

Mediterranean basin. In fitting of a SARIMA model to monthly Naira-Euro exchange rates, Etuk 

(2013), proposed and fitted SARIMA (0, 1, 1)(1, 1, 1)12 . This model was shown to adequately explain 

the variation in the monthly Naira-Euro exchange rates. 

 

Exponential smoothing method has established itself as one of the leading forecasting strategies 

(Nur et al., 2013). Siregar et al., 2016, conducted to determine the performance of the system in  

forecasting realization palm oil production using exponential smoothing method. The study 

compared several methods based on exponential smoothing (ES) technique such as single ES,  double 

exponential smoothing holt, triple exponential smoothing, triple exponential smoothing additive and 

multiplicative to predict the palm oil production. The result showed that triple ES additives had lowest 

error rate compared to the other models with RMSE of 0.10 with a combination of parameters α = 0.6, 

β =0.02, and γ = 0.02. According to Tirkeş et al., 2017, several statistical models have been used in 

demand forecasting in food and beverage (F&B) industry and the choice of the most suitable 

forecasting model remains a central concern. Their main goal was to propose an optimization model 

based on demand forecasting approach depending on a comparative study using trend analysis, Holt-

Winters’ exponential smoothing and decomposition method of time series forecasting for estimating a 

realistic future demand. 

 

Karmaker et al., 2017, in their study of time series model for predicting jute yarn demand, performed 

by statistical analysis using Minitab 17 software to determine the appropriate exponential forecasting 

techniques. Performance of all methods was evaluated on the basis of forecasting accuracy and the 

analysis showed that Winter’s additive model gave the best performance in terms of lowest error 

determinants.  

 

2.0 Methodology 

The purpose of the study is to identify the appropriate exponential smoothing method which fits the 

data based on the forecasting errors and use it to forecast the next nine months CPI of Ghana. Three 

exponential smoothing methods will be looked at especially, the simple exponential smoothing 

method, double exponential smoothing or Holt’s method and the Winters’ method using Minitab 16.  
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Exponential smoothing models (Gardner, 1985) are classified as either seasonal or nonseasonal. Holt 

exponential smoothing method is the most popular double exponential smoothing method proposed by 

Holt (1957) as an extension of the simple exponential smoothing method to allow forecasting of data 

with a trend (Jie et al., 2015).  

 

2.1 Simple Exponential Smoothing  

The simple exponential smoothing (SES) model is best suited for a short-term forecasting, and usually 

this model is used for the prediction a future when the series has no trend and no seasonal variation. 

The forecasting equation is  

1(1 )t t tF y F  −= + − ,  

where tF  is a forecast for the time series at t , 1tF −  represents the value of forecasting for the  

previous period at 1t −  and ty  is the actual value at t  and 0 1  . 

 

2.2 Holt’s Method 

Double exponential smoothing or Holt’s method by Holt (1957), an extension of the simple 

exponential method, is used to forecast data having linear trend. It consists of a forecasting equation, 

level and trend equations. 

Forecast equation: 1 1
ˆ

t t ty l b− −= +  

Level equation: ( )1 1(1 )t t t tl y l b  − −= + − +  

Trend equation: ( ) ( )1 11t t t tb l l b − −= − + −  

where ˆ
ty  is the fitted value, or one-step-ahead forecast, at time t , tl   is level estimate at time t , 

tb  is 

trend (slope) estimate at time t ,   is smoothing constant for level 0 1   and   is smoothing 

constant for trend 0 1  . 

 

Winters’ Method 

Holt (1957) and Winters (1960) extended Holt’s method to capture seasonality and the method is 

called Hot-Winters’ method or simply Winters’ method.  The method comprises the forecast equation 

and three smoothing equations namely, the level equation, the trend equation and the seasonal 

equation. There are two types of Winters’ method. These are two types of the additive and 

multiplicative methods. When the magnitude of seasonal pattern appears constant the additive model is 

used and when it varies with the size of the sample, the multiplicative method is used.    

 

Forecasting equation for additive model 

Forecasting equation: 1 1
ˆ

t t t t py l b s− − −= + +  

Level equation: 1 1( ) (1 )( )t t t p t tl y s l b − − −= − + − +  

Trend equation: 
1 1( ) (1 )t t t tb l l b − −= − + −  

Seasonal component: 1( ) (1 )t t t t ps y l s − −= − + −  

 

 Forecasting equation for multiplicative model 

Forecasting equation: 1 1
ˆ ( )t t t t py l b s− − −= +  

Level equation: 
1 1(1 )( )t

t t t
t p

y
l l b

s
  − −

−

 
= + − + 

 
 

Trend equation: 
1 1( ) (1 )t t t tb l l b − −= − + −  

Seasonal component: (1 )t
t t p

t

y
s s

l
  −

 = + − 
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where tl  is the level at time t  ,   is the weight for the level, 
tb   is the trend at time t ,   is the weight 

for the trend, 
ts  is the seasonal component at time t ,   is the weight for the seasonal component, p  

is the seasonal period,  ty   is the data value at time t  and  ˆ
ty  is the fitted value, or one-period-ahead 

forecast, at time t . 

2.3 Measures of Accuracy 

Three measures of accuracy of the fitted model are considered. These are mean absolute percentage 

error (MAPE), mean absolute deviation (MAD), and mean squared deviation (MSD) for each of the 

smoothing methods. For the three measures, the smaller the value, the better the fit of the model. 

 

2.3.1 MAPE 

The mean absolute percentage error measures the accuracy of fitted time series values. It expresses 

accuracy as a percentage. 

MAPE 

( )ˆ

100

t t

t

y y
y

n

−

= 


 

 

2.3.2 MAD 

Mean absolute deviation measures the accuracy of fitted time series values. It expresses accuracy in 

the same units as the data, which helps conceptualize the amount of error. 

MAD 
ˆ

100
t ty y

n

−
= 


 

 

2.3.3 MSD 

The mean squared deviation is always computed using the same denominator, n, regardless of the 

model, so you can compare MSD values across models. MSD is a more sensitive measure of an 

unusually large forecast error than MAD. 

MSD

2
ˆ

100
t ty y

n

−
= 


 

 

3.0 Analysis of Results 

 

3.1 Descriptive Statistics of the CPI 

The descriptive statistics considered here include measures of central tendency, measure of dispersion 

and quartiles. They are displayed in table 1 below. 

 

Table 1: Descriptive Statistics: CPI  

 

Variable    N     Mean     StDev   Minimum      Q1   Median      Q3      Maximum 

CPI        69   165.30    37.24    108.00          130.60      168.00      200.85   224.20 

 

From table 1 above, the average (mean) of the CPI is 165.30. The minimum CPI recorded during the 

period is 108.00 and the greatest is 224.20. The standard deviation is 37.24. the table further reveals 

that 25% of the CPI are below 130.60, half are above and below168.00 and 75% of the CPI are below 

200.85. 
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Figure 1: Plot of the CPI 

 

From figure 1 above is the plot of the 69-month CPI of Ghana from March 2013 to November 2018. 

Clearly from the plot in figure 1 above, the CPI has an increasing trend suggesting that the simple 

exponential method must be ruled out as a possible method of forecasting the CPI of Ghana. It is now 

left with two possible methods (Holt’s and Winters’ methods).  

 

Table 2: Smoothing constants and forecasting errors under SES method 

Smoothing constant (alpha)    MAPE   MAD    MSD 

0.5      2.07  3.45   14.23 

0.6      1.76  2.82   10.52 

0.7      1.55  2.47   8.26 

0.8      1.40  2.22   6.79 

0.9      1.29  2.03   5.80 

 

From table 2 above, it is realized that as the smoothing constant increases, the mean absolute 

percentage error (MAPE) decreases but as the smoothing constant is inversely proportional to the 

mean absolute deviation (MAD) and the mean squared deviation (MSD). The least of three measures 

of accuracy values are 1.29, 2.03 and 5.80 for the MAPE, MAD and MSD respectively. Among the 

three, the MAPE value of 1.29 with a smoothing constant of 0.9 is the minimum. 

 

Table 3: Forecasting errors under Holt’s method 

Alpha (level)  Gamma (Trend)  MAPE   MAD  MSD 

0.1   0.1    1.58   2.44  8.60 

0.2   0.1    1.27   1.94  5.88 

0.2   0.2    1.26   1.92  6.02 

0.2   0.3    1.35   2.06  6.36 

0.2   0.4    1.44   2.21  6.99 

 

From table 3 above, the alpha values chosen were 0.1 and 0.2. The gamma values varied between 0.1 

and 0.4. The lowest accuracy measures of the five trials are 1.26, 1.92, and 5.88 for MAPE, MAD, and 

MSD, respectively. The optimal exponential smoothing constant for each level (alpha) and trend 

(gamma) is 0.2 because they have the lowest MAPE and MAD. 
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Table 4: Smoothing constants and forecasting errors under Winters’ additive method 

Alpha (α)      Gamma (𝜸) Delta (𝜹) MAPE   MAD      MSD  

0.4          0.2  0.2       0.4014  0.6203     0.6231 

0.5          0.2  0.2      0.3583   0.5555    0.5311 

0.6          0.2  0.2      0.3376  0.5262    0.4849 

0.7   0.2  0.1  0.3293  0.5161  0.4666 

0.7           0.2  0.2      0.3281  0.5159    0.4662 

0.7   0.2  0.3  0.3285  0.5182  0.4682 

0.7   0.3  0.3  0.3334  0.5294  0.4711 

0.8           0.2  0.2      0.3287  0.5203    0.4664 

0.9           0.2  0.2      0.3352  0.5326    0.4807 

 

From table 4 above, the smoothing constant, alpha is varied between 0.4 and 0.9 while the gamma was 

between 0.2 and 0.3. The other constant, delta, was also varied between 0.1 and 0.3. of the nine trials, 

the minimum measures of accuracy was 0.3281 with smoothing constants 𝛼 = 0.7, 𝛾 = 0.2 and 𝛿 =
0.2. 

 

Table 5: Smoothing constants and forecasting errors under Winters’ multiplicative method 

Alpha (α)      Gamma (𝜸)        Delta (𝜹)  MAPE  MAD      MSD  

0.1   0.1  0.1  1.8703  3.0165           13.6638 

0.2   0.1  0.1  1.6152  2.5947  9.3010 

0.2   0.2  0.1  1.6235  2.5955  9.1894 

0.2   0.1  0.2  1.3976  2.1812  6.7910 

0.2   0.1  0.3  1.2448  1.8976  5.3683 

0.2   0.1  0.4  1.1469  1.7247  4.5529 

0.2   0.1  0.5  1.0935  1.6344  4.0658 

0.2   0.1  0.6  1.0631  1.5816  3.7524 

0.2   0.1  0.7  1.0466  1.5550  3.5333 

0.2   0.1  0.8  1.0304  1.5281  3.3730 

0.2   0.1  0.9  1.0148  1.4995  3.2613 

0.2   0.2  0.2  1.4046  2.1852  6.5152 

0.2   0.2  0.3  1.2420  1.8903  5.0566 

 

In table 5 above, there were 13 trials in all and 𝛼 values varied between 0.1 and 0.2. The gamma, 𝛾, 

varied between 0.1 and 0.2 and delta, 𝛿, varied between 0.1 and 0.9. The optimal smoothing constants 

are 𝛼 = 0.2, 𝛾 = 0.1 and 𝛿 = 0.9 and the least value of the MAPE is 0.0148. 

 

The simple exponential smoothing method has been ruled out earlier as the plot of the CPI is 

characterized by upward movement. Clearly, there is a trend in the series and as indicated earlier, the 

exponential smoothing method is used when the series has no trend and seasonal variation. The 

measures of accuracy in table 2 affirms this point as the MAPE, MAD and MSD values of the SES are 

the largest among the other methods. After ruling out the SES method, the choice of the appropriate 

method for forecasting the CPI is limited to the Holt’s and the two Winters’ methods.  The Winters’ 

additive method is considered appropriate for forecasting the CPI since it has the lowest value 

measures of accuracy. The exponential constants for the chosen Winters; additive model are 𝛼 = 0.7, 

𝛾 = 0.2 and 𝛿 = 0.2 and the measures of accuracy are MAPE=0.3281, MAD=0.5159 and MSD= 

0.4662. 

 

3.2 In-sample and Post-sample Forecast 

To judge the forecasting ability of the selected exponential smoothing method, the sample period 

forecasts are computed. The sample period forecasts are obtained by simply plugging the actual values 

of the explanatory variable in the Minitab using the Winters’ additive method. For the in-sample 

forecast, the forecast values are compared with the actual values of the CPI to validate the exponential 
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smoothing method or procedure chosen. The post-sample forecast is done to obtain the future values of 

the CPI. The results of the in-sample and post-sample forecasts are shown in table 6.  

 

 Table 6: Forecast values and their 95% confidence limits 

Month      Actual value Forecast   LCL   UCL      

18-Mar  214.1  214.482    213.161    215.803 

18-Apr  216.0  216.912    215.324    218.500 

18-May  218.1  218.134    216.220    220.047 

18-Jun  220.4  220.036    217.764    222.309 

18-Jul  221.1  221.728    219.076    224.379 

18-Aug  221.1  220.713    217.671    223.756 

18-Sep  221.0  220.274    216.831    223.716 

18-Oct  222.6  222.889    219.041    226.736 

18-Nov  224.2  224.061    219.805    228.318 

18-Dec    225.416    220.747    230.085 

19-Jan    230.071    224.988    235.155 

19-Feb    231.294    225.794    236.793 

19Mar    233.908    227.991    239.825 

19-Apr    236.338    230.003    242.674 

19-May    237.560    230.805    244.315 

19-Jun    239.463    232.287    246.638 

19-Jul    241.154    233.558    248.750 

19-Aug    240.140    232.122    248.157 

 

Table 6 indicates that the differences between the actual and the predicted values (errors) are not great 

and this also confirms the validity of the Winters’ additive method and is used to forecast the next nine 

months CPI of Ghana provided there is no intervention. 

 

Conclusion 

The objective of the study is to determine the appropriate time series exponential smoothing method 

for forecasting the CPI of Ghana for the next nine months. The results show that the Winters’ additive 

method with smoothing constants 𝛼 = 0.7, 𝛾 = 0.2 and 𝛿 = 0.2 is most appropriate for the series 

based on the least measures of accuracy. The minimum values of its MAPE, MAD and MSD are 

0.3281, 0.5159 and 0.4662 respectively. It is therefore recommended for forecasting the next 12-month 

CPI of Ghana provided no interventions will be put in place during the period. 
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Data used in the Analysis 

13-Mar 108 

13-Apr 109.7 

13-May 110.5 

13-Jun 112.2 

13-Jul 113.6 

13-Aug 112.8 

13-Sep 112 

13-Oct 114.5 

13-Nov 115.4 

13-Dec 116.6 

14-Jan 121.2 

14-Feb 122.6 

14-Mar 123.7 

14-Apr 125.8 

14-May 126.9 

14-Jun 129 

14-Jul 131 
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14-Aug 130.7 

14-Sep 130.5 

14-Oct 133.9 

14-Nov 135.1 

14-Dec 136.4 

15-Jan 141.1 

15-Feb 142.8 

15-Mar 144.3 

15-Apr 146.9 

15-May 148.4 

15-Jun 151 

15-Jul 154.5 

15-Aug 153.3 

15-Sep 153.1 

15-Oct 157.2 

15-Nov 158.9 

15-Dec 160.6 

16-Jan 168 

16-Feb 169.2 

16-Mar 172 

16-Apr 174.4 

16-May 176.4 

16-Jun 178.8 

16-Jul 180.3 

16-Aug 179.2 

16-Sep 179.5 

16-Oct 182 

16-Nov 183.5 

16-Dec 185.3 

17-Jan 190.4 

17-Feb 191.6 

17-Mar 194 

17-Apr 197.2 

17-May 198.6 

17-Jun 200.4 

17-Jul 201.7 

17-Aug 201.3 

17-Sep 201.3 

17-Oct 203.3 

17-Nov 205.1 

17-Dec 207.2 

18-Jan 210.1 

18-Feb 211.9 
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18-Mar 214.1 

18-Apr 216 

18-May 218.1 

18-Jun 220.4 

18-Jul 221.1 

18-Aug 221.1 

18-Sep 221 

18-Oct 222.6 

18-Nov 224.2 
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