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Abstract 

Mathematical models have been used to provide an explicit framework for understanding malaria transmission 

dynamics in human population for over 100 years. The equilibrium points of the model are found and their stability 

is investigated. By analyzing the model, a threshold parameter R0
was found which the basic reproductive 

number is obtained. It is noted that when 1
0
R the disease will fail to spread and when 1

0
R the disease will 

persist in the population and become endemic. The stability of these two equilibrium points is controlled by the 

basic reproductive number R0
which was determined using the next generation matrix approach. Our model 

divides the human population into three compartments: pre-school (0-5 years) and youngest age group (6 -25 years 

old) and the rest of the human population. The results of our mathematical analysis indicate that the disease-free 

equilibrium is asymptotically stable and occurs whenever the basic reproduction number R0
is less than unity or

1
0
R .  For 1

0
R , the disease-free equilibrium point is unstable. 
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INTRODUCTION 

In order to reflect the age structure of a population affects the dynamics of disease transmission, we incorporate 

age into the model, and assume that the infection rate depend on the age. We model observations to be able to 

describe naturally occurring phenomena, to be able to predict future events and to be able to find optimal solutions 

to problems we encounter.  

That first malaria model was expanded in several ways, for example by introducing the effects of human age 

[21], acquired immunity to malaria [17, 21] or genetic and special heterogeneity of parasite and host among these 

age and immunity play an important role in endemic malaria regions. In order to describe age-structured models 

for disease transmission we must first develop the theory of age-structured populations. In fact, the first models 

for age-structured populations were designed for the study of disease transmission in such populations. In this 

paper, we construct a new model to investigate the patterns of malaria transmission in the presence of age structure 

model. 

 

Disease Free Equilibrium point 

Disease-free equilibrium points (DFE) are steady state solutions where there is no malaria in the human population 

or Plasmodium parasite in the mosquito population. In absence of the disease, this implies that 0,,,
321


vhhh
iiii  

To determine the stability of the equilibrium points of the given model we evaluate the steady state of the given 

system with following conditions. 

 Disease free equilibrium points 0,,,
321


vhhh

iiii  

 

1.1. Endemic disease equilibrium point 

The equilibrium point at the endemic level has a strong influence in the behavior of the disease transmission for a 

given community. The endemic equilibrium point is the final reachable situation, even though there could be 

infinitely many different initial distributions of malaria in a community. Stability analysis is an important 

mathematical tool that provides the conditions that guarantee the stability of an endemic equilibrium point. In the 

presence of the disease, this implies that 0,,,
321


vhhh
iiii  

To determine the stability of the equilibrium points of the given model we evaluate the steady state of the given 

system with following conditions. 

 Endemic equilibrium points, that is 0,,,
321


vhhh
iiii  
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1.2. Basic concept of reproductive number 
0

R  

A quantity of central importance in epidemiology is the basic reproduction number denoted by
0

R . From time to 

time, people also call it the basic reproductive rate or ratio, or the basic reproduction ratio. 
0

R is defined as the 

mean number of secondary infections produced when one infected individual is introduced into a host population 

where everyone is susceptible. 

As defined, a reproductive number less than one will cause the disease to die out; whereas, a reproductive number 

greater than one classifies the disease as endemic [2]i.eif 1
0
R , then on average an infected individual produces 

less than one new infected individual over the course of its infectious period, and the infection cannot grow. 

Conversely,if 1
0
R , then each infected individual produces, on average, more than one new infection, and the 

disease can invade the population.  

 

1.3. Next generation matrices for compartmental epidemic model 

The basic reproduction number 
0

R  is arguably the most important quantity in infectious disease epidemiology. 

The next-generation matrix (NGM) is the natural basis for the definition and calculation of 
0

R  where finitely 

many different categories of individuals are recognized. 

In epidemiology, the next-generation matrix is a method used to derive the basicreproduction number, for a 

compartmental model of the spread of infectious diseases. This method is given by Diekmannet al. (1990)[12]and 

Driessche and Watmough (2002). 

To calculate the basic reproduction number by using a next-generation matrix, the whole population is divided 

into ncompartments in which there are nm infected compartments. Let ,
i

x mi ,...,4,3,2,1 be the numbers 

of infected individuals in the 
thi infected compartment at time t.  

 

1.4. Routh-Hurwitz Criteria 

1.4.1. General Procedure 

The Routh-Hurwitz (RH) Criterion is a general mathematical technique thatmay be used to determine how many 

of the roots of a characteristic equationsuch as the one below have positive real parts, and are therefore 

unstable1.Routh-Hurwitiz is a method for determining whether a linear system is stable or not by examining the 

location of the roots of the characteristic equation of the system.  

The Routh-Hurwitz Criteria do not yield information about the absolute values of the eigenvalues, butabout 

their signs. For checking for stability, it is sufficient to know the sign of the real parts. 

The Consider the general form for a characteristic polynomial 
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




   

To determine whether the system stable or not, check the following conditions. 

1. Two necessary but not sufficient conditions that all the roots have negative real parts are: 

a) All the polynomial coefficients must have the same sign. 

b) All the polynomial coefficients must be nonzero. 

2. If this condition is satisfied then compute the Routh –Hurwitz array as follows: 

 n

an an 2 an 4 an 6
 …          

 1n

an 1 an 3 an 5 an 7
…         

 2n

b1 b2 b3 b4
…            

 3n

k1 k2 k3 k4
…            

 

 0
 

Where the aicoefficients come from the original polynomial. The other coefficients are computed in a fashion 

similar to a determinant, by selecting appropriate values in the array. The pattern of values is illustrated via the 

following cases: 

The associated Routh Array is then: 
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 n
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THE BASICS MODEL 

These categories or compartments are represented by standard notation of S-E-I-R after the pioneering work 

of Kermack and McKendrick. There may be variations in the compartment structure depending on the type of 

disease. For example, the Iclass of individuals may not recover at all and die; R can consist of individuals, who 

recover with temporary or permanent immunity, thereby further subdividing the epidemiological compartments. 

Using these notations, eight classes of compartmental models are possible - SI, SIS, SEI, SEIS, SIR, SIRS, SEIR 

and SEIRS . For example, in an SEIRS model, a fraction of the susceptible (S) population gets exposed (E) to 

infection, a part of which then becomes infectious (I). Some from the I class recover from the disease, and become 

part of the R class with temporary immunity. When immunity is lost, they become susceptible to pathogen attack 

again, and enter the S class. But in this paper we consider the standard SIR model where the individuals in the 

population are divided into three compartments. The susceptible (S) which refers to the healthy individuals that 

has not yet come into contact with malaria disease. The infective (I) are those who have become infected with 

malaria disease and are able to transmit the disease and the recovered (R) are individuals who have recovered from 

malaria disease. The proportions of the individuals in the compartment of the population, i.e. S,I and R, at time t 

is denoted as S(t), I(t) and R(t) respectively. 

 

 

N

SI
I  

Figure 3 Flow chart showing the SIR model 

 = The per-capita contact rate between any two individuals.  

N

1
= The proportion of infectious individuals in the population. 

 = The per-capita rate of recovery once infectious. 

I = The rate at which infectious individuals are removed from the infectious class. 

b1

R I S 
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N
S

1
  = The rate at which susceptible individuals come across infectious individuals and then   become 

infectious.    

 

3.1. Model description and formulation 

We formulate a mathematical model for the transmission and spread of malaria in the human and mosquito 

population. We formulate a model for the spread of malaria in the human and mosquito population with the total 

population size at time t given is by is given by )(tN H
 and )(tN v

 respectively. These are further 

compartmentalized into epidemiological classes shown below. The vector component of the model does not 

include immune class as mosquito never recover from infection, that is, their infective period ends with their death 

due to their relatively short life-cycle. Thus the immune class in the mosquito population is negligible and death 

occurs equally in all groups. Our model also excludes the immature mosquitoes since they do not participate in the 

infection cycle and are, thus, in the waiting period, which limits the vector population growth. Our model has the 

following variables and parameters: 

)(tS
H

the number of susceptible human hosts at time t, )(tI
H

the number of infected human hosts at time t, )(tR
H

the number of partially immune human hosts at time t, )(tS
v

the number of susceptible mosquito vectors at time 

t, )(tI
v

the number of infected mosquito vectors at time t, Given that the total number of bites made by the 

mosquitoes must equal the number of bites received by the humans,

H

v

VH
N

N
NN ),( is a constant. Thus

H

v

N

N
m  isnumber of female mosquitoes per human host. 

Where

H

v

N

N
m  is the female vector – host ratio, defined as the number of female mosquitoes  perhuman host 

[2]. 

Our model, illustrated in Figure 3,seeks to look into the dynamics of the Susceptible-Infectious-Recovered and 

Susceptible Infectious (SIR-SI) malaria transmission, taking into account the three human classes, pre-school 

children (
1

H – aged five years below), age from six to 25 (
2

H 5−25yearsold ) and the rest of the humans (
3

H - 

older than twenty five years).  

The human population 
H

N is divided into nine compartments denoted by the following variables:  

1HS is the number of susceptible humans of age five (5) years and below; 

1H
I is the number of infectious humans of age five (5) years and below; 

1H
R is the number of recovered humans (with temporary immunity) of age five (5) years and below; 

2HS is the number of susceptible humans older than five (5) years and below 25 years old ; 

2HI is the number of infectious humans older than five (5) years and below 25 years old; 

2H
R is the number of recovered humans (with temporary immunity) older than five (5) years and below 26 years 

old 

3HS is the number of susceptible humans of age greater than or equal to 25 years 

3HI is the number of infectious humans of age greater than or equal to 25 years 

3H
R is the number of recovered humans of age greater than or equal to 25 years 

In general, any member of the human population (pre-school or older) remains in the susceptible class S for a 

certain period unless bitten and becomes infectious. Once in the infective class I, an individual may recover without 

acquiring immunity and be transferred back into the susceptible class S, or stays in class I while infectious before 

moving to the recovered class R with an acquired temporary immunity. Humans in the recovered class may lose 

immunity and move back to the susceptible class. 

Humans leave the population through natural death rate and through per-capita death rate due to infection. 
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In particular, members of the susceptible pre-school children
1H

S leave the population and move to infectious 
1H

I

or grow older to susceptible
2H

S . Infectious 
1H

I leave the population and transfer to the infectious
1H

I ,orrecovered 

1H
R . For the recovered 

1H
R population, members may grow to the recovered

2H
R . Similarly, for the rest of the 

human population, susceptible 
2H

S members may move to the infectious class
2H

I . Infectious 
2H

I members can 

transfer to the recovered
2H

R . Recovered 
2H

R members can lose immunity and assume that not move back to the 

susceptible 
2H

S group.  

 
 

Figure 4: transmission pattern of SIR – SI with age-structured human population susceptible mosquitoes vS may 

transfer into the infective class vI . Due to short life cycle of mosquitoes, the infective period ends with their death. 

 

3.2. Model Equations 

Applying the assumptions, definitions of variables and parameters and description of terms above, the differential 

equations which describe the dynamics of malaria in the human and mosquito populations are formulated as shown 

below: 
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For first age group (0-5 years) we formulate: 

SRV
N

Isa
SN

ds
HH

H

VH

HHH

H
b

dt 1111

11

11

1   (3.5.1) 


dt

dI H1 IIIrI
N

ISa
HHHH

H

VH
b

11111111

11    (3.5.2) 


dt

dRH1

RvRRrR hHHH 11111111
  (3.5.3) 

For second age group (5-25 years) we formulated

SSRV
N

ISa
s

ds
HHH

H

VH

h

h
b

dt 221122

22

22

2   (3.5.4) 


dt

dI H 2 IIIIrI
N

ISa
HHHHH

H

VH
b

2211222222

22    (3.5.5) 


dt

dRH 2

RvRRIrR hHHHH 2222112122
  (3.5.6) 

For the remaining age group (5-25 years) we formulate 


dt

dsH 3 SRV
N

ISa
s HH

H

VH

h

b

2233

33

33   (3.5.7) 


dt

dI H 3 IIIrI
N

ISa
HHHH

H

VH
b

22333333

33   (3.5.8) 


dt

dRH 3

RvIIrI hHHH 33223333
  (3.5.9) 


dt

dS V

S
N

Isa
N

Isa
N

ISa
N VV

H

Hv

H

Hv

H

HV

VV

ccC
  332211

(3.5.10) 


dt

dI V

S
N

Isa
N

Isa
N

ISa
VV

H

Hv

H

Hv

H

HV
ccC

 332211
(3.5.11) 

The total population size N H 1
, N H 2

, N H 3
and N v

can be determined by 

1
1111
 RISN HHHH

 

1
2222
 RISN HHHH

 

1
3333
 RISN HHHH

 

The total population of the first age group is derived by adding equations (3.5.1)-(3.5.3) to obtain  

   RISN
dN

HHHHH

H

dt 11111111111

1 )(    

The total population of the second age group is derived by adding equations (3.5.4)-(3.5.6) to obtain  

     RISRIS
dN

HHHHHH

H

dt 11112222222222

2 )(    
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And the total population of the second age group is derived by adding equations (3.5.7)-(3.5.9) to obtain  

    RRISIS
dN

HHHHHH

H

dt 33222233333

3     

In the model, the term  

H

vHi

N

IbSa
1  denotes the rate at which the human hosts 

1H
S get infected by infected 

mosquitoes 
v

I for 3,2,1i and 

H

Hvj

N

IcSa
refers to the rate at which the susceptible mosquitoes 

v
S are infected 

by the infected human hosts 
H

I for 3,2,1j .It is important to note that the rate of infection of human host
H

S

by infected vector 
v

I is dependent on the total number of humans 
H

N available per infected vector [19] and[36]. 

The model assumes that all newborns are susceptible in both human and mosquito populations.  

The per capita birth rate for humans and mosquito populations, H
 and v

  respectively, are both positive. The 

human and mosquito populations experience per capita natural death rate
1

 ,
2

 ,
3

 and
v

 respectively. Infected 

humans die due to infection at per capita death rate
1

 , 
2

 and
3

 respectively. We can consider recovered human 

individuals lose their immunity at per capital rates. To ensure that we have a stable positive human population, we 

assume that
321321

 
H

. 

Moreover, it is clear that the birth rate should be greater than the per capita rate 
1

 and
2

  of growing up. 

Consider the interaction between the two populations shown in Figure 3. If �� is the average number of bites per 

mosquito per unit time, then there are

H

v

N

Na
1  bites per human per time. For the pre-school humans

1
H , note that 

there are ��� susceptible humans and the proportion of the total number of bites that are possibly infectious to 

humans is 

v

v

N

I
 . Then the number of potentially infectious bites given to susceptible pre-school children is

H

Hv

N

SIa
11  bites per time. However, only a fraction of these bites, namelyb , successfully infect the pre-school 

children. Hence we have: 

����	
��

������
���������

����������
  =

H

Hv

N

SbIa
11  

The same formulation is constructed for the rest of the human group 
2

H and 
3

H . Similarly for the mosquito 

population, we have 
����������� �!"�#��$�

��!�������
=

���#&���'�

(�

+
��*#&�*�+�

(�

+
�,#�+&�,

(�

 

To analyze the age-structured malaria model given by Equations (3.5.1)–(3.5.11), we construct the fractional 

quantities by scaling the population of each class by the total species population (We normalize our dynamical 

equations by letting). The proportions for the system are

H

H

h
N

S
S 1

1
 ,

H

H

h
N

S
S 2

2
 ,

H

H

h
N

S
S 3

3
 ,

H

H

h
N

I
i 1

1
 ,

H

H

h
N

I
i 2

2
 ,

H

H

h
N

I
i 3

3
 ,

H

H

h
N

R
r 1

1
 ,

H

H

h
N

R
r 2

2
 ,

H

H

h
N

R
r 3

3
 ,

V

V

v
N

S
s  and 

V

V

v
N

I
i   

Let )(1
111 hhh

sir   

)(1
222 hhh

sir 
 

)(1
333 hhh

sir   

Differentiating the scaling equations (3.5.1)-(3.5.11) and solving for the derivatives of the scaledvariables, we 

obtain the following reduced system of nine DE 
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= 0)( 2

111111


hhhvh
iiriabms   (3.5.12) 

 

          = 0)1()1(
11111111


hhhhvhhh
isisviabmss  (3.5.13) 

=
0)1(

11


vvhv
iiica  (3.5.14) 

 

 

iihirisa hhvh
bm

2

2211212222
)(   (3.5.15) 

 

 

 

 isvsissisa hhhhhhvh
bm

222222221222
1

1
  

 
 

=
vvhv

iiica 
222

)1(                                                          (3.5.17)








 
dt

dN
i

dt

dI

Ndt

di
H

h

H

H

h 3

3

3

3

3
1

 

iiirisa hhhvh
bm

2

33223233233
)(                                                              (3.5.18) 








 
dt

dN
s

dt

ds

Ndt

ds
H

h

H

H

h 3

3

3

3

3
1

  isisvsssisa hhhhhhhvh
bm

333333222232333
1   








 
dt

dN
i

dt

dI

Ndt

di
v

v

v

v

v 1

1

1

3

1
1

 

=
0)1(

33


vvhv
iiica  (3.5.20) 

 

3.3. Existence and Stability of Equilibrium Points 

3.3.1. Equilibrium points of the model 

The equilibrium analysis helps to achieve this. Thus, we shall consider two equilibriums the diseases-free 

equilibrium points and endemic equilibrium points. The points at which the differential equations of the system 

(3.5.12)-(3.5.20) equal to zero are referred to as equilibrium points or steady-state solutions. It is important to note 

that there are no trivial equilibrium points as long as the recruitment terms
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N ,
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N ,
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N and 
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N , 
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N , 
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N

are not zero.  

3.3.2. Existence of Disease-free Equilibrium Point 

Disease-free equilibrium points are steady-state solutions where there is no malaria infection (no disease). We 

define the “diseased” classes as the human or mosquito populations that are either infectious, or recovered, that is
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Thus, the disease-free equilibrium point,
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E , for the malaria model (3.5.12)-(3.5.14)in the absence of disease 

implies that 0
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This implies that the disease free equilibrium point is given by    0,0,1,*,
111
iis vhh

 

3.3.3. Calculating Reproductive Number
0

R for the first age group 

To calculate
0

R , we use the compartmental model approach presented by VandenDriessche and Watmough and 

Diekmann et al [12].  
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where  
i

F =be the rate of appearance of new infections in compartments i 

i
v  =be the transfer of individuals out of compartments i by all other means 


i

v = be the rate transfer of individuals out of compartment i 


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v =be the rate transfer of individuals in to compartment i by all other means  

0
x  =be the disease free equilibrium 
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R = is the largest eigenvalues of Matrix of partial derivatives 

Then   


































j

i

j

i

x

xv

x

xF
Fv

)()(
001

 

To find reproduction number 
0

R for the first age group will refer to the ODEs (3.5.12)-(3.5.14) and it is important 

to distinguish new infections from all other changes in population 
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Then the Jacobian matrix of F (gain terms) is given by  
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And the Jacobian matrix of V (loss terms) is given by
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Then the Jacobian matrix of loss terms V at DFE (0, 1, 0) is given by 
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1Fv  is called the next generation matrix of the epidemiological model. 
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Then the spectral radius (the dominant eigen value) 
1Fv is equal to
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which forms the characteristics equation 
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 (3.5.21) 

This is the required reproduction number for the first age group. 

From (3.5.21) if hvkbcma 11
2

1
  then 1

0
R , this means that the equilibrium point is unstable (i.e the malaria 

disease is highly persistence to the population). If hvkbcma 11
2

1
 then 1

0
R and the equilibrium point is 

stable (i.e the disease is die out). 

3.1.1 Equilibrium points and stability analysis 

To determine the stability of the equilibrium points of the given model we evaluate the steady state of the given 

system with following conditions. 

 Disease free equilibrium points (in the absence of infection) 0,
11
ii vh

 

 Endemic equilibrium points, that is 0,
11
ii vh

 

3.3.4. Local Stability analysis (sh1*,ih1*,iv1*)=(0,1,0) 

To determine the stability of the system, we will consider linearizing the systems of equations (3.5.12)– (3.5.14) 

about the equilibrium points by taking the Jacobian of them. 
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For the disease-free equilibrium, we evaluate the Jacobian matrix at the equilibrium points 

 ***,
11 vhh

isi  = (0,1,0) and hence we obtain 
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The characteristic polynomial of(3.5.22) is 
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Now applying 0
3
 IJ   on (ii) we have  
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Solving for roots of the characteristic polynomial (with real coefficient) given in the Jacobian matrix leads to the 

characteristic equation  

0
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Where k1, k2, and k3 are the coefficients given by the expressions:
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Using Routh-Hurwitz criteria (Edelstein-Keshet 1988), the equilibrium is locally stable if the following conditions 

are satisfied. 
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Clearly the disease free equilibrium point is locally asymptotically stable if 12

0
R . If 12

0
R then , 0
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k . Hence, 

there is only one sign change in the sequence,
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k ,
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k ,
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k and so by Descartes rule of sign, there is one eigenvalue 

with positive real part. This implies that the disease-free equilibrium point (0,1,0)is unstable. 
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Hence the DFE point (0, 1, 0) are unstable by Routh-Hurwitz stability criteria. 

But if 1
0
R  the DFE point(0, 1, 0) are stable. 

3.3.5. Existence and uniqueness of endemic equilibrium (ih1**,sh1**,iv1**) 

Here, the condition for the existence and uniqueness of the endemic equilibrium of model system Eq. (3.5.12)-

(3.5.14) is determined. Let X* = (ih1*, sh1*, iv1*) be the endemic equilibrium. To find the endemic equilibrium, 

we equate all equations in model system Eq. (3.5.12)-(3.5.14) to zero and rewrite it as follows: 
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In the presence of infection (ih1,iv1 # 0), the mathematical model (3.5.12)-(3.5.14) has a unique endemic 

equilibrium given by X* = (ih1*, sh1*, iv1*) which are determined from the system as follows. The associated 

Jacobian matrix is obtained as: 
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Then the Jacobian matrix of above matrix at EEP  ***,
11 vhh

isi is given by  

 
























vhv

hhvhh

hvhh

vhh

ciaica

bmaibmiavsv

bmabmiair

isiJ s
s






*0*)1(

**)*(*

***2)(

***,

111

111111111

1111111

11
 

Obtaining the eigenvalues as usual from of the formula   0*  IHJ   
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Since the model is not expressed explicitly then we use Matlab or Mathematica and the results discussed in chapter 

four: 

3.3.6. Calculating Reproductive Number 
01

R for the second age group 

To calculate the reproductive number of age group two we consider equation 

 (3.5.15)-(3.5.17). 

0)(
2

2211212222
 iihirisa hhvh

bm  (i)

  01
1 222222221222

 isvsissisa hhhhhhvh
bm  (ii) 

  0
2 222 1  iiica vvhv  (iii) 
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In the absence of infection (ih2=iv2=0) equation (i)-(iii) becomes 

  01
1 22211

 svss hhh   

  0
1 22121

 vvss hh   




12

211

2 




v
vs

s
h

h
 

1

12

21 







v

v
 

To find reproduction number 
0

R  for the second age group will refer to the ODEs (3.5.15)-(3.5.17) it is important 

to distinguish new infections from all other changes in population. 

Gains terms 

v
bmiaF

21
 0

2
F

223
)1(

hv
iicaF   

Loss terms 

11

2

2121221
)(

hhh
iiirv    

2111222222222
)1(

hhhhhhvh
ssisisvibmsav    

vv
iv 

3
 

Then the Jacobian matrix of F (gain terms) is given by 





















222

222

22

0)1(

000

0

),,(

hv

hv

vhh

ciaica

bmsabmia

isiF  

Then the Jacobian of F at equilibrium point    0,1,0**,*,
2220

 isiE vhh
 is given by 

 


















00

000

00

0,1,0

2

2
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bma

F

And the Jacobian matrix of v (loss terms) is given by

 



















v

vhh
www

w

isiv

00
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),,(
432
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where
221221

2
h

irw  
 

2222 h
svw 

 

2222
3

hv
ivbmiaw   

224 h
bmsaw   

Then theJacobian matrix of loss terms v at DFE (0, 1, 0) is given by 

 


















v

www

w

V

00
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0,1,0
443322

11

 

Where:
12211

  rw
& 2222

 vw
, 1233

 vw
, 

bmaw
244


 

The matrix 
1Fv is called the next generation matrix of the epidemiological model. 
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To find 
1v  let A=
















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fed
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
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Hence 
1Fv = 
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Then the spectral radius (the dominant Eigen value) 
1Fv  is equal to 0R . 

That is 0 IJ   
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0
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Therefore the dominant Eigen values of 
1Fv is   vr

bcma



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2
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  


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01
 , then 

vw

bcma
R

11

2

2

01
 (*) 

3.3.7. Local Stability analysis (ih2*,sh2*,iv2*) = (0,1,0) 

To determine the stability of the system, we will consider linearizing the systems of equations (3.5.14)– (3.5.17) 

about the equilibrium points by taking the Jacobian of them. 

The Jacobian matrix at any point (ih2*,sh2*,iv2*) is given by 

 

 
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Then the Jacobian matrix of the above matrix at DFE point (0,1,0) is given by 

 
 



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Now applying  0
3
 IJ   
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The corresponding characteristic equation of (iii) is 

0
32

2

1

3  bbb   

Where b1, b2, and b3 are the coefficients given by the expressions: 

vvvvvv
vvrvbcmavrb 
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v
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 2212122

01

2

2
1 

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
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2221
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v
rvb  

Using Routh-Hurwitz criteria (Edelstein-Keshet 1988), the equilibrium is locally stable if the following conditions 

are satisfied. If these conditions are true, then all roots of the characteristic polynomial equation have negative real 

part, which concludes that there is a stable equilibrium. 
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The conditions are: 

0)(
1
bi  

0)(
3
bii and 

0)(
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 bbbiii must hold.  

To show (i), (ii), and (iii) we use 
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Clearly 0
1
b since all parameters are positive. 
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Clearly we see that the disease free equilibrium point is locally asymptotically stable if 12

01
R . If 12

01
R then 

0
3
b  . Hence, there is only one sign change in the sequence, 

1
b ,

2
b ,

3
b  and so by Descartes rule of sign, there 

is one eigenvalue with positive real part. This implies that the disease-free equilibrium point (0,1,0) is unstable.  

(i.e Since the second condition failed then the DFE point unstable). Finally, we show that 0
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3.3.8. Calculating Reproductive Number
02

R for the third age group 


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dih3

iiirisa hhhvh
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2
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3333
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iiica   

To determine the reproduction number it is important to distinguish new infections from all other changes in 

population.Forming  the  matrices  for  F  and  V  at  the  disease  free  

equilibrium of the form E0=(ih3*,sh3*,iv*)= (0, 1, 0,) such that there is no infection in the population, 
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Then the Jacobian matrix of F (gain terms) is given by  
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


1

00

1
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1

33

44

333311

22

11

 

= 





















00

000

00

11

3

3

m

ca

bma

v


 

 

Then the spectral radius (the dominant eigen value) 
1Fv  is equal to

0
R . 

Obtaining the eigenvalues  as  usual form of the  formula 0 IJ   

0

0

00

0

11

3

3


















m

ca

bma

v

 

 0
11

2

33  



v

m

bcma
 

= 0
11

2

32 









v
m

bcma


  
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 0 or

v
m

bcma




11

2

32  . 

Therefore the dominant Eigen values of 
1Fv is 

v
m

bcma




11

2

32   


v

m

bcma
R


11

2

32

02
 , then 

v
m

bcma
R


11

2

3

02
  

Clearly if 
v

mbcma 
11

2

3
 , then the reproduction number is 12

02
R  and the disease is highly affect the 

community. If 
v

mbcma 
11

2

3
  then the reproduction number is 12

02
R and the malaria disease is die out. In the 

context  of  epidemiology  modeling,  it  is  generally known that if 1
0
R , then the disease free equilibrium is 

locally asymptotically stable and the disease will be eradicated from the community. 

 

3.4. Local Stability analysis of DFE point (ih3*,sh3*,iv*) = (0,1,0) 

To determine the stability of the system, we will consider linearizing the systems of equations (3.5.18)– (3.5.20) 

about the equilibrium points by taking the Jacobian of them. 

The Jacobian matrix at any point (ih3*,sh3*,iv3*) is given by 

 

 

























vhv

hhvh

hvh

vhh

icaica

bmsavibmiaSv

bmsabmiair

isiJ






333

3323333333

33333233

33

0)1(

2

**,*,
 

Then the Jacobian matrix of the above matrix at DFE point (0,1,0) is given by 

 
 

 
























v
ca

bmavv

bmar

J






0

0

0,1,0

3

32333

3233

(ii) 

The corresponding characteristic polynomial is 

 
  0

0

0

3

32333

3233














v
ca

bmavv

bmar

(iii) 

The corresponding characteristic equation (iii) is given by 

0
32

2

1

3  ddd   

Where d1, d2 and d3 are the coefficients given by the expressions:

vvvvvv
vrvrvbcmvabcmad 

23232333

2

2333

2

32

2

33


3322333323

2

2322

02

2
1

1
vvvrrv

R
d

vv
 










 

23331
2  rvd

v
 

Using Routh-Hurwitz criteria (Edelstein-Keshet 1988), the equilibrium is locally stable if the following 

conditions are satisfied. If these conditions are true, then all roots of the characteristic polynomial equation have 

negative real part, which concludes that there is a stable equilibrium. 

The three conditions are: 

0)(
1
di  

0)(
3
dii  

0)(
321
 dddiii must hold. 

To show (i), (ii), and (iii) we use 
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23331
2)(   rvdi

v
 

Clearly 0
1
d  since all parameters have positive values. Now to check the second condition we check for 

0
3
d  

vvvvvv
vrvrvbcmvabcmad 

23232333

2

2333

2
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2
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   
2

2

32323

2
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2

3332

)( bcmavbcma
vvvv rr   

2

2

32323

2
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1
1

 bcmarv
R

vvv









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2

2

3233232
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)(1
1

 bcmarv
R

v









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2

2

333232
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))((1
1
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R

v









  
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32
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1
1

1
1









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








R
v

R
 

)1
1

232

02









 v

R
 

So we have seen that the disease free equilibrium point is locally asymptotically stable if 1
02
R . If 12

02
R ,we 

can see that 0
3
d  . Hence, there is only one sign change in the sequence, ,

1
d ,

2
d

3
d  and so by Descartes rule 

of sign, there is one eigenvalue with positive real part. This implies that the disease-free equilibrium point (0,1,0) 

is unstable.  (i.e Since the second condition failed then the DFE point unstable) 

Finally, we show that 0
321
 ddd  . The expression for d2 is 

3322333323

2

2322

02

2
1

1
vvvrrv

R
d

vv
 








  

Hence we get  


321

ddd  

[
2333

2  rv
v

]*[
3322333323

2

2322
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1
1

vvvrrv
R

vv
 








 ]*

)1
1

232

02









 v

R
 

Thus the third condition 0
321
 ddd  also satisfied if and only if 12

02
R . If 12

02
R ,then 0

321
 ddd . 

3.4.1. Local Stability analysis of endemic equilibrium points for the age group three 

The endemic equilibrium state is the state where the disease cannot be totally eradicated but remains in the 

population. 

For the disease to persist in the population, the susceptible class, the Infectious class and the Recovered Class 

must not be zero at equilibrium state (i.e 0,
1


vh
ii ).  

In other words, if 
1

E is the endemic equilibrium state, then in (i.e. equilibrium where the infected components 

of the age-structured model (3.5.18) – (3.5.20) are non-zero or where the disease persist in the population (all state 

variables are positive) will be derived. When the disease free equilibrium point is unstable, then there exists an 

endemic equilibrium point 

The endemic equilibrium solution of (3.5.18)-(3.5.20) can be found by setting the right hand side to zero and 

solving the nonlinear system to obtain 
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
dt

dih3

iiirisa hhhvh
bm

2

33223233233
)(  

(*) 

dt

dsh3   isisvsssisa hhhhhhhvh
bm

333333222232333
1   

(**) 

dt

di v1   iiica vvhv 333 31  
(***) 

Now from (***) we have that 

vh

h

v
cia

cia
i




33

33 (i) 

Substitute (i) in (*) and (**)solve for ih3*. 

Then the Jacobian matrix of age group one model at endemic steady state  **,*,
33 vhh

isi  given by: 

 

 

























vhv

hhvh

hvh

vhh

icaica

bmsavibmiaSv

bmsabmiair

isiJ






333

3323333333

33333233

33

0)1(

2

**,*,
 

Then see the EEP of stability for this model in chapter four. 

 

NUMERICAL SIMULATION 

We present numerical simulations using Matlab to illustrate the transmission of malaria disease for the three age 

group described above. The parameter values are given in Table 2. 

 

4.1. Numerical simulation of the first age group model 

Consider the model given by equation (3.5.12)-(3.5.14) 

2

111111

1 )(
hhhvh

h iiriabms
dt

di
  (a) 

11111111

1 )1()1(
hhhhvhhh

h isisviabmss
dt

ds
  (b) 

vvhv

v iiica
dt

di


11
)1( (c) 

 

4.2. Reproduction number of age group one 

The reproduction number measures the average number of new infected population by a single infected population. 

Since we have shown an explicit expression for R0, we can analytically evaluate its sensitivity to the different 

parameter values.  

We can also numerically evaluate the sensitivity of the endemic equilibrium to the parameter values, as this 

will allow us to determine the relative importance to the age-structured malaria transmission and prevalence. 

hvk

bcm
R a

11

2

12

0
 or

hvk

bmc
R a

11

2

1

0
  

16944.9
)00000214.00014.000012.0)(071.0(

)2.0)(48.0)(5.0()46.0( 2

0



 R  

Since 1
0
R , the prevalence of malaria disease will result in an epidemic. This is due to the fact that the rate of 

transmission is greater than the recovery rate. 
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Figure 5.1 graph of the basic reproduction number 
0

R  

From this graph we can observe that if the Per capita death rate  
1

 increases and h
,

1
r  is constant then the 

reproduction number 
0

R decreases. This means that when the Per capita death rate
1

 decrease then the 

reproduction number is increasing and the susceptible population increasing. And when the Per capita death rate  

1
  increases

0
R  decreases that means when the when the Per capita death rate increase then the number of infected 

population decrease since individual in the infected class dies out. Similarly if  h ,
1

  are constant and 
1

r  

increases, then the reproduction number 
0

R  decreases  and as 
1

r  decreases 
0

R  increases. 

 

4.3. Stability analysis of DFE point of first age group 

The Jacobian matrix of the given model at DFE point (0,sh1,0) is given as follows 

 
 


















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

 





v

hh
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ca
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shJ

0

0

0
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1
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And the Jacobian matrix at DFE point (0,1,0) is 

 























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0460.00084.00083.0
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The corresponding characteristic polynomial is 0
3
 IJ   
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The characteristic equation of (*) after calculation is given below 

00013.00103.00809.0
23

   

 3
 

1 0.0103 0 

 2
 

0.0809 0.0013 0 

 1
 b1

 b2
 0 

 0
 k1

 k 2
 0 

 

And we can calculate out all the coefficients: 

0058.0
0013.00809.0

0103.01

0809.0

1
1




b  

0
00809.0

01

0809.0

1
2




b  

0013.0
00058.0

0013.00809.0

0058.0

1
1





k  

0
00058.0

00809.0

0058.0

1
2





k  

And filling these values into our Routh Array, we can determine whether the system is stable or not: 

 

 3
 

1 0.0103 0 

 2
 

0.0809 0.0013 0 

 1
 

-0.0058 0 0 

 0
 

0.0013 0 0 

Since the first columns do not contain the same sign, or the change of sign in the first column then by Routh-

Hurwitz stability criteria the DFE point (0,1,0) is unstable. Using Matlab we obtain the values of the Eigen value 

as follows. 

The roots of the equation is 

i1117.00111.0
1

  

i1117.00111.0
2

  

1032.0
3

  

 

4.4. Local Stability analysis of  EE point of first age group 

The endemic equilibrium solution of (3.5.12)-(3.5.14) can be found by setting the right hand side to zero and 

solving the nonlinear system to obtain 

0)( 2

111111


hhhvh
iiriabms  (a) 

0)1()1(
11111111


hhhhvhhh
isisviabmss  (b) 

0)1(
11


vvhv

iiica  (c) 

Now from (c) we have that  

vh

h

v
cia

cia
i




11

11 (d)Substitute (d) in (a) and (b) solve for ih1* using Matlab we obtain 

3433.0*1 ih  

Therefore the endemic equilibrium points for the respective states are: 
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   5164.0,0458.0,3433.0**,*,
11


vhh
isi  

The Jacobian matrix of (3.5.2)-(3.5.14) at any endemic steady state  **,*,
11 vhh

isi  is given by: 

 

























vhv

hhvhh
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
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1111111

11

0)1(

)(

2)(

**,*,
 

The Jacobian matrix of this equilibrium point is evaluated at (0.9698,0.0107,0.7510) to obtain: 

  7510.0,0107.0,9698.0J























1468.001068.0

0021.00322.00083.0

0021.00238.00015.0

 

The characteristic polynomial is given by 

0

1468.001068.0

0021.00322.00083.0

0021.00238.00015.0













 

Solving for the roots of the polynomial in the Jacobian matrix leads to the characteristic equation: 

0106439.10050.01805.0 523    

Now constructing Routh-Hurwitz array to determine stability in the following ways 

 3
 

           1 0.0050 0 

 2
 

                               

0.1805 

5106439.1   0 

 1
 1

b  
2

b  0 

 0
 1

k  
2

k  0 

And we can calculate out all the coefficients:  

0051.0
106439.11805.0

0050.01

1805.0

1
51








b  

0
01805.0

01

1805.0

1
2




b  

5

5

1
106439.1

00051.0
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0051.0

1 






k  

0
00051.0

01805.0

0051.0

1
2




k  

And filling these values into our Routh Array, we can determine whether the system is stable or not: 

 3
 

           1 0.0050 0 

 2
 

                               

0.1805 

5106439.1   0 

 1
 

b1=0.0051 b2=0 0 

 0
 

k1=
5106439.1   

k2= 0 0 

Since all the first columns element contain the same sign, then by Routh-Hurwitz stability criteria the endemic 

equilibrium point is stable. Using Matlab we obtain the values of the Eigen value as follows. 

The roots of the equation is 
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>>a=[10.1805 0.0050
5106439.1  ]; 

>> f=roots (a) 1 -0.1453, 2 -0.0382, 3 0.0030 

All the roots dos not contain the same sign. Thus the EEP (0.3433, 0.0458, 0.5164) is unstable by Routh-Hurwitz 

stability criteria. 

 

4.2 Numerical simulation of the second age group model 

Consider the model given by equation (3.5.15)-(3.5.17) 

iihirisa
i

hhvh

h bm
dt

d 2

2211212222

2 )(   (i)

 isvsissisa
s

hhhhhhvh

h bm
dt

d

222222221222

2 1
1

  (ii) 

  iiica
di

vvh

v

vdt 222

2

21   (iii) 

 

4.5. The reproduction number of age group two(5-25 years old) 

We have that
vw

bcma
R

11

2

22

01
 , or 

vw

bmc
R a

11

2

2

01


 

15995.5
)0000502.00000000978.00035.0)(071.0(

)2.0)(48.0)(5.0()4.0( 2

01



 R  

Still the malaria transmission is present highly at this age level but less transmission than the first age group. 

 

Figure 5.2 graph of the basic reproduction number 
01

R  

From the above graph we can observe that if the Per capita death rate  
2

  increases then the reproduction number 

01
R  decreases. This means that when the Per capita death rate

2
 decrease then the reproduction number is 

0 5 10 15 20 25
0

5
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30

35

d1

R
O

1

graphy of R01

R01=(0.0077)/(0.071*d2+2.4959*10-4)

R01=
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increasing and the susceptible population increasing. And when the Per capita death rate  
2

  increases
01

R  

decreases that means when the when the Per capita death rate increase then the number of infected population 

decrease since individual in the infected class dies out. 

 

4.6. Local Stability analysis of DFE point of second age group 

Then the Jacobian matrix of the above matrix at DFE point (0, 1, 0) is given by  

 
























v
ca

bmavv

bmar

J






0

)(

0)(

0,1,0

2

21222

2122

(ii) 

The characteristic polynomial is given by 0
3
 IJ   

 0

0

)(

0)(

2

21222

2122














v
ca

bmavv

bmar

 

=

 
0

071.001920.0

0400.00015.00014.0

0400.000034.0













 

The corresponding characteristic equation is given by  

0
32

2

1

3
 aaa   

Where   

0759.0
1
a  , 0073.0

2
a , 4

3
104634.5 a  

0104634.50073.00759.0 423    

Now we apply the array of Routh-Hurwitz stability criteria. If all the sign of the first column have the same sign, 

thus all the roots have the negative real parts. This shows that the DFE point (0, 1, 0) is stable. Now to check 

stability we draw the following array: 

 

 3
 

           1 -0.0073 0 

 2
 

0.0759 5104634.5   0 

 1
 1

b  
2

b  0 

 0
 1

k  
3

k  0 

And we can calculate out all the coefficients:  

5

51
107101.9

104634.50759.0

0073.01

0759.0

1 







b  

0
00759.0

01

0759.0

1
2




b  

4

5

4

51
104634.5

0107101.9

104634.50759.0

107101.9

1 















k

 

0
0107101.9

007591.0

107101.9

1
553








k  

And filling these values into our Routh Array, we can determine whether the system is stable or not: 
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 3
 

           1 -0.0073 0 

 2
 

0.00759 4104634.5   0 

 1
 

4107101.9   0 0 

 0
 -

4104634.5   0 0 

Since all the coefficients in the first column of the R-H table all have no the same sign and there is sign change, 

then the system is unstable. 

Since the first columns do not contain the same sign, then by Routh-Hurwitz stability criteria the DFE point is 

unstable. Using Matlab we obtain the values of the Eigen value as follows. 

The roots of the equation is 

0852.0
1 ,  0889.0

2
 ,  0722.0

3
  

 

4.7. Local Stability analysis of  EE point of second age group 

The endemic equilibrium solution of (3.5.15)-(3.5.17) can be found by setting the right hand side to zero and 

solving the nonlinear system to obtain: 

0)(
2

2211212222
 iihirisa hhvh

bm  (a)

  01
1 222222221222

 isvsissisa hhhhhhvh
bm  (b) 

  0
2 222 1  iiica vvhv  (c) 

Now from (c) we have that  

 vh

h

v

ia
ia

i
c

c




22

22

1
(i)  

Now substitute (i) in (a) and (b) solve for ih2*. 

 ih2* =0.02068 

Finally substitute the value of ih2*=-0.2068 in (a) we obtain 

   3587.0,0513.0,2068.0**2*,*2*,*2 ivshih . Then the Jacobian matrix of the model at any point 

 **2*,*2*,*2 ivshih  is given by 

 

 

  

































icaica
saviiasv

saiasr

isi

h vv

hhvh

hvh

vhh

bmbm

bmbm

J

22
01

**,*,

22

22212222222

222222122

222

2

 

Then the Jacobian matrix of the model at EE point    3587.0,0513.0,2068.0**2*,*2*,*2 ivshih  is 

given by 

 
     

       
  





























)2068.0(03587.01

0513.02068.03587.00513.0

0513.03587.00513.02)(

**,*,

22

2212222

222122

222

caca

bmavbmav

bmabmar

J isi vhh

 

 
























1107.001231.0

0021.00129.00014.0

0021.00143.00034.0

3587.0,0513.0,2068.0J  

The characteristic polynomial is given by 0
3
 IJ   
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 
0

1107.001231.0

0021.00129.00014.0

0021.0143.00034.0















 

The characteristic equation are given by 10
623

5762.50013.01270.0


   

Now we apply the array of Routh-Hurwitz stability criteria. If all the sign of the first column have the same sign, 

thus all the roots have the negative real parts. This shows that the EE point (0.2068, -0.0513, 0.3587) is stable. 

Now to check stability we draw the following array: 

 3
 

           1 -0.0013 0 

 2
 

0.1270 6105762.5   0 

 1
 1

b  
2

b  0 

 0
 1

k  
2

k  0 

 

And we can calculate out all the coefficients:  

0013.0
105762.51270.0

0013.01

1270.0

1
61








b  

0
01270.0

01

1270.0

1
2




b  

6

6

1
105762.5

00013.0

105762.50759.0

0013.0

1 











k  

0
00013.0

01270.0

0013.0

1
2





k  

And filling these values into our Routh Array, we can determine whether the system is stable or not: 

 3

 

           1 -0.0013 0 

 2

 

0.1270 6105762.5   0 

 1

 

-0.0013 0 0 

 0

 

6105762.5   0 0 

Since all the coefficients in the first column of the R-H table all have no the same sign and there is sign change, 

then the system is unstable. 

Since the first columns do not contain the same sign, then by Routh-Hurwitz stability criteria the DFE point is 

unstable. Using Matlab we obtain the values of the Eigen value as follows. 

The roots of the equation is 

1368.0
1

 , i0041.00049.0
2

 , i0041.00049.0
3

  

 

4.8. Numerical simulation of the third age group model 

To determine the reproduction number and stability of age group three we consider the following model 

dt

dih3

iiirisa hhhvh
bm

2

33223233233
)(    

  isisvsssisa
s

hhhhhhhvh

h bm
dt

d

333333222232333

3 1   
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dt

di v1

  iiica vvhv 333 31    

 

4.9. The reproduction number of third age group 

From the given model of age group model (3.5.18)-(3.5.20) we obtain the reproduction number: 

vm

bcm
R a

11

2

32

02
 , or 

vm

bmc
R a

11

2

3

02


 

16463.1
)0000502.070000000066.001.0)(071.0(

)2.0)(48.0)(5.0()2.0( 2

02



 R  

This indicate that the disease parasite in the community but less than the first age group. 

 

Figure 5.3 graph of the basic reproduction number 
02

R  

From this graph we can observe that similar approach
0

R   and phenomena observed. If the Per capita death rate  

3
  increases then the reproduction number 

0
R  decreases. This means that when the Per capita death rate

3


decrease then, the reproduction number is increasing and the susceptible population increasing. And when the Per 

capita death rate  
3

  increases
02

R  decreases that means when the when the Per capita death rate increase then the 

number of infected population decrease since individual in the infected class dies out. 

 

4.10. Stability analysis of  DFE point of third age group 

The Jacobian matrix of the dynamical system (3.5.18)-(3.5.20) at any point (ih2*,sh2*,iv2*) is  
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 

























vhv

hhvh

hvh

vhh

ciaica

bmsavibmiasv

bmsabmiair

isiJ






333

3332333333

33333233

33

0)1(

2)(

**,*,
 

Then the Jacobian matrix of the above matrix at DFE point (0,1,0) is given by  

 


























v
ca

bmavv

bmar

J






0

)(

0(

0,1,0

3

32333

3233

(ii) 

If we substitute the values of parameters in the given Jacobian matrix  

 






















 

071.000960.0

0200.0105052.8109999.7

0200.000101.0

0,1,0 44J  

The characteristic polynomial is given by 

 
0

071.000960.0

0200.0105020.8109999.7

0200.000101.0
44 













(iii) 

The corresponding characteristic polynomial is  

0
12

2

3

3  ddd  where 

667

3
100257.1106154.1100968.6  d  

0011.0100364.6105870..8101710.7 564

2
 d  

0819.0105020.8071.00101.0 4

1
 d  

Now we apply the array of Routh-Hurwitz stability criteria. If all the sign of the first column have the same sign, 

thus all the roots have the negative real parts. This shows that the DFE point (0, 1, 0) is stable. Now to check 

whether the DFE point (0,1,0) is stability we draw the following array 

 3
 

           1 0.0819 0 

 2
 

                               

-0.0011 

6

4
100257.1 a  0 

1
 b1

 b3
 0 

 0
 k1

 k3
 0 

 

Where  

0810.0
100257.10011.0

0819.01

0011.0

1
61








b  

0
00011.0

01

0011.0

1
2





b  

6

6

1
100257.1

00810.0

100257.10011.0

0810.0

1 






k  

0
00097.0

00661.0.

0810.0

1
2




k  

And final we substitute  
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 3
 

           1 0.0819 0 

 2
 

                               

-0.0011 

6

4
100257.1 a  0 

1
 

0.0810 0 0 

 0
 

6100257.1   0 0 

Where  

From this array, we can clearly see that all of the signs of the first column do not contain positive value, there are  

sign changes,then by Routh-Hurwitz stability criteria the dynamical system of the given model is unstable. 

Using Matlab we obtain  

Roots : 

0371.0
1
 , 0298.0

2
 , 

0009.0
3

  

4.11. Local Stability analysis of  EE point of third age group 

The endemic equilibrium solution of (3.5.18)-(3.5.20) can be found by setting the right hand side to zero and 

solving the nonlinear system to obtain: 

dt

dih3

iiirisa hhhvh
bm

2

33223233233
)(  

(i) 

  isisvsssisa
s

hhhhhhhvh

h bm
dt

d

333333222232333

3 1   
                        (ii) 

dt

di v1   iiica vvhv 333 31  
                                                                                                             (iii) 

Now from (c) we have that  

 vh

h

v

ia
ia

i
c

c




33

33                                                                                            (iv) 

 

Now substitute (iv) in (a) and (b) solve for ih3*.   ih3* =-0.1274 

Finally substitute the value of ih3*=-0.1274 in (a) we obtain 

   2853.0,2281.0,1274.0**,*,
33


vhh
isi . Then the Jacobian matrix of the model at any point 

 **,*,
33 vhh

isi  is given by 

 

























vhv

hhvh

hvh

vhh

ciaica

bmsavibmiasv

bmsabmiair

isiJ






*0*)1(

****

***2)(

**,*,

333

3332333333

33333233

33

 

The Jacobian matrix of the third age group at any point    2853.0,2281.0,1274.0**,*,
33


vhh
isi  is 

given as 

 






















 

0832.001234.0

0046.00049.0100000.8

0046.00057.00101.0

2281.0,2281.0,1274.0 4J                                     (*) 

The characteristic polynomial (*) is given by 





























0832.001234.0

0046.00049.0100000.8

0046.00057.00101.0
4

 

The usual characteristic equation of 0
3
 IJ  is given by 
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 
0

071.000960.0

0200.0105020.8109999.7

0200.000101.0
44 













 

= 0103362.1102985.70982.0 6423     

Now we apply the array of Routh-Hurwitz stability criteria. If all the sign of the first column have the same sign, 

thus all the roots have the negative real parts. This shows that the EE point (-0.1274,0.2281,-0.2853) is stable. 

Now to check whether the EEP(-0.1274,0.2281,-0.2853) is stability we draw the following array 

 3

 

           1 4102985.7   0 

 2

 

0.0982 6103362.1   0 

1

 
1

b  
2

b  0 

 0

 
1

k  
2

k  0 

And we can calculate out all the coefficients:  

4

6

4

1
101624.7

103362.10982.0

102985.71

0982.0

1 









b  

0
00982.0

01

0982.0

1
2




b  

6

4

6

41
103362.1

0101624.7

103362.10982.0

101624.7

1 















k  

 

0
0101624.7

00982.0

101624.7

1
442








k

 

And filling this values in the routh array we have 

 3

 

           1 4102985.7   0 

 2

 

0.0982 6103362.1   0 

1

 

4101624.7   0 0 

 0

 

6103362.1   0 0 

Since all the coefficients in the first column of the R-H table all have  the same sign and there is no sign change, 

then EEP (-0.1274,0.2281,-0.2853) is stable by Routh-Hurwitz stability criteria .Using Matlab we obtain the values 

of the Eigen value as follows.The roots of the equation is 

0903.0
1

 , 0049.0
2

 , 0030.0
3

  

 

5. DISCUSSION OF RESULT  

In this paper a mathematical model of the prevalence and transmission of malaria was studied. The standard SIR 

differential equation model was used to predict the transmission   and spread of malaria. By analyzing the model 

we found, the threshold parameter, Ro found which the basic reproduction number.From our analysis, we observe 

that the disease free equilibrium is stable when the threshold parameter is less than unity. i.e if 1
0
R , then the 

epidemic will not spread and when 1
0
R  the disease was parasite in the population and hence become endemic. 

The model has two equilibrium points namely the disease free equilibrium point and endemic equilibrium points. 

The existence and stability of disease free equilibrium point, endemic equilibrium points and sensitivity analysis 

of the model where preformed. We developed a model for the spread of malaria disease by human host vector 

population. The model divided three age classes children (age 0-5 years), youngest population (age 6-25), the 
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remaining age classes and three epidemiological classes susceptible, infected and recovered. The model 

incorporates death rate due to malaria infection, death rate due to natural, new born of population, infection contact 

rate depending on the local population densities. Births are assumed to be continuous throughout the year.  

The model is not considered the migration and emigration of the population in to compartment and from 

compartment. 
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