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Abstract
Mathematical models have been used to provide an explicit framework for understanding malaria transmission
dynamics in human population for over 100 years. The equilibrium points of the model are found and their stability

is investigated. By analyzing the model, a threshold parameter Ro was found which the basic reproductive

number is obtained. It is noted that when JQ <1 the disease will fail to spread and when R > 1 the disease will

persist in the population and become endemic. The stability of these two equilibrium points is controlled by the
basic reproductive number R o Which was determined using the next generation matrix approach. Our model

divides the human population into three compartments: pre-school (0-5 years) and youngest age group (6 -25 years
old) and the rest of the human population. The results of our mathematical analysis indicate that the disease-free

equilibrium is asymptotically stable and occurs whenever the basic reproduction number R 0 is less than unity or

R 0 < 1. For Ro > 1, the disease-free equilibrium point is unstable.

Keywords: Mathematical model, equilibrium point, Basic Reproductive number, Stability
DOI: 10.7176/MTM/9-5-04
Publication date:May 315 2019

INTRODUCTION

In order to reflect the age structure of a population affects the dynamics of disease transmission, we incorporate
age into the model, and assume that the infection rate depend on the age. We model observations to be able to
describe naturally occurring phenomena, to be able to predict future events and to be able to find optimal solutions
to problems we encounter.

That first malaria model was expanded in several ways, for example by introducing the effects of human age
[21], acquired immunity to malaria [17, 21] or genetic and special heterogeneity of parasite and host among these
age and immunity play an important role in endemic malaria regions. In order to describe age-structured models
for disease transmission we must first develop the theory of age-structured populations. In fact, the first models
for age-structured populations were designed for the study of disease transmission in such populations. In this
paper, we construct a new model to investigate the patterns of malaria transmission in the presence of age structure
model.

Disease Free Equilibrium point
Disease-free equilibrium points (DFE) are steady state solutions where there is no malaria in the human population

or Plasmodium parasite in the mosquito population. In absence of the disease, this implies thati,, I,,, I,,, I, =0

To determine the stability of the equilibrium points of the given model we evaluate the steady state of the given
system with following conditions.

> Disease free equilibrium points ,, 1,,, 1,5, I, = 0

1.1. Endemic disease equilibrium point

The equilibrium point at the endemic level has a strong influence in the behavior of the disease transmission for a
given community. The endemic equilibrium point is the final reachable situation, even though there could be
infinitely many different initial distributions of malaria in a community. Stability analysis is an important
mathematical tool that provides the conditions that guarantee the stability of an endemic equilibrium point. In the

presence of the disease, this implies that ,, I,,, I,,, I, # 0

To determine the stability of the equilibrium points of the given model we evaluate the steady state of the given
system with following conditions.

> Endemic equilibrium points, that is I,,, I,,, 5, i, # 0
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1.2. Basic concept of reproductive number RO
A quantity of central importance in epidemiology is the basic reproduction number denoted by RO . From time to

time, people also call it the basic reproductive rate or ratio, or the basic reproduction ratio. R, is defined as the

mean number of secondary infections produced when one infected individual is introduced into a host population
where everyone is susceptible.
As defined, a reproductive number less than one will cause the disease to die out; whereas, a reproductive number

greater than one classifies the disease as endemic [2]i.eif R0 <1, then on average an infected individual produces
less than one new infected individual over the course of its infectious period, and the infection cannot grow.
Conversely,if RO > 1, then each infected individual produces, on average, more than one new infection, and the

disease can invade the population.

1.3. Next generation matrices for compartmental epidemic model

The basic reproduction number RO is arguably the most important quantity in infectious disease epidemiology.

The next-generation matrix (NGM) is the natural basis for the definition and calculation of RO where finitely

many different categories of individuals are recognized.

In epidemiology, the next-generation matrix is a method used to derive the basicreproduction number, for a
compartmental model of the spread of infectious diseases. This method is given by Diekmannet al. (1990)[12]and
Driessche and Watmough (2002).

To calculate the basic reproduction number by using a next-generation matrix, the whole population is divided

into 7 compartments in which there are 7 < infected compartments. Let X,, i =1,2,3,4,..., m be the numbers

of infected individuals in the i” infected compartment at time 7.

1.4. Routh-Hurwitz Criteria
1.4.1. General Procedure
The Routh-Hurwitz (RH) Criterion is a general mathematical technique thatmay be used to determine how many
of the roots of a characteristic equationsuch as the one below have positive real parts, and are therefore
unstable1l.Routh-Hurwitiz is a method for determining whether a linear system is stable or not by examining the
location of the roots of the characteristic equation of the system.

The Routh-Hurwitz Criteria do not yield information about the absolute values of the eigenvalues, butabout
their signs. For checking for stability, it is sufficient to know the sign of the real parts.
The Consider the general form for a characteristic polynomial

n n—1 n—2 n
pD="+a A +Cln—zl +a. A +Htarta,

To determine whether the system stable or not, check the following conditions.

1. Two necessary but not sufficient conditions that all the roots have negative real parts are:
a) All the polynomial coefficients must have the same sign.

b) All the polynomial coefficients must be nonzero.

2. If this condition is satisfied then compute the Routh —Hurwitz array as follows:

ﬂn a,.a,.. A, A,

in_l al. a,s A,s A,
anz b1 bz b3 b4
2 ke ke k-
A

I
1
ol
1

Where the ajcoefficients come from the original polynomial. The other coefficients are computed in a fashion
similar to a determinant, by selecting appropriate values in the array. The pattern of values is illustrated via the
following cases:

The associated Routh Array is then:

22



Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Onling) DOI: 10.7176/MTM LL.i.l
Vol.9, No.5, 2019 NS'E
n
24 an an—z an_4

A A A, a,.s
A b, b. b;
A" ki k. k;
A

-l1la, a. -1
b] ’ = (an an—3 o an—Z an—l)
an,l an—l an73 anfl

-1la, a._ -1
b,=— ‘=—aa -a .a.)
anfl anfl an—S anfl

-1la, a, -1
b3 - ’ = (an an—7 - an76 anfl)
an—l an—l an—7 an—l

kl :3 abn_l CZH = __l(anflbz _blana)

_—lla. a.s :__1 _
kz_ b1 b1 b3 b1 (an—1b3 blan—S)

THE BASICS MODEL

These categories or compartments are represented by standard notation of S-E£-/-R after the pioneering work
of Kermack and McKendrick. There may be variations in the compartment structure depending on the type of
disease. For example, the Iclass of individuals may not recover at all and die; R can consist of individuals, who
recover with temporary or permanent immunity, thereby further subdividing the epidemiological compartments.
Using these notations, eight classes of compartmental models are possible - SI, SIS, SEI, SEIS, SIR, SIRS, SEIR
and SEIRS . For example, in an SEIRS model, a fraction of the susceptible (S) population gets exposed (£) to
infection, a part of which then becomes infectious (/). Some from the 7 class recover from the disease, and become
part of the R class with temporary immunity. When immunity is lost, they become susceptible to pathogen attack
again, and enter the S class. But in this paper we consider the standard SIR model where the individuals in the
population are divided into three compartments. The susceptible (S) which refers to the healthy individuals that
has not yet come into contact with malaria disease. The infective (7) are those who have become infected with
malaria disease and are able to transmit the disease and the recovered (R) are individuals who have recovered from
malaria disease. The proportions of the individuals in the compartment of the population, i.e. S,I and R, at time t
is denoted as S(t), I(t) and R(t) respectively.

pst
N

vl

Figure 3 Flow chart showing the SIR model
3 = The per-capita contact rate between any two individuals.

ﬁ = The proportion of infectious individuals in the population.

¥ = The per-capita rate of recovery once infectious.

y % I = The rate at which infectious individuals are removed from the infectious class.
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1
L xS x N = The rate at which susceptible individuals come across infectious individuals and then become

infectious.

3.1. Model description and formulation
We formulate a mathematical model for the transmission and spread of malaria in the human and mosquito
population. We formulate a model for the spread of malaria in the human and mosquito population with the total

population size at time t given is by is given by A/ " (t) and N\ ) (t) respectively. These are further
compartmentalized into epidemiological classes shown below. The vector component of the model does not
include immune class as mosquito never recover from infection, that is, their infective period ends with their death
due to their relatively short life-cycle. Thus the immune class in the mosquito population is negligible and death
occurs equally in all groups. Our model also excludes the immature mosquitoes since they do not participate in the
infection cycle and are, thus, in the waiting period, which limits the vector population growth. Our model has the
following variables and parameters:

S, (¢) the number of susceptible human hosts at time t, /,, (¢) the number of infected human hosts at time t, R, (¢)
the number of partially immune human hosts at time t, S, () the number of susceptible mosquito vectors at time

t, I (¢) the number of infected mosquito vectors at time t, Given that the total number of bites made by the

v

mosquitoes must equal the number of bites received by the humans, (N H,NV) = is a constant. Thus

H

N

)4

m= isnumber of female mosquitoes per human host.

H

v

Where m = is the female vector — host ratio, defined as the number of female mosquitoes perhuman host

H

[2].
Our model, illustrated in Figure 3,seeks to look into the dynamics of the Susceptible-Infectious-Recovered and
Susceptible Infectious (SIR-SI) malaria transmission, taking into account the three human classes, pre-school

children ( H, — aged five years below), age from six to 25 (1, 5—25yearsold ) and the rest of the humans (H3 -
older than twenty five years).
The human population N, is divided into nine compartments denoted by the following variables:

S 1 18 the number of susceptible humans of age five (5) years and below;

1,,, is the number of infectious humans of age five (5) years and below;

R, is the number of recovered humans (with temporary immunity) of age five (5) years and below;
S 172 18 the number of susceptible humans older than five (5) years and below 25 years old ;

1 172 1s the number of infectious humans older than five (5) years and below 25 years old;
R, . is the number of recovered humans (with temporary immunity) older than five (5) years and below 26 years
old

S 73 1 the number of susceptible humans of age greater than or equal to 25 years
1 73 18 the number of infectious humans of age greater than or equal to 25 years

R 15 18 the number of recovered humans of age greater than or equal to 25 years

In general, any member of the human population (pre-school or older) remains in the susceptible class S for a
certain period unless bitten and becomes infectious. Once in the infective class I, an individual may recover without
acquiring immunity and be transferred back into the susceptible class S, or stays in class I while infectious before
moving to the recovered class R with an acquired temporary immunity. Humans in the recovered class may lose
immunity and move back to the susceptible class.

Humans leave the population through natural death rate and through per-capita death rate due to infection.
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In particular, members of the susceptible pre-school children S, leave the population and move to infectious /,,,

or grow older to susceptible S, , . Infectious /,,, leave the population and transfer to the infectious /,,, ,orrecovered

H1>

R,,, . For the recovered R, population, members may grow to the recovered R, , . Similarly, for the rest of the
human population, susceptible .S, , members may move to the infectious class /,,, . Infectious /,,, members can
transfer to the recovered R,,, . Recovered R,,, members can lose immunity and assume that not move back to the

susceptible S, group.
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Figure 4: transmission pattern of SIR — SI with age-structured human population susceptible mosquitoes S , may
transfer into the infective class / , - Due to short life cycle of mosquitoes, the infective period ends with their death.
3.2. Model Equations

Applying the assumptions, definitions of variables and parameters and description of terms above, the differential

equations which describe the dynamics of malaria in the human and mosquito populations are formulated as shown
below:
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For first age group (0-5 years) we formulate:
dS aSm al Sy
Z NH ,LllSm +V1RH1 ngH1(351)
Ny

dlm Cl1bSH1]V

i = _,LIIIHl_rllHl_é‘llHl_gl]Hl (3.52)

Ny

dRHl —

dt _,LllRH1+rlRHl_glRHl_Vthl(3'5'3)
For second age group (5-25 years) we formulated

dShz SHZ[V
ILlZ n NH
%:M
dt NH
dRHZ _
dt _lngRH2+I/'l]HZ+glRHl_ngHz_Vth2(3.5.6)

For the remaining age group (5-25 years) we formulate

ds _ab Sl
== ILlS n : ]\]H3 V+V3RH3+82SH2(357)
H

dl,ﬁzm
dt NH
ARy _
a _1u3]H3+7'3[H3+(92]H2_V3Rh3(3.5.9)

dS
71/: /?,VNV—alcSV]Hl_achv]H2_a3CSV[H3

Ny N N
dl,

—= aS 1y a.cs. 1 a8
dt + + —M, S, 3510
N Ny N,
The total population size ]\]H1 , ]\/'H2 , ]\/'H3 and NV can be determined by
NH1:SH1+[H1+RH1:1
NHz:SH2+[H2+RH2:1
NH3:SH3+[H3+RH3:1

VRt &S &:8,354

_ﬂZIHZ_r2]H2_§21H2+glIHl_EZIHz (3.5.5)

_/’13IH3_r31H3_§31H3+821H2(3.5.8)

M, S, 3510

The total population of the first age group is derived by adding equations (3.5.1)-(3.5.3) to obtain

dNHl ;LHNyl_(/Lll ENSi~ (#1+€1+51)1H1_(#1+81)RH1

The total population of the second age group is derived by adding equations (3.5.4)-(3.5.6) to obtain

(luz 82)SH2 (ILl2+82+52)1H2_(#2+82)RH2+81(SH1+1H1+RH1)

dNHZ
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And the total population of the second age group is derived by adding equations (3.5.7)-(3.5.9) to obtain

%:_lqum_(:Ll3+53)[H3+52(SH2+1H2+RH2)_ILI3RH3

abS . . :
In the model, the term ——=* denotes the rate at which the human hosts S ., get infected by infected
H
. . a /'CSVIH . . . .
mosquitoes /, for i =1,2,3 and ———— refers to the rate at which the susceptible mosquitoes S are infected
H

by the infected human hosts /,, for j =1,2,3 .It is important to note that the rate of infection of human host S,
by infected vector / is dependent on the total number of humans N, available per infected vector [19] and[36].
The model assumes that all newborns are susceptible in both human and mosquito populations.

The per capita birth rate for humans and mosquito populations, ;LH and lv respectively, are both positive. The
human and mosquito populations experience per capita natural death rate £, , £, , 4, and £ respectively. Infected

humans die due to infection at per capita death rate 0, , 0, and 53 respectively. We can consider recovered human
individuals lose their immunity at per capital rates. To ensure that we have a stable positive human population, we
assume that A, >0, +0, + 0, + 1, +1,+ 11, .

Moreover, it is clear that the birth rate should be greater than the per capita rate & and &, of growing up.

Consider the interaction between the two populations shown in Figure 3. If a, is the average number of bites per

1= v

mosquito per unit time, then there are bites per human per time. For the pre-school humans /, , note that
H

there are Sy, susceptible humans and the proportion of the total number of bites that are possibly infectious to

humans is —— . Then the number of potentially infectious bites given to susceptible pre-school children is
v

alsS
——HL pites per time. However, only a fraction of these bites, namely b, successfully infect the pre-school

H
children. Hence we have:

(pre—schoolhumansinfected) _ albIVSHl

(unittime)
N,

The same formulation is constructed for the rest of the human group H,and /. Similarly for the mosquito
population, we have
(mosquitoes infected)  (a;clyisy) 4 (a,cly,Sy,) 4 a3CSylys
(unittime) TNy Ny Ny
To analyze the age-structured malaria model given by Equations (3.5.1)—~(3.5.11), we construct the fractional
quantities by scaling the population of each class by the total species population (We normalize our dynamical

S S S, . 1
equations by letting). The proportions for the system are S, =—4, S, =—2 § =5 j =1L,
H NH NH NH
l‘ _ [HZ l' _ IH3 r = RHI 7y = RHZ y. = RH3 s = SV v IV
h2 T sty T sfn — sThy — s Py — s, = andlv——
N, N N, N, N, , ,

H
Let 7 :1_(th _Shl)
T :1_(ih2 _Shz)

hs =1=()5—5,3)
Differentiating the scaling equations (3.5.1)-(3.5.11) and solving for the derivatives of the scaledvariables, we
obtain the following reduced system of nine DE
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di, _ 1 (dl, iy dN,
hl
dt N, d " dt

=abms,i —(r,+0,+A,)i,, + 0}, =0 (3.5.12)

dSm: 1 [dsm_s dNHlj
dt N, d " dt =A,(1=s,)—abms, i +v,(1-s,, =i, )+0s,i, =0(3.513)
di 1 (dl  dN _ca,(1-1i)i, —Ai =0(35.14)
)
di,, _ 1 (dlm_i dNsz
dt N\ dt " dt

° . . 2
=AM S0~ Pt 0= T~ ETI T Ol B5:19)

ds,, 1 (dsH2 dej

5
dt N, \ dt dt

:_ameShzivz_ngh1+52Sh2ih2_82Sh2+v2(1_Sh2_ih2)

diV2: 1 [dIVZ_Z' dNV2j =a,c(l—1i,)i, — 4], (3.5.17)
d N,\d 7 dt di,, _ 1 (dlm_l, dej
dt N, d " dt
. . . .2
= asbmSh3lv2_(r3+53+52)Zh3+521h2+531h3 (3.5.18)
ds,, 1 (dsm_s dej
dt N\ dt " dt

= b, -8t &St &St V=81 O S
di, 1 (d]vl_. del)

= 1
dt N,\d " dt

_ca,(1-i)i, —Ai =0(3520)

3.3. Existence and Stability of Equilibrium Points

3.3.1. Equilibrium points of the model

The equilibrium analysis helps to achieve this. Thus, we shall consider two equilibriums the diseases-free
equilibrium points and endemic equilibrium points. The points at which the differential equations of the system
(3.5.12)~(3.5.20) equal to zero are referred to as equilibrium points or steady-state solutions. It is important to note

that there are no trivial equilibrium points as long as the recruitment terms N,,,, N, , N s and N s N s N -

are not zero.

3.3.2. Existence of Disease-free Equilibrium Point

Disease-free equilibrium points are steady-state solutions where there is no malaria infection (no disease). We
define the “diseased” classes as the human or mosquito populations that are either infectious, or recovered, that is

by sl sl o, =0.
Thus, the disease-free equilibrium point, EO, for the malaria model (3.5.12)-(3.5.14)in the absence of disease
implies that i, =i =0.

From equation (3.5.12)- (3.5.14) at i,, =i, = 0 we have
ﬂh(l_Sh1)_+V1(1_Sh1)=o
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:Ah_ﬂhSm—i_\/ﬁ(l_Shl):O

_wnt ﬂ«h _
=>8n " 4 =1
Vi ﬂ«h
This implies that the disease free equilibrium point is given by (S Y ivl) = (1,0,0)

3.3.3.  Calculating Reproductive Number R for the first age group

To calculate R, we use the compartmental model approach presented by VandenDriessche and Watmough and
Diekmann et al [12].
OF (x ov,(x

o] [

6x], axj

F =

where E =be the rate of appearance of new infections in compartments i

V. =be the transfer of individuals out of compartments i by all other means

i

V. = be the rate transfer of individuals out of compartment i

i

+

v =be the rate transfer of individuals in to compartment i by all other means

i

X

, —be the disease free equilibrium

R, = is the largest eigenvalues of Matrix of partial derivatives
oF ) | [ onex)
ox, Ox,

To find reproduction number R, for the first age group will refer to the ODEs (3.5.12)-(3.5.14) and it is important

Then Fv*' =

to distinguish new infections from all other changes in population
Gains terms Loss terms

F =abmis, v, = (n+06,+4,)i, +51i}?1

Fz =0 v, = ﬂ‘h (1 - Shl) + albmivshl v (1 ST ihl) + 51S111i111
Fo=ac(l-i) v,=A4,,

Then the Jacobian matrix of F (gain terms) is given by

0 abmi, abms,,
F(i, *,s,%i *)=| 0 0 0
ca,(1-1i) 0 —aci,,
Then the Jacobian of F at equilibrium point £, = (s,,*,i, *, i *) = (1,0,0) is given by
0 O abms,
F(0,,0=l0 0 0
ca, 0 0

1

And the Jacobian matrix of V (loss terms) is given by

k 0 0
V(ihl*’shl*’iv*): k2 k3 k4
0 0 A

where

k =r+06+4,+20i

1"h1
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k2 = Vl + 5‘1Shl
k,=v,+ A, +0j, +abmi
k4 = albmshl
Then the Jacobian matrix of loss terms V at DFE (0, 1, 0) is given by
k., 0 0
v(0,1,0) = kzz k33 k44
0 0 A

Wherekn =H +51 +/1h’ kzz =V +51 k33 =V +/1h k44 = albm

The matrix Fv™' is called the next generation matrix of the epidemiological model.

a b c a b ¢ [k, 0 0] (1 00
Tofind v' letA=|d e f|.Then|d e f|x|k, k, k,|=|0 1 0
g h i g h i 10 0 24 0 0 1
akl1+bk22 bk33 bk44+chv 1 00
dk11+ek22 ek33 ekd44+ fhv|={0 1 O
gkl1+ek22 hk33 hk44+ihv 0 0 1
akl1+bk22 =1 .
= bk33=0 :bzc:Oanda:m
bkdd+chy =0
dk11+ek22=0 2 144 .
ek33:1 = _ ,f:_ and e = ——
k11k33 k33hv k33
ekdd+ fhv =0
gk11+7k22 =0 1
hk33=0 = h=g=0andi=—
hk a4 + iy =1 ’
e 0
k11
| —k22 1 k44
=V =
k11k33 k33 k33hv
0 0 €
hv
e 0
0 0 abms, k11

—k22 1 — k44

k11k33 k33 k33hv

00 1

0 0 —
hv

Hence Fv'=| 0 O 0 X

ca
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0 0 a,bms,,
A,
= 0 O 0
“4oo o0
k

11
Then the spectral radius (the dominant eigen value) Fv'is equal to R0 .
That is |J—ll| =0

a,bm
A

v

0 -4 0 [=0

ca
1 0 —)
k
which forms the characteristics equation
albemA 0

kA

117"

a’bem

-4 0

11

=>-1+

SR T LD
1%
albmce

kA

117"

=>A=00r A =

a'bmce
kll/lv

Therefore the dominant Eigen values of FV 'is ' =
2 2
a’bmce a;bmce
=R =- ,then R, = |——— (3.5.21)
kll/lv

11"
This is the required reproduction number for the first age group.

From (3.5.21) if alzbcm > k11hv then R, > 1, this means that the equilibrium point is unstable (i.e the malaria

disease is highly persistence to the population). If alzbcm < kl1hvthen R, <land the equilibrium point is

stable (i.e the disease is die out).

3.1.1  Equilibrium points and stability analysis

To determine the stability of the equilibrium points of the given model we evaluate the steady state of the given
system with following conditions.

» Disease free equilibrium points (in the absence of infection) l " ,i = 0

> Endemic equilibrium points, thatis 7, ,7 #0

3.3.4. Local Stability analysis (sh1%,ih1*,iv1*)=(0,1,0)
To determine the stability of the system, we will consider linearizing the systems of equations (3.5.12)— (3.5.14)
about the equilibrium points by taking the Jacobian of them.

The Jacobian matrix at any point (im *8,, ¥, *) is given by

-4, +r+0,)+20, —abmi * abmg, *
J(l'hl*,sh1 *i *): —-v,+0s, * - (A4, v, tabmi, - 06,) _albmshl*
alc(l - l'v) 0 —act, — /1v

For the disease-free equilibrium, we evaluate the Jacobian matrix at the equilibrium points
(ih1 *8,, ¥, *) =(0,1,0) and hence we obtain
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-4, +1+0) 0 a,bm
J(O,,0)=| —-v+4, -(A,+v) —abm (3.5.22)
ac 0 -4,
The characteristic polynomial of(3.5.22) is
-4, +r+6)-4 0 a,bm
J(0,1,0)= —v, +0, —(AA4v)—A  —abm [(3.523)
a.c 0 -4, -2
Now applying ‘J -1 ]3‘ =0 on (ii) we have
-4, +1n+6)-1 0 a,bm
-V, +90, -A,+v)—-4 —abm|=0(3.524)
a.c 0 -4 -1

Solving for roots of the characteristic polynomial (with real coefficient) given in the Jacobian matrix leads to the
characteristic equation

A+l +kA+k =0(3525
Where kl, k2, and k3 are the coefficients given by the expressions:

ko=~ v v)a bem+ Sv A+ L At v A A At O A At A
o= 841+ LA - aibem+ 8 1+ rvi+ At St At LAt 1At Au A

1
| F Ot WA S AN 242
0

k,=v,+A +24,+0,+r,

Using Routh-Hurwitz criteria (Edelstein-Keshet 1988), the equilibrium is locally stable if the following conditions

are satisfied.
Theconditions are:

(i) k >0
(i) k >0
(iii) kk,—k >0

If these conditions are true, then all roots of the characteristic polynomial equation have negative real part, which
concludes that there is a stable equilibrium. To show the three condition (i),(ii) and (iii) let:

@) k>0

Clearly k, > 0 since all parameters are positive.

(i) k, >0

k,=0v A + AL +rvA +rA A +SAA + Av A —a’bem(A +v,)

h v

= (8 +r+2)A - afbcm)vl +(8, +1+A)AA —atbemi,

- (% — 1};1 +(8,+ 1+ A)AA —albemA,

0

{%4}{é4%
- (é —1}(/1,, +v,)
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Clearly the disease free equilibrium point is locally asymptotically stable if R02 <l.if R02 > 1 then, k3 < 0. Hence,

there is only one sign change in the sequence, k,, k, , k3 and so by Descartes rule of sign, there is one eigenvalue
with positive real part. This implies that the disease-free equilibrium point (0, /,0)is unstable.

= k, >OifR02<1 . k, <0 R} >1
(iii) kk,—k, >0

= (gt G om0 50 A 20, weh 2 ) -
((é _lj(ﬂ“h + vl)

Hence the DFE point (0, 1, 0) are unstable by Routh-Hurwitz stability criteria.

Butif R, <1 the DFE point(0, 1, 0) are stable.

3.3.5. Existence and uniqueness of endemic equilibrium (ih1**,sh1**,iv1*%*)

Here, the condition for the existence and uniqueness of the endemic equilibrium of model system Eq. (3.5.12)-

(3.5.14) is determined. Let X* = (ih1*, sh1*, ivl1*) be the endemic equilibrium. To find the endemic equilibrium,
we equate all equations in model system Eq. (3.5.12)-(3.5.14) to zero and rewrite it as follows:

. ] 2
albmShllv_(V1+51+Zh)lh1+51lh1 =0
/?vh(l_Shl)_albmshliv+vl(1_sh1_ih1)+515h1ih1 =0

Ca1(1 - ivl)ihl - ﬂ«vivl =0
In the presence of infection (ihl,ivl # 0), the mathematical model (3.5.12)-(3.5.14) has a unique endemic

equilibrium given by X* = (ih1*, sh1*, ivl*) which are determined from the system as follows. The associated
Jacobian matrix is obtained as:

nd

-4, +1+0,)+25, —abmi, abmg
J(ihl »Si ’l'v)z -Vt 513111 - (/1;1""‘}1 + albmiv - 511'111) - albm S
ac(l—i) 0 —aci, — A,
Then the Jacobian matrix of above matrix at EEP (i, *,s, *i_ *)is given by
-4, +1n+0)+200, * —abmi * abmg *
J(ihl*VShl * L, *) = -Vt 51Sm * - (/lh+vl + albmiv * _é‘ll‘hl*) - albm S *
ac(l—i*) 0 —aci, *=4,
Obtaining the eigenvalues as usual from of the formula |J (H *— Al ] =0
-4, +1+0,)+20i, -4 —abmi * abmg *
= -v,+0s, * - (A v, +abmi, - 6i,)-A  —abmg * |=0
ac(1-i) 0 —aci, —A -4

Since the model is not expressed explicitly then we use Matlab or Mathematica and the results discussed in chapter
four:

3.3.6. Calculating Reproductive Number R)1 for the second age group

To calculate the reproductive number of age group two we consider equation
(3.5.15)-(3.5.17).

. . . 2 .
azbmShZZv_(r2+52_gl)lh2_811h1+521h2 =0()
_azbmShzivz_glshl+52Shzihz_82Sh2+vz(1_sh2_ih2)= 0 (i)
Caz(l_ivzyhz_ivl‘vz = 0(111)
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In the absence of infection (ih2=iv2=0) equation (i)-(iii) becomes
15, 18— 5,,)=0
= E&15, - siale 1)1, =0
_&ESutw
Wt &
&tV

Wt &
To find reproduction number R for the second age group will refer to the ODEs (3.5.15)-(3.5.17) it is important

= S

to distinguish new infections from all other changes in population.
Gains terms
F =a,bmi, F,=0F= ca,(1-14,)i,,
Loss terms
— _ . a2 _ .
Vi = (1”2 + 52 gl)lhz + 511/12 &l

v, =a,bms, i +v,(1-s,,—1i,)+ 0,80, + &S, +&S

h2%h2 17 h2
v, = AL,
Then the Jacobian matrix of F (gain terms) is given by
0 a,bmi, a,bms,,
F(i),58,0) = 0 0 0
a,c(1-i) 0 —a,ci,

Then the Jacobian of F at equilibrium point [’ = (ihz*’ShZ*’iv2 *)= (0,1,0) is given by

0 0 abm
F(0,,0=l 0 0 0
ca, 0 0

2
And the Jacobian matrix of v (loss terms) is given by

w 0 0
v(ihZ’ShZ’iv) = WZ W3 W4
0 0 4

where W, =0, +1, — &, +20,i,,
W2 = v2 + 52Sh2
w3 =a,bmi +v,+0,i,
w, = a,bms,,
Then theJacobian matrix of loss terms v at DFE (0, 1, 0) is given by

w, 0 0
V(O,I,O) =W, Wy Wy
0o 0 A

Where: w, =0, + 71, =€ g W,, =V, +52’ W, =v,+& w, =a,bm

The matrix F'v™'is called the next generation matrix of the epidemiological model.
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a b ¢

Tofind v' letA=|d e f |.Thenvxv'=]

g h i
a b ¢ _W11 0 0 1 0 O
=|d e [|X Wy Wiz Wi |~ 0 10
g h i 0 0 ﬂ‘v 0 0 1
awll+bw22 bw33 bwdd+chy 1 0 O
=|dwll+ew22 ew33 ewdd+ fhv|=|0 1 O
gwll+hw22 hw33  hwdd +ihv 0 0 1

awll+bw22 =1
= bw33=0 Zb:c:()anda:L

wll
bwadd +chv=0
awll+ek22=0
ew33 =1 =d= —w22 ,f:_W44ande=—1
wl 1w33 w33hv w33
ewdd + fhv =0
gwll+hw22 =0
hw33=0 :h:g:oand,-=hL
hwdd + ihy =1 v
Ly 0
wll
Lo —w22 1 —w44
=V =
wllw33 w33 w33hv
0 0 L
hv
0O o b % 0 0
aZ mShZ w.
- w22 1 — w44
Hence Fv'=| 0 0 0 X w W
0 0 wl w33 w33 w33hv
ca, 0 0 i
hv
bm
o o @77
hv
= 0 0 0
Caz O O

wll
Then the spectral radius (the dominant Eigen value) Fv' is equal to RO .
That is |J—/U| =0

35



Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) DOTI: 10.7176/MTM gy
Vol.9, No.5, 2019 IISTE
a,bm
-4 0 Z
A,
=0 -4 0 |=0
ca
2 0 -2
Wll
2
a.bcm
=-L+2—1=0
Wll v
2
a:bem
_ _ﬂ(ﬂz__z j:o
Wll v
2 2
azbem azbem
= A=00r A =2 = :
M}ll/lv (52 +rn—é& )ﬂ’v
, . L a:bcm
Therefore the dominant Eigen values of FV™ is L=
(62 +rn—¢& )ﬂ“v
2 2
a’bem a’bem
= R, =— ,then R, = = (*)
wl 1Ay wl 1y

3.3.7. Local Stability analysis (ih2*,sh2*,iv2*) = (0,1,0)

To determine the stability of the system, we will consider linearizing the systems of equations (3.5.14)— (3.5.17)
about the equilibrium points by taking the Jacobian of them.

The Jacobian matrix at any point (ih2*,sh2*iv2*) is given by

J(i;z’S;:z’i:):
- (r2 +0,— 51)"' 20,i,, a,bmi, a,bmsS,,
-v,+0,S,, —a,bmi +0,i,,—& —-v, —abms,,
azc(l - l.v) 0 —a,Cly, — ﬂ“v

Then the Jacobian matrix of the above matrix at DFE point (0,1,0) is given by

- (rz +0, — 6‘1) 0 a,bm

J01,0)=| -v,+8, —&-v, —abm|(i
a,c 0 -1
Now applying ‘J - /1[3‘ =0
—(rz+52—51)—ﬂ 0 a,bm
= -v,+0, —-&—-v,—A —abm |(ii)
a,c 0 -1 -1

The corresponding characteristic equation of (iii) is
A+bl +bA+b, =0
Where b1, b2, and b3 are the coefficients given by the expressions:
b, =06, +rv,A + & A +aibem(v, + €2)+ el +O0v, A +EV,A

bzz(é;%—Jj+ﬁg—gf+gk3+bg+v)&

b=v,+r,+4 +9,

Using Routh-Hurwitz criteria (Edelstein-Keshet 1988), the equilibrium is locally stable if the following conditions
are satisfied. If these conditions are true, then all roots of the characteristic polynomial equation have negative real

part, which concludes that there is a stable equilibrium.
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The conditions are:

@@ b >0

(i1) b,>0and

(iii) bb, —b, > 0 must hold.

To show (i), (ii), and (iii) we use

@) b >0

Clearly b, > 0 since all parameters are positive.

(if) b, >0
b=9, 81/1#rzvzxt—gllev—a%bcm(vﬁglﬁrz51/1‘,+52 EA—EVA
= (52 tr,— gl)mﬂv—a%bcmm—a%bcm gl+7'2 (91/1v+ 52 (91/1v_ (912 /1v

= ((52+rz—gl)ﬂv—a%bcm)V2—a%bcm51+7'26‘1/1V+5281/1v_812ﬂw
=(r, + 6, — & )Av, —a’bemv, + (5, + 1, — & )A &, — a’beme,

= LZ -1, + (52 +r—¢ )ﬂvgl —albcme,
ROI

(L w(%_l}%
ROl ROI
1

= F_l (‘91 +V2)

Clearly we see that the disease free equilibrium point is locally asymptotically stable if R, <1.If R} > 1then

b3 < 0 . Hence, there is only one sign change in the sequence, b, .,b, ,b3 and so by Descartes rule of sign, there
is one eigenvalue with positive real part. This implies that the disease-free equilibrium point (0,7,0) is unstable.

(i.e Since the second condition failed then the DFE point unstable). Finally, we show thatbb, —b, >0 . The

expression for b, is

V.
b, = (RO&V —1j+ (0, —& +r)e +(r,+v,)A

(iii) bb, —b, >0

2
Rolﬂv 01
3.3.8. Calculating Reproductive Number RO2 for the third age group

diss _ ,
dt a3bmSh31v2_(r3+53+82)Zh3+gzlh2+531113

dSh3

dt =081 28T E28m T E28n +V3(1 Y _lh3)+53sh3lh3
di AN .
d_; =ca,(1-i,)i,, — A4,
To determine the reproduction number it is important to distinguish new infections from all other changes in
population.Forming the matrices for F and V at the disease free
equilibrium of the form E0=(ih3*,sh3*,iv*)= (0, 1, 0,) such that there is no infection in the population,

(( & —1j+(52—gl+r2)gl+(rz+v2)ﬁv)(rz+v2+/1V+62) —(R%—lj(gﬁvz)
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Gains terms

F.= asbmSh3iv3 F,=0F,= Ca3(1 _iv3)ih3
Loss terms

. o2 . 2
\ 20 (r3+53+g2)lh3+5llh2+(92lh2+53lh3
V2:aSbmShSiv3+V3(1_Sh3_ih3)+53Sh3ih3+g2sh3+g2sh2
v3 = ﬂ-‘vi\ﬁ
Then the Jacobian matrix of F (gain terms) is given by

0 a,bmi
F(ih3’sh3’iv3): O O
ca,(1-1i,) 0

And the Jacobian matrix of F (loss terms) is given by

m 0 0
;ok kiok)—
V(lh} ’ShS lv )_ mz m3 m4
0 0 4
Where

m =0,+r+¢,+20,
le = v} + 53Sh3
m, =&, +v,+abmi + 35,

m, = a,bms, ,

Then the Jacobian matrix at DFE point of (0,1,0) is given by

m, 0 0
V(O,I,O) =|\m, m; my,
0 0 A
Where
mll - 53 + 1”3 + 52
m, =v, +0,
mB = 82 +V3
ml4 = 3bm
a b c
Nowto find V' letv'=|d e f|. Then vXVv
g h i
a b c m, 0 0
=>|d e f|x|m, m

g h i) |0 0 A

am, +bm,, bm, bm,+cA 1 0
= | dm, +em, em, em,+fA |=|0 1
gm, +hm,, hm, hm,+il 0 0
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am, +bm, =1

=0 =b=c=0 and azL

bm,,
b, +cA. =0 M
dm, +em,, =0
em,=1 =d= — M ="M and e=—
em44 +f2,v — O mllm22 m33/1v m33
gm,, +hm,, =0 .
hm,=0 =h=g=0 andiz;
hm,, +iA, =1 '
1 0 0
mll
— | — Wn L my,
m11m33 m33 m33ﬂv
0 0 1
4,
1 0 0
0 0 abms, m,
Hence Fv'' =] 0 0 0 x| — W 1 —m;
mm,  m,  MmyA
ca3 O O 1177733 33 3;
0 0 —
4,
0 0 a,bm
A,
=0 0 O
%G o9 o
m

Then the spectral radius (the dominant eigen value) Fv™' is equal to R,.

Obtaining the eigenvalues as usual form of the formu1a|J —-Al | =0

i 0 a,bm
ﬂ/\)
=0 -4 0 (=0
‘0 3
:>—/13+a3bcm/1:0
mllﬂ’v
2
_/{;tz_cgbcmjzo
mllﬂ’v
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2
a;bcm
2
= A=0o0r A = .
mllﬂ'v
. _ L. aibem
Therefore the dominant Eigen values of FV™ is A=
mllﬂ'v
2 2
a;bem a;bem
=R, = ,then R, = |
mll v mlllv

2

Clearly if a;bcm>m, A , then the reproduction number is R}, >1 and the disease is highly affect the

community. If a’bcm < m, A then the reproduction number is R> < 1 and the malaria disease is die out. In the
y 3 1% p 02

context of epidemiology modeling, it is generally known that if R0 <1, then the disease free equilibrium is

locally asymptotically stable and the disease will be eradicated from the community.

3.4. Local Stability analysis of DFE point (ih3*,sh3*,iv*) = (0,1,0)
To determine the stability of the system, we will consider linearizing the systems of equations (3.5.18)— (3.5.20)
about the equilibrium points by taking the Jacobian of them.
The Jacobian matrix at any point (ih3*,sh3*,iv3*) is given by
J(ih3*’sh3*’iv >l<) =

— (r3 +0,+¢, )+ 26,0, a,bmi, a,bms,,
-V, +0,5,, —abmi +6i,,—-v,—¢&, —abms,
ca,(1-1)) 0 —caji,—A,
Then the Jacobian matrix of the above matrix at DFE point (0,1,0) is given by
—(r3 + 0, +52) 0 a,bm
J01,0)=| —-v,+8,  —(v+e) —abm|di
ca, 0 -4,
The corresponding characteristic polynomial is
—(7"3 +53+82)—ﬂ, 0 a,bm
—V, +6, —(v,+¢,)-4  —abm|=04dii
ca, 0 -1, -2

The corresponding characteristic equation (iii) is given by
A+dl+dA+d, =0
Where d1, d2 and d3 are the coefficients given by the expressions:
d, =—aibcme, —albemv, + S, A + ;4 + v A +re A + 06,4 +v,.E,4

1 )
d, :( ——ll+ev, +é& +ne, +rv, + Ay, +0.6, + A&, + O,
02
d=v,+1 +0,+r,+2¢,
Using Routh-Hurwitz criteria (Edelstein-Keshet 1988), the equilibrium is locally stable if the following
conditions are satisfied. If these conditions are true, then all roots of the characteristic polynomial equation have

negative real part, which concludes that there is a stable equilibrium.
The three conditions are:

(@) d,>0
@) d,>0
(iii) d,d, —d, > 0 must hold.

To show (i), (ii), and (iii) we use
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(i) d =v,+A +0,+r,+2¢,
Clearly d, > 0 since all parameters have positive values. Now to check the second condition we check for
d,>0

— 2 2 2
d, =—-a;bcme, —a;bcmv, + Ov,A + ;A +rv A +red + 0.6, +v.ed

2
=((82+’/'3+53)ﬂv _ajbcm)% +822’V +r3gzﬂ" +53 gzﬂ" _ajbcmgz

1
= (—2 - ljv3 +e A, +nel + 0.6 —albeme,

02

= (RLQ - 1};3 +(&,+ 1, +9,)Ae, —asbeme,

02

= LZ —1{v, +((&, + 1, + 6,)A, —aibcm)e,
ROZ
= L—l v, + L—1 g,
R, R,
1
= (R—Ozz—ljv3 + 6'2)

So we have seen that the disease free equilibrium point is locally asymptotically stable if R, <1.IfR;, >1,we

can see that d3 < 0 . Hence, there is only one sign change in the sequence, d,d,, d3 and so by Descartes rule

of sign, there is one eigenvalue with positive real part. This implies that the disease-free equilibrium point (0,1,0)
is unstable. (i.e Since the second condition failed then the DFE point unstable)

Finally, we show that dld2 - d3 > () . The expression for d2 is
1 »

d,=|——1|+&v,+& +ne +rv, + Ay, + 0.6, + L&, + 0,
02

Hence we get

dd,—d, =

1
[ v+A+0,+r+2s 14 (—2 —l|+ev,+e +ne,+rv,+Av,+0,6 + A&, +0y, 1*

02
1
_(R_Oé_ 1]\23 + 82)

Thus the third condition d,d, —d, > 0 also satisfied if and only if R;, <1.1fR;, > 1 thend,d, —d, < 0.

3.4.1. Local Stability analysis of endemic equilibrium points for the age group three
The endemic equilibrium state is the state where the disease cannot be totally eradicated but remains in the
population.

For the disease to persist in the population, the susceptible class, the Infectious class and the Recovered Class

must not be zero at equilibrium state (i.ei,,,7, # 0).

In other words, if E, is the endemic equilibrium state, then in (i.e. equilibrium where the infected components

of the age-structured model (3.5.18) — (3.5.20) are non-zero or where the disease persist in the population (all state
variables are positive) will be derived. When the disease free equilibrium point is unstable, then there exists an
endemic equilibrium point

The endemic equilibrium solution of (3.5.18)-(3.5.20) can be found by setting the right hand side to zero and
solving the nonlinear system to obtain
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dihS _

= . . . 2
dt a3bmSh3lv2_(r3+53+82)lh3+821h2+53lh3(*)

dSh3 . ) )

dt ~ _aSbmSh31v3_82Sh3+82Sh2+gZShZ+V3(1_Sh3_lh3)+§3sh3lh3 (%)
divl .

dt :Ca3(1_lV3)lh3_ﬂ’VlV3 )

a,ci,,

Now from (***) we have that {, = ————(i)
aci, + 1
Substitute (i) in (*) and (**)solve for ih3*.
*

Then the Jacobian matrix of age group one model at endemic steady state (i " * s ol *) given by:

J(ih3*’S * iv >l<):

h3
- (r3 +0,+¢, )+ 26,0, a,bmi, a,bms,,
-v,+0,S,, —abmi 46, —-v,—¢&, —abms,
ca,(1-1)) 0 —caji,—A,

Then see the EEP of stability for this model in chapter four.

NUMERICAL SIMULATION
We present numerical simulations using Matlab to illustrate the transmission of malaria disease for the three age
group described above. The parameter values are given in Table 2.

4.1. Numerical simulation of the first age group model
Consider the model given by equation (3.5.12)-(3.5.14)

% = abms i, = (1, + 6, + 4,)i,, + 5i, (2)
&:l(l—s )—abms, i +v,(1-s, —i,)+0,s,i, (b)
dt h hl 1%y 1 hl hl 17 h1%h1

dl; = cal(l - iv)ihl - 2'vl.v (C)

4.2. Reproduction number of age group one

The reproduction number measures the average number of new infected population by a single infected population.
Since we have shown an explicit expression for R0, we can analytically evaluate its sensitivity to the different
parameter values.

We can also numerically evaluate the sensitivity of the endemic equilibrium to the parameter values, as this
will allow us to determine the relative importance to the age-structured malaria transmission and prevalence.

2 2
:_a, bcm _la bmc

R, or R, =4|="——
k11hv k11hv
R - (0.46)*(0.5)(0.48)(0.2)
’ (0.071)(0.00012 +0.0014 + 0.00000214)

Since R, > 1, the prevalence of malaria disease will result in an epidemic. This is due to the fact that the rate of

=9.6944 > 1

transmission is greater than the recovery rate.
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Figure 5.1 graph of the basic reproduction number R,

From this graph we can observe that if the Per capita death rate O, increases and ﬁh ,7; is constant then the

reproduction number R0 decreases. This means that when the Per capita death rate §, decrease then the

reproduction number is increasing and the susceptible population increasing. And when the Per capita death rate

0, increases R decreases that means when the when the Per capita death rate increase then the number of infected

population decrease since individual in the infected class dies out. Similarly if ﬂ' h, o, are constant and 7,

increases, then the reproduction number R, decreases and as 7, decreases R, increases.

4.3. Stability analysis of DFE point of first age group
The Jacobian matrix of the given model at DFE point (0,sh1,0) is given as follows

_(514_7"1—'—/1},) 0 albmSm
J(O,Shl,O)z _V1+51Sh1 0 _a1bmSh1

ca, 0 - /Iv

And the Jacobian matrix at DFE point (0,1,0) is
—-0.0015 0 0.0460

J(0,1,0)=| —0.0083 —0.0084 —0.0460
—-0.2208 0 -0.071

The corresponding characteristic polynomial is ‘J -A] 3‘ =0

—-0.0015-1 0 0.0460
=| —0.0083 -0.0084—-4 —0.0460 [=0(*)
—-0.2208 0 -0.071-4
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The characteristic equation of (*) after calculation is given below

= 17+0.0809 ]°+0.01034+0.0013 =0
3 1 0.0103 0

2 0.0809 0.0013 0

b, b, 0
’ k1 kz 0

And we can calculate out all the coefficients:

N N NN

-1 1 0.0103
b = =-0.0058
' 0.0809(0.0809 0.0013
— 1 0
2 0.0809/0.0809 0
— 0.0809 0.0013
R =0.0013
' —0.0058|-0.0058 0
fo—L |00809 0
2" —~0.0058]-0.0058 0
And filling these values into our Routh Array, we can determine whether the system is stable or not:
23 1 0.0103 0
22 0.0809 0.0013 0
ﬂl -0.0058 0 0
/10 0.0013 0 0

Since the first columns do not contain the same sign, or the change of sign in the first column then by Routh-
Hurwitz stability criteria the DFE point (0,1,0) is unstable. Using Matlab we obtain the values of the Eigen value
as follows.

The roots of the equation is

A,=0.0111+0.1117
A,=0.0111-0.1117
A,=-0.1032

4.4. Local Stability analysis of EE point of first age group
The endemic equilibrium solution of (3.5.12)-(3.5.14) can be found by setting the right hand side to zero and
solving the nonlinear system to obtain

abms, i —(r.+ 06, +4,)i, +0i; =0(a)

A,(1=s,)—abms, i +v(l-s, —i,)+0s,i, =0(@b)
ca,(1-i)i, - Ai =0(c)
aci

Now from (c) we have that [ = 1—“/1 (d)Substitute (d) in (a) and (b) solve for ih1* using Matlab we obtain
act, +

17 "h1 v

ih1* = 0.3433

Therefore the endemic equilibrium points for the respective states are:
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(i, *s,*.i *)=(0.3433,0.04580.5164)
The Jacobian matrix of (3.5.2)-(3.5.14) at any endemic steady state (i * s, ¥ I *) is given by:

AN TR
ik * 7 ok)—
J(lhl ’Shl ’lv )_

- (’”1 + 51 + ﬂ“h) + 251ih1 - albmiv albmshl
-Vt 51Sm - (ﬂ“h + vl) - albmiv + 511.111 - albmsm
ca,(1-i) 0 —cai, —A,

The Jacobian matrix of this equilibrium point is evaluated at (0.9698,0.0107,0.7510) to obtain:
-0.0015 -0.0238 0.0021

J(0.9698,0.0107,0.7510) = | —0.0083 —0.0322 —0.0021

0.1068 0 —0.1468
The characteristic polynomial is given by
-0.0015-4  —-0.0238 0.0021
—-0.0083 -0.0322-4 -0.0021 |=0
0.1068 0 —0.1468 - 1

Solving for the roots of the polynomial in the Jacobian matrix leads to the characteristic equation:
A +0.180524 +0.00504 —1.6439x107° =0

Now constructing Routh-Hurwitz array to determine stability in the following ways

13 1 0.0050 0
2 —-1.6439x10° |0
ﬁ“ 0.1805
2 b, b, 0
2 k, k, 0
And we can calculate out all the coefficients:
P 00050 | _ o
' 0.1805(0.1805 —1.6439x10°|
h-—| 19
> 0.1805/0.1805 0
~1 [0.1805 —1.6439x10° .
= =-1.6439x10
0.0051(0.0051
-1 0.1805 O 0
> 0.0051/0.0051 0
And filling these values into our Routh Array, we can determine whether the system is stable or not:
Yy Yy
/13 1 0.0050 0
2 -1.6439x107 0
ﬂ' 0.1805
ﬂ,l b1=0.0051 b2=0 0
0 kl= k2=0 0
ﬂ’ -1.6439x107°

Since all the first columns element contain the same sign, then by Routh-Hurwitz stability criteria the endemic
equilibrium point is stable. Using Matlab we obtain the values of the Eigen value as follows.
The roots of the equation is
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>>a=[10.1805 0.0050 —1.6439 x 10~ ];
>> f=roots (a) 4, =-0.1453, A, =-0.0382, A, =0.0030

All the roots dos not contain the same sign. Thus the EEP (0.3433, 0.0458, 0.5164) is unstable by Routh-Hurwitz
stability criteria.

4.2 Numerical simulation of the second age group model
Consider the model given by equation (3.5.15)-(3.5.17)

dj : . : 2 .
dthz:azbmShzlv_(rz+52_51)lh2_511h1+521h2 (@)
dg : : c )
dthz :_azbmShzlvz_glshl+52Shzlh2_825h2+V2(1_Sh2_lh2)(“)
7 Caz(l_lv2)h2_/1vlvz(m)

4.5. The reproduction number of age group two(5-25 years old)

2
2 f bmc
We have that Rm2 = a,bem ,or R, = a.”™"
wl 1Ay wl 1Ay

2
R, = (0.4)2(0.5)(0.48)(0.2) 5500541
(0.071)(0.0035 + 0.0000000978 — 0.0000502)

Still the malaria transmission is present highly at this age level but less transmission than the first age group.

graphy of RO1
35 ‘

30+ RO1=
\‘ d2=

254

R01=(0.0077)/(0.071*d2+2.4959*1074)
20

RO1

15|

10} |

O L | |

10 15 20
d1

25

Figure 5.2 graph of the basic reproduction number R,

From the above graph we can observe that if the Per capita death rate O, increases then the reproduction number

R,, decreases. This means that when the Per capita death rate 0, decrease then the reproduction number is

46



Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) DOI: 10.7176/MTM L%i.l
Vol.9, No.5, 2019 NS'E

increasing and the susceptible population increasing. And when the Per capita death rate O, increases R,

decreases that means when the when the Per capita death rate increase then the number of infected population
decrease since individual in the infected class dies out.

4.6. Local Stability analysis of DFE point of second age group
Then the Jacobian matrix of the above matrix at DFE point (0, 1, 0) is given by

—-(rn+0,—-¢) 0 a,bm
J01,0)=| —v,+8,  —(v,+¢&) —abm i
ca, 0 -4, ]
The characteristic polynomial is given by |J - 3| =0
—(rn+0,—¢)—-4 0 a,bm
= -v,+9, -(v,+&)-4 —abm|=0
ca, 0 -1 -1
—-0.0034-1 0 0.0400
=/ -0.0014 -0.0015-4  —0.0400 |=0
0.1920 0 —(0.071+ 4

The corresponding characteristic equation is given by
3 2
A+rald+rar+a,=0
Where
a,=0.0759 | g,=-00073, g =-5.4634x10"
= 1 +0.07594 —0.007314 - 5.4634x10* =0

Now we apply the array of Routh-Hurwitz stability criteria. If all the sign of the first column have the same sign,
thus all the roots have the negative real parts. This shows that the DFE point (0, 1, 0) is stable. Now to check
stability we draw the following array:

13 1 -0.0073 0
PR 0.0759 —5.4634%10° 0
2 b, b, 0
AO k, k, 0
And we can calculate out all the coefficients:
-1 1 —0.0073
b= |=-9.7101x10°°
0.0759(0.0759 —-5.4634x107°
-1 1 0
b, = =0
0.0759(0.0759 0
i -1 0.0759 —-5.4634x10" 5 4634510~
R ——— = ). X
' -9.7101x107°|-9.7101x10°* 0
-1

L 0.07591 0
> _9.7101x10°|-9.7101x10° 0

And filling these values into our Routh Array, we can determine whether the system is stable or not:
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13 1 -0.0073 0
PE 0.00759 —5.4634x10* |0
2! ~9.7101x10* |0 0
2 -5.4634x10* |0 0

Since all the coefficients in the first column of the R-H table all have no the same sign and there is sign change,
then the system is unstable.

Since the first columns do not contain the same sign, then by Routh-Hurwitz stability criteria the DFE point is
unstable. Using Matlab we obtain the values of the Eigen value as follows.

The roots of the equation is

1,0.0852, ] =-0.0889, ] =-0.0722

4.7. Local Stability analysis of EE point of second age group
The endemic equilibrium solution of (3.5.15)-(3.5.17) can be found by setting the right hand side to zero and
solving the nonlinear system to obtain:

. . . .2
abm$,,0, =+ 0, &)l — &0+ 0,1, =0 (a)
—azbmShzivz_81Sh1+52Sh2ih2_82Sh2+v2(1—Sh2—ih2)= 0(@)

Ca2(1_iv2)ih2 - ﬂ*vl‘vZ = O(C)

A:Cl
a-Cint A,
Now substitute (i) in (a) and (b) solve for ih2*.
= ih2* =0.02068

Finally substitute the value of ih2*=-0.2068 in (a) we obtain
(ih2 *E Sh2** jv2* *) = (0.2068,—0.0513,0.3587 ) Then the Jacobian matrix of the model at any point

(ih2 ** Sh2** jv2 **) is given by

Now from (c) we have that j n=

(1)

I, 5,00.%)=
(45, g) 28,5, a.bmi,, a.bms,,
“V,T0.S, —a.bmi, v o.i.~&~v. —abmrs,
ca,li-i,) 0 ~cazipp—A.
Then the Jacobian matrix of the model at EE point (ih2 *Ek Sh2** jy2* *) = (0.2068,—0.0513,0.3587) is
given by
IG5
—(r,+6,—&)+25,(-0.0513) a,bm(0.3587) a,bm(-0.0513)
—v, +5,(~0.0513) —a,bm(0.3587)+5,(0.2068)— &, —v, —a,bm(-0.0513)
ca,(1-0.3587) 0 —¢a,(0.2068) — A

~0.0034 0.0143  0.0021
J(0.2068,-0.0513,0.3587)=| —0.0014 0.0129 —0.0021
0.1231 0 —-0.1107

The characteristic polynomial is given by ‘J -A] 3‘ =0
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—-0.0034-1 0.143 0.0021
=| —-0.0014 0.0129-4 -0.0021 |=0
0.1231 0 —(0.1107+ 4

The characteristic equation are given by /13 +0.1270 Az —-0.00134+5.5762x] 076

Now we apply the array of Routh-Hurwitz stability criteria. If all the sign of the first column have the same sign,
thus all the roots have the negative real parts. This shows that the EE point (0.2068, -0.0513, 0.3587) is stable.
Now to check stability we draw the following array:

23 1 -0.0013 0
22 0.1270 5.5762x10°° 0
ﬂl b, b, 0
20 k, k, 0
And we can calculate out all the coefficients:
-1 1 —-0.0013
b = | =-0.0013
0.1270(0.1270 —-5.5762x10°°
-1 1 0
b, = =0
0.1270(0.1270 0
~1 00759 -5.5762x10° .
k =——— =-5.5762x10
—-0.0013-0.0013 0
(-1 [01270 o
*-0.0013]-0.0013 0
And filling these values into our Routh Array, we can determine whether the system is stable or not:
23 1 -0.0013 0
/12 0.1270 —5.5762x10° 0
ﬂl -0.0013 0 0
io -5.5762x10° |0 0

Since all the coefficients in the first column of the R-H table all have no the same sign and there is sign change,
then the system is unstable.

Since the first columns do not contain the same sign, then by Routh-Hurwitz stability criteria the DFE point is
unstable. Using Matlab we obtain the values of the Eigen value as follows.

The roots of the equation is

A,=-0.1368, 4, =0.0049+0.0041i, 4, =0.0049-0.0041i

4.8. Numerical simulation of the third age group model
To determine the reproduction number and stability of age group three we consider the following model

di,s
. . . 2
dt = a3bmsh3lv2_(7"3+53+52)Zh3+821h2+531h3

dS . / ]
dth3 N _a3bmSh3lv3_(92Sh3+ngh2+gZShZ+V3(1_Sh3_lh3)+53sh3lh3
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di.
- ca3(1—iv3)i,,3—/1viv3

4.9. The reproduction number of third age group
From the given model of age group model (3.5.18)-(3.5.20) we obtain the reproduction number:

:_ Q. bcm R =
02 2 02
ml 1Ay
2
R, = (0.2)%(0.5)(0.48)(0.2) 64631
(0.071)(0.01+0.00000000667 + 0.0000502)
This indicate that the disease parasite in the community but less than the first age group.
graphy of R02
14
RO2=.. .
12 d3=LINE i
10! R02=(0.0096)/(0.0101+d3) i
8 L -
R02
6 L -
4 |
2 R
0 | | | | | | | | |

0 5 10 15 20 a3 30 35 40 45 50

Figure 5.3 graph of the basic reproduction number R,
From this graph we can observe that similar approach R0 and phenomena observed. If the Per capita death rate

0, increases then the reproduction number R, decreases. This means that when the Per capita death rate O,
decrease then, the reproduction number is increasing and the susceptible population increasing. And when the Per
capita death rate 53 increases RO2 decreases that means when the when the Per capita death rate increase then the

number of infected population decrease since individual in the infected class dies out.

4.10.  Stability analysis of DFE point of third age group
The Jacobian matrix of the dynamical system (3.5.18)-(3.5.20) at any point (ih2*,sh2*,iv2¥) is
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Ji,,*,5,,%,1, %)=
—(r+0,+¢&,)+20, a,bmi, a,bms,,
-V, + 9,5, —abmi +06i,—&,—-v, —abms,
ca,(1-1i) 0 —aci,, — A,
Then the Jacobian matrix of the above matrix at DFE point (0,1,0) is given by
[~ (r,+ 5, +¢,) 0 a,bm
J0,,0)=| —v,+8,  —(v+e&) —abm i
| a.c 0 -4,
If we substitute the values of parameters in the given Jacobian matrix
—-0.0101 0 0.0200
J(0,1,0)=| -7.9999x10* —8.5052x10"* —0.0200
0.0960 0 -0.071
The characte;istic polynomial is given by
-0.0101-4 0 0.0200
—7.9999x10* —-8.5020x10™"* -4 —0.0200 |=0 ii)
0.0960 0 —(0.071+ 2

The corresponding characteristic polynomial is
A +d LV +d,A+d =0where
d, =6.0968x107 —1.6154x10° =-1.0257x10°

d,=7.1710x10™" +8..5870 x 10~ + 6.0364 x 10~ = —0.0011
d, =0.0101+0.071+8.5020x10™* = 0.0819

Now we apply the array of Routh-Hurwitz stability criteria. If all the sign of the first column have the same sign,
thus all the roots have the negative real parts. This shows that the DFE point (0, 1, 0) is stable. Now to check
whether the DFE point (0,1,0) is stability we draw the following array

i 3 1 0.0819 0

2 _ - |0
i 0.0011 a.= 1.0257 x10

A b, b; 0
A ki k; 0

Where
-1 1 0.0819
h=——— 1=0.0810
—0.0011/=0.0011 —1.0257x10°
y o ! 1 o
2 _0.0011-0.0011 0
1 |-0.0011 —1.0257x10°¢ )
k= = _1.0257x10"°
0.0810 0.0810 0
P ~.0.0661 0
27 0.0810] 0.0097 o0

And final we substitute
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23 1 0.0819 0

R a.=-1.0257x10° |

-0.0011 4

21 0.0810 0 0

2 ~1.0257x10° |0 0
Where

From this array, we can clearly see that all of the signs of the first column do not contain positive value, there are
sign changes,then by Routh-Hurwitz stability criteria the dynamical system of the given model is unstable.

Using Matlab we obtain

Roots :

A= 00371, 2,=0.0298 J,=-0.0009
4.11. Local Stability analysis of EE point of third age group

The endemic equilibrium solution of (3.5.18)-(3.5.20) can be found by setting the right hand side to zero and
solving the nonlinear system to obtain:

di;

. . . .2
dt =P80~ (1T 05 £ Exlint Ol

ds, : : :
7:_a3bmSh3lv3_g2Sh3+82Sh2+ngh2+V3(1_Sh3_lh3)+53sh3lh3 (ii)
i
dlvl
dt ~Cds (1 lV3)lh3 Al (iii)
Now from (c) we have that :M (iv)
a:in* A,

Now substitute (iv) in (a) and (b) solve for ih3*. = ih3* =-0.1274
Finally substitute the value of ih3*=-0.1274 in (a) we obtain

(l'hS*,SM*,l' *) ( 0.1274,0.228],0.2853). Then the Jacobian matrix of the model at any point

* * * . .
(lh3 S, ,l )1sg1venby

J(lh3*’sh3 ’iv *)
—(n+0,+¢&,)+20,,,* a,bmi * a,bms, *
%
-V, +3,5,, —abmi *+0i *—&,—v, —abms, *
ca,(1-1%*) 0 —aci, * -4,

The Jacobian matrix of the third age group at any point {7 (,13 .8, 5,0 *) ( 0.1274,0.228 1,—0.2853) is

h3 2
given as

-0.0101  -0.0057 0.0046

J(—0.1274,0.2281,—0.2281): 8.0000x10™* —0.0049 —0.0046 (*)
0.1234 0 —0.0832
The characteristic polynomial (*) is given by
-0.0101-4 —0.0057 0.0046
8.0000x10™* —0.0049-4  —0.0046
0.1234 0 -0.0832-41

The usual characteristic equation of |J - 3| =0 is given by
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~0.0101- 2 0 0.0200
~7.9999x10* —8.5020x10*—-4  —0.0200 |=0
0.0960 0 —(0.071+ 4

=2 +0.09824 +7.2985x10* 4 +1.3362x10° =0

Now we apply the array of Routh-Hurwitz stability criteria. If all the sign of the first column have the same sign,
thus all the roots have the negative real parts. This shows that the EE point (-0.1274,0.2281,-0.2853) is stable.
Now to check whether the EEP(-0.1274,0.2281,-0.2853) is stability we draw the following arra

23 1 7.2985x10™ 0
22 0.0982 1.3362x10°¢ 0
2 b, b, 0
2’ k, k, 0
And we can calculate out all the coefficients:
1 1 7.2985 %10~ i}
b = =7.1624x10"
0.098210.0982 1.3362x10°¢
U U
*0.0982/0.0982 0
-1 0.0982 1.3362x10°° .
k=———— =1.3362x10°°
7.1624x107*1(7.1624 x10™* 0

-1
ky=——r
7.1624x10

0.0982 0
7.1624x10™* 0

And filling this values in the routh array we have

23 1 7.2985x10™" 0
12 0.0982 1.3362x10° 0
11 7.1624x10™* 0 0
ﬂ" 1.3362x10°° 0 0

Since all the coefficients in the first column of the R-H table all have the same sign and there is no sign change,
then EEP (-0.1274,0.2281,-0.2853) is stable by Routh-Hurwitz stability criteria .Using Matlab we obtain the values
of the Eigen value as follows.The roots of the equation is

A, =-0.0903, 1 =-0.0049, ] =-0.0030
5. DISCUSSION OF RESULT

In this paper a mathematical model of the prevalence and transmission of malaria was studied. The standard SIR
differential equation model was used to predict the transmission and spread of malaria. By analyzing the model
we found, the threshold parameter, Ro found which the basic reproduction number.From our analysis, we observe

that the disease free equilibrium is stable when the threshold parameter is less than unity. i.e if R < 1, then the

epidemic will not spread and when RO > 1 the disease was parasite in the population and hence become endemic.

The model has two equilibrium points namely the disease free equilibrium point and endemic equilibrium points.
The existence and stability of disease free equilibrium point, endemic equilibrium points and sensitivity analysis
of the model where preformed. We developed a model for the spread of malaria disease by human host vector
population. The model divided three age classes children (age 0-5 years), youngest population (age 6-25), the
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remaining age classes and three epidemiological classes susceptible, infected and recovered. The model
incorporates death rate due to malaria infection, death rate due to natural, new born of population, infection contact
rate depending on the local population densities. Births are assumed to be continuous throughout the year.

The model is not considered the migration and emigration of the population in to compartment and from
compartment.
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