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1.1 INTRODUCTION: In numerical Analysis, Numerical Integration is a significant subfield and has wide 

variety of Algorithms for calculating different types of Integrals [1]. It has various Applications in the field of 

Physics and Engineering. To find area under a curve (shown below), To find velocity and to find surface are some 

applications. 

 

In the field of Mathematics, to achieve the high precision numerical integration formulas becomes one of the 

challenges [2]. The Newton-Cotes formulas are the most common numerical integration schemes [5]. It is assumed 

that the value of a function f(x) defined on [a, b] is known at equally spaced points xi, for i=0,1,2---, n, 
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where x0 = a and  

xn = b.  The general form for closed Newton cotes of degree n is stated as 

∫ 𝑓(𝑥)𝑑𝑥 ≈ ∑ 𝑤𝑖𝑓(𝑥𝑖)𝑛
𝑖=0

𝑏

𝑎
      …(1)                                              

Where there are (n+1) distinct points, such that a=x0<x1<∙∙∙xn=b, xi=x0+ih, i=0,1,2,∙∙∙n, and (n+1) weights 

w0,w1,∙∙∙wn , also h =
b−a

n
. These weights can be calculated by two ways. [ 9] 

 The first way is to interpolate f(x) at (n+1) points x0,x1,…xn, using the Lagrange polynomials and then integrating 

the foresaid polynomial to obtain 1.The second method is based on the precision of Quadrature formula. Select the 

values for wi so that the error of approximation in the Quadrature formula is zero, i-e 

𝐸𝑛[𝑓] = ∫ 𝑓(𝑥)𝑑𝑥 − ∑ 𝑤𝑖𝑓(𝑥𝑖) = 0𝑛
𝑖=0

𝑏

𝑎
     …(2) 

Where f(x)=xj, j=0,1,2∙∙∙n. 

An integration method of the form 1 is said to be of order P if it produces accurate results En[f]=0 for all 

polynomials of degree less than or equal to P. [10] 

Some of the closed Quadrature formula are derived depending on different values of n. 

For  n=1: Trapezoidal rule                 ∫ 𝑓(𝑥)𝑑𝑥 =
𝑏−𝑎

2
[𝑓(𝑎) + 𝑓(𝑏)] −

(𝑏−𝑎)3

12
𝑓"(𝜉)

𝑏

𝑎
, where 𝜉𝜖(𝑎, 𝑏)                                         

…(3) 

For n=2 :Simpson’s 1/3rd rule          ∫ 𝑓(𝑥)𝑑𝑥 =
𝑏−𝑎

6

𝑏

𝑎
[𝑓(𝑎) + 4𝑓 (

𝑎+𝑏

2
) + 𝑓(𝑏)] −

(𝑏−𝑎)5

2880
𝑓4(𝜉), where 𝜉𝜖(𝑎, 𝑏)                    

...( 4) 

It is known that the degree of precision is (n+1) for even values of n’s and n for odd values of n’s. [6] 

Several works have been carried out to improve the order of accuracy of the existing newton cotes rules. Dehghan, 

M., Masjed-Jamei, M. and Eslahchi, M.R [6,7,8] improved closed, open and semi-open newton cote’s formula by 

including the location of boundaries of the interval as two additional parameter and rescaling the original integral 

to fit the optimal boundary. Clarence O.E Burg [3] introduced a different approach by using first and higher order 

derivatives at the evaluation locations within the closed newton cote’s quadrature in order to increase the precision 

and order of accuracy. Clarence and Ezachiel[4] introduced derivative based midpoint quadrature rule for 

improvement of the existing formula.  Weijing Zhoe and Hongxing Li[17] improved the closed newton cote’s 

Quadrature formula by putting in the midpoint derivative. T.Ramchandra et al[11,12,13,14,15,16] used  the 

technique of Weijing and they applied this technique by using Geometric mean, harmonic mean, Heronian mean , 

centroidal mean, root mean square. 

The motivation of this research paper is to introduce new derivative-based closed cotes Rules for numerical 

integration which uses mean of arithmetic mean and geometric mean at derivative value. These schemes are 

discussed in section 1.1.1 and in section 1.1.2, the error terms for the proposed schemes are also derived. Lastly 

the numeric examples are solved to show the effectiveness of the proposed schemes in section 1.1.3. 

1.1.1 METHODOLOGY 

In this Section, A new formula is derived by using mean of arithmetic mean and geometric mean at the terminal 

points [a, b] in Newton cotes quadrature formula for the evaluation of a definite integral. 

➢ Closed Trapezoidal rule (n=1) using mean of arithmetic and geometric means is 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑏−𝑎

2
[𝑓(𝑎) + 𝑓(𝑏)] −

(𝑏−𝑎)3

12
𝑓"(

𝑎+2√𝑎𝑏+𝑏

4
)

𝑏

𝑎
           …(5) 

The precision of this method is 2. 

Proof: For f(x) = x2 
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The exact value of∫ 𝑥2𝑑𝑥 =
1

3
(𝑏3 − 𝑎3)

𝑏

𝑎
; 

By using (7), 
𝑏−𝑎

2
(𝑎2 + 𝑏2) −

2(𝑏−𝑎)3

12
=

1

3
(𝑏3 − 𝑎3). 

The solution is exact. Thus, the precision of the closed Trapezoidal rule with mean of A.M and G.M is 2 whereas 

the precision of the existing Trapezoidal rule (3) is 1 

➢ Closed Simpson’s 1/3rd rule (n=2) using mean of arithmetic and geometric means is 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑏−𝑎

6

𝑏

𝑎
[𝑓(𝑎) + 4𝑓 (

𝑎+𝑏

2
) + 𝑓(𝑏)] −

(𝑏−𝑎)5

2880
𝑓4(

𝑎+2√𝑎𝑏+𝑏

4
)        …(6) 

The precision of this method is 4. 

Proof: For f(x) = x4. 

The exact value of ∫ 𝑥4𝑑𝑥 =
1

5
(𝑏5 − 𝑎5)

𝑏

𝑎
; 

By using (8), 
𝑏−𝑎

6
[𝑎4 + 4 (

𝑎+𝑏

2
)

4

+ 𝑏4] −
24(𝑏−𝑎)5

2880
=

1

5
(𝑏5 − 𝑎5). 

It shows that the solution is exact. Thus, the precision of the closed Simpson’s 1/3rd rule with mean of arithmetic 

and geometric means is 4 whereas the precision of the existing Simpson’s 1/3rd rule (4) is 3. 

1.1.2 ERROR TERMS OF THE PROPOSED METHOD 

In this section, the error terms for the mean of arithmetic and geometric means derivative -based closed newton 

cotes quadrature rule is derived. The error terms can be calculated by different ways. Here error terms are obtained 

by using the difference between the quadrature formula for the monomial  
𝑥𝑝+1

𝑝+1
  and the exact result 

1

(𝑝+1)!
∫ 𝑥𝑝+1𝑑𝑥

𝑏

𝑎
 ,where p is the precision of the quadrature formula. 

➢ The error term for Trapezoidal rule (n=1) is E1[f] = −
(𝑏−𝑎)3

48
(√𝑏 − √𝑎)

2
𝑓3(𝜉)      …. (7)  

where 𝜉𝜖(a,b) 

Proof: Let f(x) = x3/3!, ∫ 𝑥3𝑑𝑥 =
1

4!
(𝑏4 − 𝑎4)

𝑏

𝑎
; 

Using 5, 
𝑏−𝑎

3!2
[𝑏3 + 𝑎3 − (𝑏 − 𝑎)2(

𝑎+2√𝑎𝑏+𝑏

4
)]  

 Therefore, 

1

4!
(𝑏4 − 𝑎4) −

𝑏−𝑎

3!2
[𝑏3 + 𝑎3 − (𝑏 − 𝑎)2 (

𝑎+2√𝑎𝑏+𝑏

4
) = −

(𝑏−𝑎)3

48
(√𝑏 − √𝑎)

2
  

➢ The error term for Simpson’s 1/3rd (n=2) is E2[f]= −
(𝑏−𝑎)5

11520
(√𝑏 − √𝑎)

2
𝑓5(𝜉)        …(8) 

where 𝜉𝜖(a,b) 

Proof: Let f(x) = x5/5!,  ∫ 𝑥5𝑑𝑥 =
1

720
(𝑏6 − 𝑎6)

𝑏

𝑎
; 

Using 6, 
𝑏−𝑎

5!.6
[𝑎5 + 𝑏5 + 4 (

𝑎+𝑏

2
)

5

−
(𝑏−𝑎)4

4
(

𝑎+2√𝑎𝑏+𝑏

4
)] 

Therefore, 
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1

6!
(𝑏6 − 𝑎6) −

𝑏−𝑎

5!.6
[𝑎5 + 𝑏5 + 4 (

𝑎+𝑏

2
)

5

−
(𝑏−𝑎)4

4
(

𝑎+2√𝑎𝑏+𝑏

4
)] = −

(𝑏−𝑎)5

11520
(√𝑏 − √𝑎)

2
   

1.1.3 Numerical Examples; 

In this section, some integrals are computed in oder to compare the effectiveness of Closed Newton Cotes formula 

and the proposed method.  

Example # 1:  ∫ 𝑒𝑥𝑑𝑥
2

0
= 6.389056 

(Zhao and Li 2013; T.Ramachandran et al 2016) 

Example # 2:  ∫ 𝑠𝑖𝑛𝑥𝑑𝑥 = 1.000000
𝜋/2

0
 

Example # 3: ∫ 𝑒−𝑥22

0
𝑑𝑥 = 0.8820813908 

(Burg 2012; Burg and Degny 2013) 

Example #4 ∫
𝒍𝒏(𝟏+𝒙)

𝟏+𝒙
𝑑𝑥 = 0.2402265070

𝟏

𝟎
 

Since the exact results for integral in example 3 is not available, this example is approximated to 10 significant 

digits as shown above.In table 1-4 examples (1-4) are solved by new scheme and compared with Existing for n=1 

case (Trapezoidal) respectively. In tables 5-8 the same examples (1-4) are solved and compared for n=2 case 

(Simpson’s 1/3rd) respectively. The Number of Iteration shows the Number of equally spaced sub-intervals for 

composite rules. In graphs the Absolute error are compared for case 1 and case 2 (Fig 1-4) for all the above 

examples. The Absolute error is defined as |𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|. 

 

 

 

 

  

Table 1 Trapezoidal Modified Trapezoidal 

Iterations Approximate value Error Approximate value Error 

N=1 8.389056 2.000000 7.289909 0.900853 

N=2 6.91281 0.523754 6.448014 0.058958 

N=3 6.623953 0.234897 6.417623 0.028567 

N=4 6.52161 0.132554 6.401012 0.011956 

N=5 6.474017 0.084961 6.39066 0.001604 

Table 2 Trapezoidal rule Modified Trapezoidal 

Iterations Approximate value Error Approximate value Error 

N=1 0.785398 0.214602 0.908998 0.091002 

N=2 0.948059 0.051941 0.992694 0.007306 

N=3 0.977049 0.022951 0.998389 0.001611 

N=4 0.987116 0.012884 0.999454 0.000546 

N=5 0.991762 0.008238 0.999765 0.000235 
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Table 3 Trapezoidal rule Modified Trapezoidal 

Iterations Approximate value Error Approximate value Error 

N=8 0.8817037913 3.775995× 10-4 0.8822541954 1.728046× 10-4 

N=16 0.8819862453 9.51455× 10-5 0.8820911872 9.7964×10-6 

N=32 0.8820575578 2.3833×10-5 0.8820819715 5.807×10-7 

N=64 0.8820754296 5.9612×10-6 0.8820814261 3.53×10-8 

N=128 0.8820799003 1.4905×10-6 0.8820813929 2.1×10-9 

Table 4 Trapezoidal rule Modified Trapezoidal 

Iterations Approximate value Error Approximate value Error 

N=1 0.1732867951 0.0669397119 0.2822452121 0.0420187051 

N=2 0.2217984336 0.0184280734 0.2458659429 0.0056394359 

N=3 0.2318479079 0.0083785991 0.2417327799 0.0015062729 

N=4 0.2354730396 0.0047534674 0.2407908564 0.0005643494 

N=5 0.2371718306 0.0030546764 0.2404849029 0.0002583959 

Table 5 Simpsons 1/3rd  Modified Simpsons 1/3rd 

Iterations Approximate value Error Approximate value Error 

N=1 6.420728 0.031672 6.402409 0.013353 

N=2 6.39121 0.002154 6.389274 0.000218 

N=3 6.389489 0.000433 6.389076 0.00002 

N=4 6.389194 0.000138 6.389060 0.000004 

N=5 6.389113 0.000057 6.389057 0.000001 

Table 6 Simpsons 1/3rd  Modified Simpsons 1/3rd 

Iterations Approximate value Error Approximate value Error 

N=1 1.002280 0.002280 1.001009  0.00109 

N=2 1.000135 0.000135 1.000020 0.000020 

N=3 1.000026 0.000026 1.000002 0.000002 

N=4 1.000008 0.000008 1.000000 0 

N=5 1.000003 0.000003 1.000000 0 
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Table 7 Simpsons 1/3rd  Modified Simpsons 1/3rd  

Iterations Approximate value Error Approximate value Error 

N=8 0.8820803966 9.942×10-7 0.8820810096 3.812×10-7 

N=16 0.8820813286 6.22×10-8 0.8820813855 5.3×10-9 

N=32 0.8820813869 3.9×10-9 0.8820813907 1×10-10 

N=64 0.8820813905 3×10-10 0.8820813908 0 

N=128 0.8820813907 1×10-10 0.8820813908 0 

Table 8 Simpsons 1/3rd  Modified Simpsons 1/3rd 

Iterations Approximate value Error Approximate value Error 

N=1 0.2379689798 0.0022575272 0.2430485380 0.002822031 

N=2 0.2400312416 0.0001952654 0.2403412102 0.0001147032 

N=3 0.2401845816 0.0000419254 0.2402411278 0.0000146208 

N=4 0.2402128028 0.0000137042 0.2402297025 0.0000031955 

N=5 0.2402208042 0.0000057028 0.2402274641 0.0000009571 
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 1.1.4 CONCLUSION: The conclusion of this paper can be summarized as 

A new family of numerical integration of closed newton cotes is introduced which uses the mean of arithmetic 

and geometric means at derivative value. It is proved that the proposed method is more efficient than classical 

newton closed formulas. The error terms are calculated by using the concept of precision. The numerical values 

are also given to show the accuracy of the proposed method. 
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