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1. Introduction 

The present work is the result of an attempted reconstruction of Fermat’s original discourse along with an 

explanation of why he might have not written it down. The author had performed it within a one-year period of 

time – between 1990 and 1993 – trying proving the theorem. When completed, it did look like a proof of 

Fermat’s epoch, as it only involved the knowledge and techniques available and utilised by Fermat’s 

contemporary and pre-Fermat mathematical world.1  

Not to overburden this text with details of a real historical study, let us briefly recall the history of the conjecture. 

Around 1637, Fermat wrote his Last Theorem in the margin of his copy of the Arithmetica next to Diophantus’ 

sum-of-squares problem (Faltings, Abramov): 

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadra-tos & generaliter nullam in 

infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem 

mirabilem sane detexi. Hanc marginis exiguitas non caperet. 

Tries at demonstrations of that conjecture were either based on triangular deliberations (earlier, inclusive of 

Fermat’s own proof of the conjecture for n = 4) or modular theory techniques (later, inclusive of Andrew Wiles’ 

eventual proof of 1995 (Faltings, Abramov)). 

These all are methods that deal with transformation properties of special curves over particular types of space 

(e.g. rational numbers), underscoring the ‘stability’ of elliptic curves with respect to modular transformations. In 
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Fermat’s time however, neither algebraic curves nor the notions of ‘space’, ‘transformation’, ‘groups’, etc were 

known (including to Pierre Fermat; read more on that in Conclusions of this paper) and used to study the 

properties of natural numbers (and primes). 

 

2. Proof 

The statement of the theorem is rather straightforward and as follows: 

Neither a cube for two cubes, nor a biquadrate or two biquadrates, and generally no power greater than two can 

be decomposed into two powers of the same grade. In other words, the equation 
nnn zyx =+  

has no solutions in natural numbers, if n is an integer greater than 2. 

Therefore, first 

1) fix any two arbitrary positive integers m, p such that one of them is greater than the other. Suppose, for 

example, that m > p and that m and p are coprime integers (i.e. m is not a multiple of p); 

2) fix then an arbitrary natural number n. For these three fixed natural numbers: m, p, n, the following 

equalities hold true: 





=−

=+

xpm

zpm
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nn

, implying that (2.1) 

3) for the natural numbers m, p, n there exist natural numbers z, x that satisfy (2.1); 

4) (2.1) can be rewritten as : 


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, (2.2) 

(the identity (2.2) is obvious); 

5) consider now the difference: 

Rxz nn =− : (2.3) 

since m > p, it is obvious that z > x, therefore R is a positive integer, which is identical to 

nnnn Rxz )( 1=− ; (2.4) 

6) denote now
nR1

 as a у: 
nRy 1= , (2.5) 

and have a closer look at the properties of the y: whether and when it is a positive integer and how it 

being one depends on the power n; 

7) rewrite correspondingly (2.3) as: 
nnn yxz =− ; (2.6) 

8) hence the difference is obtained: 

=−−+=−= nnnnnnnnn pmpmxzy )()(  

that can be expanded or decomposed into a sum according to Newton's binomial (Korn, Zaitsev et al.): 
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with 2)1( −= nk  if n is odd and 2)2( −= nk  if n is even. 

Rewrite then (2.6) as 
nnn yxz += , 

where x, y, z are 























=

−=

+=


=

++−+

n
k

i

ininni

n
n

nn

nn

pmCy

pmx

pmz

1

0

)12()12()12( )()(2

 

with 2)1( −= nk if n is odd and 2)2( −= nk if n is even; 

9) scrutinise now the y: 
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In order for the y to be a positive integer, 
n 2 must leave, since for n > 1 

n 2  is an irrational number. 

It is thus necessary that the expression 
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contain the common factor equal to 
12 −n

, because evidently 

  2222222
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1111 ====
−+−
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n

n
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(a natural number). Otherwise, y is an irrational number due to the presence of 
n 2 . Consider now 

what largest divisor this sum may contain and what it is equal to: 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) DOI: 10.7176/MTM 

Vol.9, No.7, 2019 

 

34 

])(
!

12)1(
)()(

!

)1()1(

)(
!3

)2)(1(
)[(

)(
!

12)1(
)()(

!

)1()1(

)(
!3

)2)(1(
)(

})({)()()()()(

)()(

331

331

33311

0

)12()12()12(







 −

+
+−−

+

++
−−

+=

=






 −

+
+−−

+

++
−−

+=

=++++=

=








−

−−

−

−−

−−−

=

++−+

nnknknn

nnnnn

nnknknn

nnnnn

nnn

n

knknnk

n

nnn

n

nnn

n

k

i

ininni

n

p
n

n
pm

k

knn

pm
nn

pmn

p
n

nn
pm

k

knnn

pm
nnn

pmn

pCpmCpmCpmC

pmC











 

with 2)1( −= nk  if n is odd and 2)2( −= nk  if n is even, 

Here comes the conclusion: n is the common divisor. Consider now two numbers: n and 
12 −n

. It is 

obvious that the irrational 
n 2  goes away, when they are equal to each other, i.e. the number y only 

then is a positive integer, when the following equality holds: 

12 −= nn  (2.9) 

Solving this equation (e.g. a simple way is to do it graphically), it is seen that there are only two roots 

for it: 1 and 2 in natural numbers. Hence eventually comes Fermat’s conclusion: the irrational 
n 2  is 

no longer there, if and only if n = 1 or n = 2, i.e. the number y is a positive integer, when n = 1 or when 

n = 2. 

10) Check 

a) Consider the case for n = 1 
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i.e. for the case for n = 1 we have a solution in natural numbers x, y, z. 

b) Consider the case for n = 2 
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i.e. for the case for n = 2 we have also a solution in natural numbers x, y, z. 

11) A check showed that for n = 1 or for n = 2 we have solutions of the equation 
nnn zyx =+  in positive 

integers x, y, z. Finally,  

12) t h e  e q u a t i o n  
nnn zyx =+  h a s  r o o t s  i n  t h e  n a t u r a l  n u m b e r s  x ,  y ,  z  

o n l y  f o r  n  =  1  a n d  f o r  n  =  2 .  

 

Q.E.D. 

3. Remark and corollaries 

Remark. Note that the expression (2.7) can be simplified, namely 
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 (3.1) 

with 2)1( −= nk if n is odd and 2)2( −= nk  if n is even. 

 

Corollary 1. Consider the case m = p, then from the expression (3.1) it can be derived that 
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with 2)1( −= nk  if n is odd and 2)2( −= nk  if n is even. 

It is obvious that y = z 

22

22

1

0

)12(

1

0

)12(

=








=












=

+

=

+

n
k

i

i

n
n

n

n
k

i

i

n

nn

C

mCm

, 

whence 

1

0

)12( 2 −

=

+ = n
k

i

i

nC  (3.2) 

with 2)1( −= nk if n is odd and 2)2( −= nk if n is even. 

 

Corollary 2. Based on (3.2), the sum of even combinations can be calculated. 

Consider Pascal’s triangle (Savin): 

15101051
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Similarly to the above, it is concluded that 
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with 2)1( −= nk if n is odd and 2)2( −= nk  if n is even. 

Proof. 

Expand 
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into a binomial (Korn, Zaitsev et al.): 
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with 2)1( −= ns  if n is odd and 2ns =  if n is even. 

If m = p 
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with 2)1( −= ns  if n is odd and 2ns =  if n is even. 

Corollary 2 is proved. 

Corollary 3. Analysing (3.2) and (3.3), it can be concluded that 
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with 2)1( −= nk , 2)1( −= ns  if n is odd and  2)2( −= nk , 2ns =  if n is even. 

 

4. Conclusion 

The ”difficulties” were for Fermat the lengthiness of the run of his deductions put in writing, as in the first 

half of the seventeenth century the mathematical notations had been way far from their present concise and 

diverse shape, many actions had to be written down in words.  Besides, a purely mathematical challenge was 
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that he had to operate the then entirely new notions of binomials and logarithms, both having just appeared for 

use and to be learnt “on the fly”. 

Fermat was obviously “playing” with the new notions, decomposing powers of differences into sums of 

powers and suddenly found out that as one confines oneself with positive integers in the power, the logarithmic 

equation yields immediately that 
nnn zyx =+ (which is a difference rewritten as a sum) is correct for whole x, 

y, z only and if only n = 1 or 2. 

He (would have) had first to introduce the two new notions so as to fully explain his finding. One can 

imagine how much room it would take to put down all the deliberations that had led him to his discovery on the 

margins of a book solely without the proper symbolic notations that a contemporary mathematician avails. 

Why Pierre Fermat did not write down all those ideas in a dedicated document is the dedicated question of a 

dedicated research endeavour. It can come out that he had authored such a separate document indeed, which 

afterwards was somehow lost or – alternatively – has survived to this day, hidden in an archive or a library or in 

somebody’s unrealised custody. 

The author requests the mathematical society to look critically at the deliberations set forth above and to 

return their assessment. 
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