ON THE APPLICATION OF ALGEBRAIC CODING THEORY
TO THE IDEALS OF THE POLYNOMIAL RING $\mathbb{F}_2^N[X] / (X^N - 1)$

Olege Fanuel

1 Department of Mathematics
Masinde Muliro University of Science and Technology
P.O Box 190-50100, Kakamega (Kenya)
email: olegofanuel@yahoo.com

Abstract

The polynomial ring $\mathbb{F}_2^N[x]/(x^n-1)$ has generated a lot of research in recent times especially because it is a generator of binary codes used in computer application. In this paper, properties of this ring are outlined and application of algebraic coding theory to its ideals discussed.

Mathematics Subject Classification: 2010 Primary 20K30; Secondary 16P10. Keywords: Polynomial Ring, Ideals, generator, irreducible, prime, code.

1 Introduction

1.1 Background information

Definition 1.1. [6]

Let $\mathbb{F}_2^N[x]/(x^n-1)$ be a commutative ring with unity and let $g \in \mathbb{F}_2^N[x]/(x^n-1)$. The set $(g) = \{rg | r \in \mathbb{F}_2^N[x]/(x^n-1)\}$ is an ideal of $\mathbb{F}_2^N[x]/(x^n-1)$ called the principal ideal generated by g. The element g is the generator of the principal ideal.
So, \(I \) is a principal ideal of a commutative ring \(F_2^n[x]/(x^n - 1) \) with unity if there exists \(g \in I \) such that for all \(g \in I \) we have \(rg \in F_2^n[x]/(x^n - 1) \) for some \(r \in F_2^n[x]/(x^n - 1) \).

In a Principal Ideal Domain every ideal is principal. If \(\mathbb{F} \) is a field then every ideal \(I \) in \(\mathbb{F} \) is a principal ideal. If a polynomial ring \(F[x]/(x^n - 1) \) is irreducible over \(F \) then \(F[x]/(x^n - 1) \) becomes a field. According to Ronald, \(et al. \) \cite{5}, given some \(\mathbb{Z} \)-basis of an ideal we should be able to find a sufficiently shorter generator \(g \) which is not necessarily \(g \) itself.

2 Results

Proposition 2.1. Let \(I \) be a maximal ideal over the polynomial ring \(F_2^n[x]/(x^n - 1) \). The following statements are equivalent:

(i) \(I \) is Noetherian.

(ii) Every chain of subsets \((I_0) \subseteq (I_1) \subseteq (I_2) \subseteq \ldots \subseteq (I_n) \) stabilizes at some \(I_n \).

(iii) Every non-empty collection of subsets of \(I \) has a maximal ideal.

Proof

(i) \(\Rightarrow \) (ii). Let \(I \) be Noetherian. Then we have the chain \((I_0) \subseteq (I_1) \subseteq (I_2) \subseteq \ldots \subseteq (I_n) \). We can write \(I' = \bigcup I_i \subseteq I \) which is finitely generated since \(I \) is Noetherian. Let the generator elements be \(I_1, I_2, \ldots, I_n \). Each of these elements is contained in the union of \(I_n \). Therefore \(I' \subseteq I_n \) hence \(I_n = I' \).

(ii) \(\Rightarrow \) (i). Assume that the ascending chain condition exists. Let \(I' \subseteq I_n \) be any subset of \(I \). Define a chain of subsets \((I_0) \subseteq (I_1) \subseteq (I_2) \subseteq \ldots \subseteq (I') \) as follows; \(I_0 = \{0\} \). Let \(I_{n+1} = I_n + x(F_2^n[x]/(x^n - 1)) \) for some \(x \in (I' - I_n) \) if such an \(x \) exists. Suppose such an \(x \) does not exist take \(I_{n+1} = I_n \). Clearly \(I_0 = \{0\}, I_1 \) is generated by some non-zero element of \(I' \), \(I_2 \) is \(I_1 \) with some element of \(I' \) not in \(I_1 \) until the chain stabilizes. By construction we have an ascending chain which stabilizes at some finite point by ascending chain condition. Hence \(I' \) is generated by \(n \) elements since \(I' = I_n \).

(i) \(\Rightarrow \) (iii). If \(I \) is Noetherian then it has a maximal ideal. To see this let \(P \) be a set of all the proper ideals in the polynomial ring \(F_2^n[x]/(x^n - 1) \) containing \(I_p \) where \(I_p \) is any proper ideal in this ring. Already we know that \(P \neq \emptyset \) since \(I_P \neq \emptyset \). Since \(F_2^n[x]/(x^n - 1) \) is Noetherian the maximum condition gives a maximal element \(I \in P \). We should show that \(I \) is a maximal ideal in \(F_2^n[x]/(x^n - 1) \). Suppose there is a proper ideal \(J \) with \(I \subseteq J \). Then
$I_P \subseteq J$ and hence $J \in P$. Therefore maximality of I gives $I = J$ and so I is a maximal ideal in $F^n_2[x]/(x^n - 1)$.

(ii) \Rightarrow (iii). If (iii) is false there is a non-empty subset S of $F^n_2[x]/(x^n - 1)$ with no maximal element and inductively we can construct a non-terminating strictly increasing chain in S. (iii)\Rightarrow(ii). The set $\{x^{(m)} : m \geq 1\}$ has a maximal element which is I. \square

Proposition 2.2. $F^n_2[x]/(x^n - 1)$ is a Unique Factorization Domain.

Proof

Let $t \in F^n_2[x]/(x^n - 1)$. Then t is irreducible if and only if t is prime. We have to show the following two claims:

(i) if t is prime then t is irreducible.
(ii) if t is irreducible then t is prime.

For claim (i) suppose that t is prime and $t = uv$, for all $t, u, v \in F^n_2[x]/(x^n - 1)$. We should prove that either u or v is a unit. Using the definition of prime, t divides either u or v. Suppose t divides u then we have $u = tw \Rightarrow u = uwv = u(1 - vw) = 0 \Rightarrow vw = 1$, for all $t, u, v \in F^n_2[x]/(x^n - 1)$ and some $w \in F^n_2[x]/(x^n - 1)$. Since $F^n_2[x]/(x^n - 1)$ is an integral domain, v is a unit. This same argument holds if we assume t divides v, thus t is irreducible. For claim (ii) let t be irreducible and t divides uv. Then $uv = tw$ for some $w \in F^n_2[x]/(x^n - 1)$. By property of unique factorization domain, we decompose t, u, v into products of irreducible elements, say (t_1, u_1, v_1) up to the units (a, b, c). Hence $a \cdot t_1 \ldots a \cdot t_n = b \cdot u_1 \ldots u_m = c \cdot v_1 \ldots v_n$. This factorization is unique and therefore t must be associated to some u_1 or v_1 implying that t divides u or v. \square

Example 2.1. Consider the ideals corresponding to the polynomial ring $F^n_2[x]/(x^n - 1)$. We have:

$I_1 = 0$
$I_2 = 1$
$I_3 = x + 1$
$I_4 = x^2 + x + 1$
$I_5 = x^3 + x^2 + 1$
$I_6 = x^4 + x^3 + x^2 + 1$
$I_7 = x^4 + x^3 + x + 1$
$I_8 = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$

where each of the I_i’s $(i = 1, 2, 3, \ldots, 8)$ is a principal ideal of this ring. We then have the chain:
\[(I_1) \subseteq (I_2) \subseteq (I_3) \subseteq (I_4) \subseteq (I_5) \subseteq (I_6) \subseteq (I_7) \subseteq (I_8)\]

Generally, for any polynomial ring \(F^n_2[x]/\langle x^n - 1 \rangle\) we can develop the chain \((I_1) \subseteq (I_2) \subseteq (I_3) \subseteq \ldots \subseteq (I_j)\) where \(j\) is the total number of principal ideals in the candidate polynomial ring hence \(I_{t+1} \mid I_t\), for all \(I_t \in F^n_2[x]/\langle x^n - 1 \rangle\). The prime factors of \(I_{t+1}\) contain prime factors of \(I_t\). Already \(I_j\) has a unique factorization into many finite prime factors which end up being the same and so the chain stabilizes or terminates.

By Proposition 2.1 and 2.2 the ring \(F^n_2[x]/\langle x^n - 1 \rangle\) is Noetherian. It is also a Unique Factorization Domain.

The polynomial \(I_j\) is the maximal ideal of the candidate ring.

Proposition 2.3. \(F^n_2[x]/\langle x^n - 1 \rangle\) satisfies the descending chain condition on principal ideals.

Proof

Using Example 2.1 and rearranging the ideals from maximal to the least we have:

\[(I_j) \supseteq (I_{j-1}) \supseteq (I_{j-2}) \supseteq \ldots \supseteq (I_1)\] which also terminates or stabilizes.

\[\Box\]

By Proposition 2.3 the polynomial ring \(F^n_2[x]/\langle x^n - 1 \rangle\) is Artinian.

Proposition 2.4. Let \((I_n)\) be a family of ideals such that \((I_n) \geq (I_m)\) for some fixed \((I_m) \in (I)\), if:

(i) \((I_m)\) is true and \((I_m)\) true means its fixed in \((I_n)\), false means its varying in \((I_n)\)

(ii) \((I_n)\) is true \(\Rightarrow (I_{n+1})\) is true, then \((I_n)\) is true for all \(n \geq m\).

Proof

Let \(I_c \in F^n_2[x]/\langle x^n - 1 \rangle\) be a family of all principal ideals for which \((I_n)\) is false. If \((I_c)\) is empty there is nothing to prove. Otherwise there is the smallest ideal \((I_k) \subseteq (I_c)\). From (i) \((I_k) > (I_m)\) and so we have some \((I_{k-1})\). But \((I_{k-1}) < (I_k)\) implies that \((I_{k-1}) \not\subseteq (I_c)\) since \((I_k)\) is the smallest ideal in \((I_c)\). Hence \((I_{k-1})\) is true. From (ii) \((I_k) = (I_{(k-1)+1})\) is true and this contradicts \((I_k) \subseteq (I_c)\) which claims that \((I_k)\) is false. \[\Box\]
2.1 Application of Maximum Likelihood Decoding to Codes of the polynomial ring $F_2^n[x]/(x^n - 1)$

Definition 2.1. [1]

Let C be a linear code over F_q and u a vector in the code space F_q^n. The Maximum Likelihood Decoding problem is to find a code $v \in C$ such that:

$$d_c(v, u) = d_c(u, c) = \min \{d_c(u, c)\} \text{ for all } c \in C.$$

On an mSC (p), the probability of receiving v after the transmission of u is given by $P(\frac{v}{u}) = p^{d_c}q^{n-d_c}$, (where d_c is the Hamming Distance between u and v, p is transition parameter such that $p + q = 1$ and n is the length of the code).

Definition 2.2. [2] A Fermat prime is a prime of the form $2^{2^n} + 1$ where n is itself prime. A Mersenne prime is one of the form $2^n - 1$ for some prime n. A safe prime is a prime number of the form $2p + 1$ where p is also prime.

Consider the set of generators of the polynomial ring $F_2^n[x]/(x^6 - 1)$. Here $n = 6$ which is a composite integer. The code generated is given by

$$C = \{000000, 000001, 000011, 001001, 001011, 001101, 011011, 111111\}.$$

Suppose a codeword 010101 was transmitted on a BSC (0.02) and two codewords, 000001 and 111111 were received. Then we have $P(000001|010101) = q^4 p^2 \approx 0.000368947264$, while $P(111111|010101) = q^3 p^3 \approx 0.000007529536$; it would therefore be efficient to decode 010101 to 000001.

Suppose $n = 7$ which is a safe prime. This would give the polynomial ring $F_2^n[x]/(x^7 - 1)$. The code generated is given by

$$C = \{0000000, 0000001, 0000011, 0001011, 0001101, 0011101, 0110111, 1111111\}.$$

Consider a codeword 0000011 transmitted on a BSC (0.03) and the two codewords, 0010111 and 1111111 are received. We have $P(0010111|0000011) = q^6 p^1 \approx 0.02498916$, while $P(1111111|0000011) = q^6 p^6 \approx 0.00000002286387$; it would be efficient to decode 0000011 to 0010111.

Hence principles of maximum likelihood decoding are applicable to the polynomial ring $F_3^n[x] \mod (x^n - 1)$ for prime values of n and for composite values of n.
2.2 Application of Minimum Distance Decoding to Codes of the polynomial ring $\mathbb{F}_2^n [x]/\langle x^n - 1 \rangle$

Definition 2.3. [8]

A code vector v is said to have undergone minimum distance decoding if and only if, when v is received, it is decoded to a codeword u that minimizes the Hamming distance $d_c(u, v)$.

Consider the set of generators of the polynomial ring $\mathbb{F}_2^n [x]/\langle x^n - 1 \rangle$ in which $n = 5$ which is a safe prime. The code generated is represented by

$$C = [00000, 00011, 00101, 00110, 01100, 01010, 11000, 11111].$$

Suppose we want to decode 01100 to any of the other codewords in C we must compute minimum distance as follows:

- $d_c(01100, 00000) = 2$
- $d_c(01100, 00011) = 2$
- $d_c(01100, 00101) = 2$
- $d_c(01100, 00110) = 2$
- $d_c(01100, 01010) = 2$
- $d_c(01100, 11111) = 3$

Hence it would be more efficient to decode 01100 to any of the other codewords in C except to 11111.

Consider the set of codes generated by the polynomial ring $\mathbb{F}_2^n [x]/\langle x^n - 1 \rangle$ in which $n = 6$ which is composite. The code is represented by

$$C = [000000, 000001, 000011, 000101, 010101, 001001, 010111, 111111].$$

Suppose we want to decode 111111 to any of the other codewords in C we must compute minimum distance d_c as follows:

- $d_c(111111, 000000) = 6$
- $d_c(111111, 000001) = 5$
- $d_c(111111, 000011) = 4$
- $d_c(111111, 000101) = 4$
- $d_c(111111, 001010) = 3$
- $d_c(111111, 001001) = 4$
- $d_c(111111, 011011) = 2$

Therefore it would be more efficient to decode 111111 to 011011.
Hence principles of Minimum Distance Decoding are applicable to the polynomial ring \(F_2^n[x]/\langle x^n - 1 \rangle \) for prime values of \(n \) as well as for composite values of \(n \).

Proposition 2.5. Let \(p < \frac{1}{2} \) where \(p + q = 1 \). Then maximum likelihood decoding and minimum distance decoding are equivalent.

Proof

Let the the probability of receiving \(v \) after the transmission of \(u \) be given by \(P(\frac{v}{u}) = p^{d_c}q^{n-d_c} \) (where \(d_c \) is the Hamming Distance between \(u \) and \(v \), \(p \) is transition parameter such that \(p + q = 1 \) and \(n \) is the length of the code). Minimizing the quantity \(P(\frac{v}{u}) = p^{d_c}q^{n-d_c} \) is equivalent to minimizing \(d_c \).

2.3 Application of Incomplete Minimum Distance Decoding to Codes of the polynomial ring \(F_2^n[x]/\langle x^n - 1 \rangle \)

Definition 2.4. [8]

Incomplete Minimum Distance Decoding for a received codeword \(v \), occurs when it is decoded to a codeword \(u \) that minimizes the Hamming distance or when decoded to the error detected symbol \(\eta \).

Consider a set of generators of the polynomial ring \(F_2^n[x]/\langle x^n - 1 \rangle \) in which \(n = 5 \), which is a safe prime. It was observed for instance in Section 2.2 that 01100 could be decoded to any of the codewords in \(C \) except to 11111. By Incomplete Minimum Distance Decoding, 01100 could also be decoded to the error detected symbol \(\eta \). In this case the minimum distance cannot be determined.

Hence principles of Incomplete Minimum Distance Decoding are applicable to the polynomial ring \(F_2^n[x]/\langle x^n - 1 \rangle \) for prime values of \(n \) as well as for composite values of \(n \).

2.4 Application of Features of an optimal code to codewords of the polynomial ring \(F_2^n[x]/\langle x^n - 1 \rangle \)

According to Huffman and Pless [3], an \((n, m, d_c)\) - code is a code of length \(n \) containing \(m \) words and having minimum distance \(d_c \). Thus for instance, in
the polynomial ring $F_2^7 [x]/(x^7 - 1)$, $n = 7, m = 8, d_c = 7$, hence it is a $(7, 8, 7)$ -
code, while for the polynomial ring $F_2^{30} [x]/(x^{30} - 1)$, $n = 30, m = 31, d_c = 30$, hence it is a $(30, 31, 30)$- code. A good code is one with small n for fast
transmission of messages, large m to enable transmission of wide variety of
messages and large d_c to detect and correct a large number of errors. Generally
good codes are those whose value of m and d_c are large relative to values of n.

Define $A_q(n, 1)$ as the maximum m such that (n, m, d_{max})-code exists. De-
termining the values of $A_q(n, 1)$ is the main coding problem.

Theorem 2.1. [4] For any set of codewords C of a q-ary of length n over a
finite set A the following statements hold:

(a) $A_q(n, 1) = q^n$

(b) $A_q(n, n) = q$

Proof

(a) Suppose C is the set of all codewords of length n. Then $C = A^n$. Any
two distinct codewords must differ in at least one position. The minimum
distance between two such words is at least 1. A q-ary code of length n cannot
be bigger than this.

(b) Suppose C is a q-ary code with parameters (n, m, n). The minimum
distance between two such words is n if any two distinct codewords of C differ in
all n positions. Therefore the entries in fixed positions of m codewords must be
different. This implies that $A_q(n, n) \leq q$

(i)

But the q-ary repetition code has parameters (n, q, n). This yields

$A_q(n, n) \geq q$ \hspace{1cm} (ii)

Combining (i) and (ii) we have $A_q(n, n) = q$. \hfill \Box

2.5 Measurement of Efficiency and Reliability of codewords of the polynomial ring $F_2^n [x]/(x^n - 1)$

Definition 2.5. [9]

Efficiency of a code is a function of its information rate κ. The dimension
of a code k is the number of symbols which carry information as opposed to
redundancy. Normalized dimension or rate κ of an m-ary code C of length n
is the ratio $\frac{k}{n}$ of message symbols to coded symbols. A code is said to be reliable
when its minimum distance $d_c \geq 2$.
Table 1: Comparison of Efficiency and reliability of code vectors for the polynomial ring $\mathbb{F}_2^6[x]/(x^6 - 1)$

<table>
<thead>
<tr>
<th>Code vector</th>
<th>δ</th>
<th>$\delta_C = \frac{\delta}{n}$</th>
<th>Reliability %</th>
<th>$\kappa_C = \frac{\delta}{n}$</th>
<th>Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.000</td>
<td>100</td>
</tr>
<tr>
<td>000001</td>
<td>1</td>
<td>0.1667</td>
<td>16.67</td>
<td>0.8333</td>
<td>83.33</td>
</tr>
<tr>
<td>000011</td>
<td>2</td>
<td>0.3333</td>
<td>33.33</td>
<td>0.6667</td>
<td>66.67</td>
</tr>
<tr>
<td>000101</td>
<td>2</td>
<td>0.3333</td>
<td>33.33</td>
<td>0.6667</td>
<td>66.67</td>
</tr>
<tr>
<td>001001</td>
<td>2</td>
<td>0.3333</td>
<td>33.33</td>
<td>0.6667</td>
<td>66.67</td>
</tr>
<tr>
<td>010101</td>
<td>3</td>
<td>0.5000</td>
<td>50.00</td>
<td>0.5000</td>
<td>50.00</td>
</tr>
<tr>
<td>011011</td>
<td>4</td>
<td>0.6667</td>
<td>66.67</td>
<td>0.3333</td>
<td>33.33</td>
</tr>
<tr>
<td>111111</td>
<td>6</td>
<td>1.00</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 2: Comparison of Efficiency and reliability of code vectors for the polynomial ring $F_2^7[x]/\langle x^7 - 1 \rangle$

<table>
<thead>
<tr>
<th>Code vector</th>
<th>δ</th>
<th>$\delta_C = \frac{\delta}{n}$</th>
<th>Reliability %</th>
<th>$\kappa_C = \frac{\kappa}{n}$</th>
<th>Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>1.0000</td>
<td>100</td>
</tr>
<tr>
<td>0000001</td>
<td>1</td>
<td>0.1429</td>
<td>14.29</td>
<td>0.8571</td>
<td>85.71</td>
</tr>
<tr>
<td>0000011</td>
<td>2</td>
<td>0.2857</td>
<td>28.57</td>
<td>0.7142</td>
<td>71.42</td>
</tr>
<tr>
<td>0001011</td>
<td>3</td>
<td>0.4286</td>
<td>42.86</td>
<td>0.5714</td>
<td>57.14</td>
</tr>
<tr>
<td>0001101</td>
<td>3</td>
<td>0.4286</td>
<td>42.86</td>
<td>0.5714</td>
<td>57.14</td>
</tr>
<tr>
<td>0011101</td>
<td>4</td>
<td>0.5714</td>
<td>57.14</td>
<td>0.4286</td>
<td>42.86</td>
</tr>
<tr>
<td>0010111</td>
<td>4</td>
<td>0.5714</td>
<td>57.14</td>
<td>0.4286</td>
<td>42.86</td>
</tr>
<tr>
<td>1111111</td>
<td>7</td>
<td>1.0000</td>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

From Tables 1 and 2, its clear that as efficiency increases the code becomes more unreliable.

According to Shannon [7] we need to evaluate information content and error performance of any given codeword. High rate codewords are desirable since they employ a more efficient use of redundancy than lower rate codewords. Error correcting capabilities must also be considered when choosing a code for a particular application. A rate 1 code has the optimal rate but has no redundancy and hence not suitable for error control. Generally given a q-ary (n, m, d)-code C we define the rate of C to be $\frac{\log_q m}{n}$. We can then deduce that:

$$\lim_{n \to \infty} \frac{\log_q m}{n} = 0$$

This trend of efficiency and reliability is applicable to the polynomial ring $F_2^n[x]/\langle x^n - 1 \rangle$ for any values of $n \geq 2$ for all $n \in \mathbb{N}$.

ACKNOWLEDGEMENTS I acknowledge the invaluable academic support I have received from my supervisors: Prof. Shem Aywa, Prof. Maurice Owino Oduor and Dr. Okaka Akinyi Colleta. I thank the Government of Kenya
through the National Commission for Science Technology and Innovation for funding this research.

References

