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Abstract

The cohomology of M with compact supports is the graded algebra Q(G.(M),8) and is given by
Q. (M) =Y7_,Qk(M). The bilinear map Q(M) x Q.(M) - Q.(M) is induced by G(M) X G.(M) - Q.(M)
and makes Q.(M) into a left graded Q(M)-module. Q(S™), which is the cohomology of S™, is
determined by Q°(S™) = Q*(S™) = R and Q*(S™) = 0 for n > 1. Also, we determine the cohomology of
R™ with compact supports. Finally, it is shown that the map iy,: Q(M) — Q.(M)* is a linear isomorphism.
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1. Introduction

Let M be an n-manifold, then the graded algebra of differential forms on M is defined as G(M) =
Yn_oG* (M) and G(M) is converted into a graded differential algebra by the exterior derivative
(Greub et al., 1972). The differential forms @ satisfying the condition §® = 0 construct cocycles in this
differential algebra and this differential form is closed. The closed forms are graded subalgebra Z (M)
of G(M) as 6 is an antiderivation (Bott and Tu, 1982). The subset H(M) = §G(M) is a graded ideal in
Z(M). The differential forms in G(M) are called coboundaries and the corresponding cohomology
algebra is defined by Q(M) = Z(M)/H(M) and this cohomology algebra is called the de Rham
cohomology algebra of M (lversen, 1986).

The cohomology of M with compact supports is the graded algebra Q(G.(M),§) (Grivaux, 2010). It is
denoted by Q.(M) and is defined by

n
Q,(M) = z Qk(M), n = dim M.
k=0

Multiplication in G(M) is restricted to a real bilinear map as G.(M) is an ideal (Kobayashi and
Nomizu, 1963). G.(M) is confined into a left graded G(M)-module by this multiplication which is
given by

G(M) x G, (M) - Q,(M).

The bilinear map Q(M) x Q.(M) - Q.(M) is induced by the above map and makes Q.(M) into a left
graded Q(M)-module (Sternberg, 1964). This map can be written as

4w = axp, e QM) pue(M).

In the same way, Q.(M) can be converted into a right graded Q(M)-module and we can write u =« A, u €
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Q.(M),A € Q(M). Also, the algebra homomorphism
(@) Qe(M) > QM)

is induced by the inclusion map t: G.(M) - G(M). The above module structures can be converted to
ordinary multiplication by this homomorphism (Haller and Rybicki, 1999).

2. Preliminaries and Auxiliary Results

Let :RxM - N be a smooth map. Two smooth maps f,g:M — N are said to be homotopic
(Eilenberg and Maclane, 1950) if Q(0,x) = f(x) and Q(1,x) = g(x). We can define a linear map h: G(N) -
G (M) homogeneous of degree —1 for such a homotopy ( by

h=1toi(T)o Q.

Consider the spaces Q*(M) having finite dimension, then the kth Betti number of M is defined by
b, = dim Q¥ (M) and the Poincaré polynomial of M is defined by

pu () = Lo by t*.

If M consists of a single point, then Q¥(M) = 0 (k > 1) and Q°(M) = R.
The Euler-Poincaré characteristic of M is defined by the alternating sum ¢y, = Y7_,(—1)¥b;, = py (—1).

Now, we discuss the axioms for de Rham cohomology. The axioms for de Rham cohomology are given
below:

(a) Q(point)=R
(b) If M is the disjoint union of open submanifolds M,, then

QM) = [1,2(M,) (disjoint union)

() Iff~g:M — N, then f# = g* (homotopy axiom)
() IfM=UuUV (U,V are open), there is an exact triangle (Mayer-Vietoris)

QM) » Q) S Q)

QU nv)

Consider a manifold M which is the disjoint union M = U, M, of open submanifolds M, . A
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homomorphism hj: G(M) - G(M,) is induced by the inclusion map h}: M, > M . We obtain a
homomorphism h*: G(M) - [], G(M,) given by (h*®), = h;, where ® € G(M) and [[, G(M,) is the direct
product of the algebras G(M,).

If 5§, denotes the exterior derivative in Q(M,), then [, Q(M,) is given by the differential operator
[T, Q(M,). As a result, h* is an isomorphism of graded differential algebras Q(M,) and h* induces
the following isomorphism

h*: QM) —— 1—[ am,)
given by
(hy)y = by (), ¥ € QM).

Consider a manifold M and two open subsets X;, X, such that X; U X, = M. Let us consider the following
inclusion maps

uXiNX, =X, upiXgnX, - X,
vi: Xy oM, vi: X, - M.

which induce a sequence of linear mappings
0 — o) —> (X)) @ ;) —— At N X,) — 0
given by
AP = (v D, v;P), P € QM)
and
w(dy, @) = ujd, —usd,, &, €QUy), i=1,2.

Let 6,,8,,81, and § be the exterior derivatives in Q(X;), Q(X,), Q(X; N X,) and Q(M) respectively, then
we have

Aebd=(6,D6)ca and peo (6, D 6;) =81,0u
Consequently, the following linear maps are induced by A and u:
Ag: QM) - QX)) © QX2), uy: QX1 B AUXZ) - QX N Xy).
Lemma 1. The following sequence of linear mappings is exact
2
0 — QM) — Q(X,) B QX)) — QX; N X,) — 0.
Proof. We have to consider the following three cases:
(@ keru=ImA

(b) A isinjective

(c) wissurjective
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(@) Since itis obvious uo A =0, so Im A c ker u. We need only to show that ker 4 < Im A.

Let (&,, P,) €ker u. If x € X; N X,, then @, (x) = ®,(x). Consequently, we can find a differential form ® €
Q(M) which is given by

_(Py(x), x €X,
P = {Cbz(x), X EX,
Since A® = (®,, d,), so ker u  Im A. Therefore, ker = Im A.

(b) Letx e X; UX, =M. If Ad =0,then &(x) =0forx e X; UX, = M.

(c) Consider the covering X;, X,0f M. Let x;,x, be subordinate to the covering X;, X,. Thus, {x;,x,}is a
partition of unity for M. Then, carr vix,, carr v;x; € X; UX,.

For ® € Q(X, N X;), we define

D, =vix, - D € QXy), P, =vix; - P € QX).

Consequently, we have ® = u(®,, —d,). O

Consider a compact oriented n-manifold M. Then, we have
Q.(M) = QM) and iy, : QM) —— Q(M)".

Therefore, the bilinear map P : Q¥(M) x Q" ¥(M) — R represents the Poincaré scalar product.

Theorem 1. If M is any compact manifold, then the dimension of Q(M) is finite.

Proof. First we assume that the compact manifold M is orientable. Then the Poincaré scalar
product is given by the bilinear map Pk: Q*(M) x Q**(M) - R and P induces the following
two linear isomorphisms

k(M) —— an k(M)
and

Qv k(M) — Qk(M)".
Now, from the related results of elementary linear algebra we can observe that each Q%(M) has
finite dimension; hence the theorem is proved in this case.
Again, we assume that the compact manifold M is nonorientable. In this case, the double cover M is

orientable and compact. Consequently, we have

dim QM) = dim Q, (M) < dim Q(M) < oo.
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Thus the dimension of Q(M) is finite.

Lemma 2. f:;: Q(M) - Risa linear isomorphism if M is a connected oriented n-manifold.

Proof. Let Q(M) be the cohomology of an oriented manifold M and Q.(M) be the
cohomology of M with compact support. Then the map

iv: QM) - Q.(M)*
is a linear isomorphism. Also, we have
dim Q*(M) = dim Q°(M) = 1.

Moreover, f; is surjective. Therefore, f;: QF(M) - R is a linear isomorphism if M is a connected
oriented n-manifold. 1

Consider an oriented n-manifold M. The linear map fM :GF(M) — R satisfies fM06=0 and it is

surjective map. The linear map f:’ : Q2 (M) — Ris induced by fM: GM(M) — R and this map is also surjective.
Let 2 € Q¥(M) and u € Q2% (M). The Pioncaré scalar product

P k(M) x Q% (M) > R
can be expressed as the following bilinear map Pg (A, u) = f;;l * (.
Lemma 3. Let M, N be two manifolds, then the following diagram commutes.
w#
QM) «——— V)

im in

QM) —— QN

(o)

Proof. If A € QF¥(N), u € Q* %, 7 € G¥(N), & € G**(M), then A and u are represented by Z and & respectively.
Consequently, (¥.)xu € QF*(N) is represented by

W)€ and P QA ((Ye):8) = P TA ¢

Since the Pioncaré scalar product P%: Q%(M) x Q**(M) — R is the bilinear map given by

P = 12+ p,
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thus, P WA ) = [*0) * wand PEO, Wuk) = [1 3% (We)ght. Hence we have

# #
PE@W A ) = f W) % =L TN E = [ TN (). = f A (W)sr = PEO, (o)ait)
M M

Since PX (WA, 1) = PEQ, (Y)x1), we can conclude that the diagram commutes. Hence the proposition is
proved. Ol

3. Main Results
Theorem 2. For n =1, Q(S™) is determined by Q°(S™ = Q*"(S™) = Rand Q*(S) =01 <k <n-1).
Proof. First we consider an (n + 1)-dimensional Euclidean space E™*1. Suppose S™ is embedded in
E™!. We know that S™ is connected, thus Q°(S™) = R. Now let s € S™ and € € (0,1) where £ is fixed.
Again, we consider open sets X;,X, c S™ defined by

Xi={x€eS™(x,s) >}, X, ={xeS™(x,s) <&}
As aresult, S™ = X; U X, and we have the following exact Mayer-Vietoris sequence

C o QF(S™) - QF(X) B Q¥ (Xp) - QF(X N Xp) > QST o

It is clear that S™?! is contained in X; NnX,. We observe that X; and X, are contractible.
Consequently, the following exact sequence can be considered as the Mayer-Vietoris sequence

< = QK™ - 0F(point) @ Q*(point) - QF(S™ ) —» QFF(ST) - .-
The above sequence can be split into the following two sequences
0 - Q°(S™ - Q%point) @ Q°(point) - Q°(S™ 1) - QI(S™) - 0
and
0— Qk(S™ 1) — 5 Qk*(S") —0, k> 1.
These sequences are exact and from the first sequence we have
0 =dimQ(S™) — dimQ°(S™™ 1) + 2dim Q°(point) — dim Q°(S™).

For n > 2, we observe that S™! is connected and S° consists of two points. Thus we can conclude
from the above equation

R n=1

e ={y o

Since 0 — Qk(s™ 1) =, Qk+1(s™) —— 0 for k > 1, we have
QE(S™ = QS (1 <k <n).

Therefore, Q°(S™) = Q*(S™) = and Q*(S™) = 0. Hence, the proposition is proved. [l
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Corollary 1. Consider a connected n-manifold M. Then Q"(M) =R when M is compact and
orientable. Otherwise, Q" (M) = 0.

Proof. First we assume that M is compact. Then, there are two cases:
(i) M is orientable
(ii) M is nonorientable.

If we consider M to be orientable, then from the consequence of Lemma 2 we can deduce that
Q"(M) = R. If M is nonorientable, then Q" (M) = 0.

Next we assume that M is not compact. Then, there are again two cases:
(i) M is orientable

(ii) M is nonorientable.

If the manifold M is orientable, then we have Q*(M) = Q2(M)* = 0.

If the manifold M is nonorientable, then the double cover M must be orientable, connected and
noncompact. Consequently, we have

Qv (M) = Q1 (M) c Q*(M) = 0.
Thus, Q"(M) = R when M is compact and orientable, otherwise, Q" (M) = 0. O

Owhenk <n

Corollary 2.Q¥(R™) = {]Rwhen k=n

gives the cohomology of R™with compact supports.

Proof. The case n =0 is trivial. Assume that S™ is the one-point compactification of R™ for n > 0. Let
s € S™ be the compactifying point, thus we can write R® = S™ — {s}.

The differential forms on S™ are zero in a neighbourhood of s and the ideal of differential forms on S™
is denoted by ..t is clear that 7, = G.(R™). Consequently, the following sequence is exact

0->17, > G(S™) » Gy(S™) - 0.

In cohomology, we can derive a long exact sequence from the above short exact sequence. As
Q(G,,(S")) = Q(point), we can split this long sequence into the following two exact sequences

0 - Q2(R™) - Q°(5™ - R - QL(R™) -» Q1(S™) - 0
and
0 — QF(R") —— QK (S™) — 0, k > 2.

As Q°(s™) = R and Q2(R™) = 0, thus the following exact sequence can be derived from the first
sequence

0 —— OL(R™) —— Q1(5™) — 0.
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Owhenk <n

. -
Rwhen k = n gives the cohomology of R"with compact supports.

Hence QK (R™) = {

Theorem 3. Let Q(M) be the cohomology of an oriented manifold M and Q.(M) be the
cohomology of M with compact support. Then the map iy: Q(M) - Q.(M)" is a linear
isomorphism.

Proof. To prove the theorem, we have to consider the following three cases:
(i) M =R"
(i) M is an open subset of R™
(iii) M is arbitrary
(i) We have to show that the map i: Q°(R™) —» QF(R™)*is a linear isomorphism to prove M =

R" since Q*(R™) and QF(R") are given by

R, k=0
0, k+0

R, k=n

Qk(Rn)z{ 0, k#n

and QF(RM) = {
Also, in this case it is sufficient to show that i # 0 as we have
dim Q°(R™) - dim Q¥ (R™)*.

Assume that ¢ € S(R™) is a nonnegative function and ¢ is not identically zero. Consider a positive
determinant function A in R™.

Now, [pn@ A= [pn @(x) dx* -+ dx™ > 0 for a suitable basis of R™.

Consequently, if u is a non-zero element in QF (R™), u is represented by f - A.

From the definitions we have(i(1),u) = [pnl A (@A) == [pn @ A #0.

Therefore, (i(1),u) # 0 implies that i(1) # 0 andsoi # 0.

(ii) Assume that {b,, -+, b,} is a basis of R™. Then, for v € R", we have v = Yp_, v*b,.

Then an i-basis for the topology of R™ can be represented by the open subsets of the form
B={xeR%ad*<x¥<b¥ k=1, ,n}

By the definition of diffeomorphism, B is diffeomorphic to R™. Therefore, with the help of Case (i) and

the result of Lemma 3 we conclude that iz is an isomorphism for each such B. As a result, for every

open subset M of R™ we have i,,: Q(M) — Q.(M)* which is an isomorphism.

(iii) Let us assume that every open subset of M is diffeomorphic to open subset of R™ and B is

the collection of such open subsets of M. Consequently, it is obvious that for the topology of M

this collection of open subsets B is an i-basis. With the help of the results derived in Case (ii) and
Lemma 3, we can conclude that iz is an isomorphism for every B € B. Therefore, for

O
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every open subset X ¢ M we can find an iy which is an isomorphism. Thus, the map iy: Q(M)

— Q.(M)* is a linear isomorphism.
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