A Generalized Higher Reverse Left (respectively Right) Centralizer on Prime Γ-Rings

Fawaz Ra'ad Jarullah Salah Mehdi Salih

Department of Mathematics , College of Education , Al-Mustansirya University , Iraq

Abstract:

This study introduces the concepts of generalized higher reverse left (respectively right) centralizer , Jordan generalized higher reverse left (respectively right) centralizer and Jordan triple generalized higher reverse left (respectively right) centralizer of Gamma-rings. In this paper we prove the following main results . Every Jordan generalized higher reverse left (respectively right) centralizer of a 2-torsion free prime Γ -ring M into itself is generalized higher reverse left (respectively right) centralizer of M and every Jordan generalized higher reverse left (respectively right) centralizer of M and every Jordan generalized higher reverse left (respectively right) centralizer of M and every Jordan generalized higher reverse left (respectively right) centralizer of M and every Jordan generalized higher reverse left (respectively right) centralizer of M and every Jordan generalized higher reverse left (respectively right) centralizer of M and every Jordan generalized higher reverse left (respectively right) centralizer of M and every Jordan generalized higher reverse left (respectively right) centralizer of Λ , into itself, such that x α y β x = x β y α x is a Jordan triple generalized higher reverse left(respectively right) centralizer of M , for all x, y \in M and α , $\beta \in \Gamma$

It is noteworthy that $T_0(x) = x$ and $T_0(x \alpha y) = y \alpha x$, for all $a, b \in M$ and $\alpha \in \Gamma$.

 Key Words : prime Γ-ring , left centralizer , right centralizer , Jordan
 centralizer

 Mathematic Subject classification : 16N60 , 16W25 , 16Y99
 DOI: 10.7176/MTM/9-10-06

 Publication date: October 31st 2019
 DOI

1-INTRODUCTION:

Let M and Γ be two additive a belian groups. Suppose that there is a mapping from $M \times \Gamma \times M \longrightarrow M$ (the image of (x, α, y) denoted by $x \alpha y$, where $x, y \in M$ and $\alpha \in \Gamma$) satisfying the following properties for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$

- (i) $(x + y) \alpha z = x \alpha z + y \alpha z$ $x (\alpha + \beta) z = x \alpha z + x \beta z$ $x \alpha (y + c) = x \alpha y + x \alpha z$
- (ii) $(x \alpha y) \beta z = x \alpha (y \beta z)$.
- Then M is called a Γ -ring. [1].

M is called a prime if $x \Gamma M \Gamma y = (0)$ implies that x = 0 or y = 0, where $x, y \in M$ [5].

M is called a semiprime if $x \Gamma M \Gamma x = (0)$ implies that x = 0, where $x \in M$ [5].

M is called a 2-torsion free if 2 = 0 implies that x = 0, for all $x \in M$ [5].

If M is a Γ -ring, then $[x, y]_{\alpha} = x \alpha y - y \alpha x$, for all x, $y \in M$ and $\alpha \in \Gamma$, is known as a commutator. [5]

An additive mapping d : M \longrightarrow M is called a derivation if the following holds :

 $d(\;x\;\;\alpha\;\;y\;) = d(\;x\;)\;\alpha\;y\;+\;x\;\alpha\;d(\;y\;),\,\text{for all }\;x\;,\,y\;\in\;M\;\;\text{and }\;\alpha\;\in\;\Gamma\;\;[\;2\;]$

Additionally, d is called a Jordan derivation if the following property holds :

 $d(x \alpha x) = d(x) \alpha x + x \alpha d(x)$, for all $x \in M$ and $\alpha \in \Gamma$. [2]

An additive mapping $F: M \longrightarrow M$ is called a generalized derivation associated with the derivation d : M $\longrightarrow M$ if the following equation holds :

 $F(x \alpha y) = F(x) \alpha y + x \alpha d(y), \text{ for all } x, y \in M \text{ and } \alpha \in \Gamma [2]$

In addition, F is called a Jordan generalized derivation associated with the Jordan derivation $d: M \longrightarrow M$ if the following property is satisfied :

 $F(x \alpha x) = F(x) \alpha x + x \alpha d(x), \text{ for all } x \in M \text{ and } \alpha \in \Gamma [2]$

A left (respectively right) centralizer of a Γ -ring M, is an additive mapping, $T: M \longrightarrow M$ which satisfies the following equation $T(x \alpha y) = T(x) \alpha y$ (respectively $T(x \alpha y) = x \alpha T(y)$), for all x, $y \in M$ and $\alpha \in \Gamma$ T is called a centralizer of M if it is both a left and right centralizer [4]. A left (respectively right) Jordan centralizer of a Γ -ring M, is an additive mapping, $T: M \longrightarrow M$ which satisfies the following equation $T(x \alpha x) = T(x) \alpha x$ (respectively $T(x \alpha x) = x \alpha T(x)$), for all $x \in M$ and $\alpha \in$ Γ . T is called a Jordan centralizer of M if it is both a left and right Jordan centralizer [4].

An additive mapping $F: M \longrightarrow M$ is called a generalized centralizer of M associated with the centralizer $T: M \longrightarrow M$ if the following equation holds :

 $\begin{array}{ll} F(\ x \ \alpha \ y \ + y \ \beta \ x \) = F(\ x \) \ \alpha \ y \ + \ y \ \beta \ T(\ x \), \ for \ all \ x \ , \ y \ \in \ M & and \ \alpha \ , \ \beta \ \in \ \Gamma \ [\ 3 \] \ . \\ \\ F \ is \ called \ a \ Jordan \ generalized \ centralizer \ of \ M & associated \ with \ the \ Jordan \ centralizer \ T \ : \ M \ \longrightarrow \\ M \ if \ the \ following \ equation \ holds \ : \end{array}$

$$\begin{split} F(x \, \alpha \, x \, + \, x \, \alpha \, x \,) &= F(x) \, \alpha \, x \, + \, x \, \alpha \, T(x) \,, \, \text{for all } x \, \in \, M \, \text{ and } \alpha \, , \, \beta \, \in \, \Gamma \quad [\, 3 \,] \,. \\ Let \, T &= (\, t_i \,)_{i \in \, N} \text{ be a family of additive mappings of a ring R, into itself . Then T is called} \qquad \text{ a higher left centralizer, we have that} \end{split}$$

$$t_{n}(xy) = \sum_{i=1}^{n} t_{i}(x) t_{i-1}(y), \text{ for all } x, y \in R \text{ and } n \in N \ [6].$$

In addition, T is called a Jordan higher left centralizer if the following equation holds :

$$t_{n}(x^{2}) = \sum_{i=1}^{n} t_{i}(x) t_{i-1}(x) \text{, for all } x \in R \text{ and } n \in N \ [6].$$

Let $F = (f_i)_{i \in N}$ be a family of additive mappings of a ring R, into itself. Then F is called a generalized higher left centralizer associated with the higher left centralizer $T = (t_i)_{i \in N}$ of R, if the following equation is satisfied :

$$f_{n}(xy) = \sum_{i=1}^{n} f_{i}(x) t_{i-1}(y)$$
, for all x, y $\in R$ and $n \in N$ [6]

Moreover, F is called a Jordan generalized higher left centralizer associated with the Jordan higher left centralizer $T = (t_i)_{i \in N}$ of R, we have that

$$f_{n}(\mathbf{x}^{2}) = \sum_{i=1}^{n} f_{i}(\mathbf{x}) \mathbf{t}_{i-1}(\mathbf{x})$$
, for all $\mathbf{x} \in \mathbb{R}$ and $n \in \mathbb{N} [6]$.

Jarullah and Salih introduced the concepts of higher reverse left (resp. right) centralizer and Jordan higher reverse left (respectively right) centralizer a Γ -ring as follows :

Let $t = (t_i)_{i \in N}$ be a family of additive mappings of a Γ -ring M into itself. Then t is called a higher reverse left (respectively right) centralizer of M, we have that

$$t_n(x \alpha y) = \sum_{i=1}^n t_i(y) \alpha t_{i-1}(x)$$

(respectively $t_n(x \alpha y) = \sum_{i=1}^n t_{i-1}(y) \alpha t_i(x)$), for all $x, y \in M$, $\alpha \in \Gamma$ and $n \in N$ [7].

Let $t = (t_i)_{i \in N}$ be a family of additive mappings of a Γ -ring M into itself. Then t is called a Jordan higher reverse left (respectively right) centralizer of M if the following equation holds :

$$\begin{split} t_n(x \ \alpha \ x) &= \sum_{i=1}^n t_i(x) \ \alpha \ t_{i-1}(x) \\ (\text{respectively } t_n(x \ \alpha \ x)) &= \sum_{i=1}^n t_{i-1}(x) \ \alpha \ t_i(x) \), \text{ for all } x \in M \ , \ \alpha \in \Gamma \\ \text{and} \\ n \in N \ [7]. \end{split}$$

Jarullah and Salih introduced the concepts of higher reverse left (respectively right) centralizer, Jordan higher reverse left (respectively right) centralizer and generalization on Rings as follows:

Let $t = (t_i)_{i \in N}$ be a family of additive mappings of a ring R into itself. Then t is called a higher reverse left (respectively right) centralizer of R, we have that

$$t_{n}(xy) = \sum_{i=1}^{n} t_{i}(y) t_{i-1}(x)$$
(respectively $t_{n}(xy) = \sum_{i=1}^{n} t_{i-1}(y) t_{i}(x)$), for all $x, y \in R$ and $n \in N$ [8].

Let $t = (t_i)_{i \in N}$ be a family of additive mappings of a ring R into itself. Then t is called a Jordan higher reverse left (respectively right) centralizer of R, if the following equation holds :

$$t_{n}(x^{2}) = \sum_{i=1}^{n} t_{i}(x) t_{i-1}(x)$$

(respectively $t_{n}(x^{2}) = \sum_{i=1}^{n} t_{i-1}(x) t_{i}(x)$), for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$ [8].

Let $T = (T_i)_{i \in N}$ be a family of additive mappings of a ring R into itself. Then T is called a generalized higher reverse left (respectively right) centralizer of a ring R into itself associated with the higher reverse left (respectively right) centralizer $t = (t_i)_{i \in N}$ of R, such that

$$T_{n}(xy) = \sum_{i=1}^{n} T_{i}(y) t_{i-1}(x)$$
(respectively $T_{n}(xy) = \sum_{i=1}^{n} t_{i-1}(y) T_{i}(x)$), for all $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ [9].

Let $T = (T_i)_{i \in N}$ be a family of additive mappings of a ring R into itself. Then T is called a generalized Jordan higher reverse left (respectively right) centralizer of a ring R into itself associated with Jordan higher reverse left (respectively right) centralizer $t = (t_i)_{i \in N}$ of R, such that

$$T_n(x^2) = \sum_{i=1}^n T_i(x) t_{i-1}(x)$$

(respectively $T_n(x^2) = \sum_{i=1}^n t_{i-1}(x) T_i(x)$), for all $x \in R$ and $n \in N$ [9].

2- Generalized Higher Reverse Left (Respectively Right) Centralizer on Prime Γ-Rings

Definition (2.1)

Let $T = (T_i)_{i \in N}$ be a family of additive mappings of a Γ -ring M into itself .Then T is called a generalized higher reverse left (respectively right) centralizer of the Γ -ring M, associated with the higher reverse left (respectively right) centralizer $t = (t_i)_{i \in N}$ of the Γ -ring M, into itself if, for all x, $y \in M$, $\alpha \in \Gamma$ and $n \in N$

$$T_n(x \alpha y) = \sum_{i=1}^n T_i(y) \alpha t_{i-1}(x)$$

(respectively $T_n(x \alpha y) = \sum_{i=1}^n t_{i-1}(y) \alpha T_i(x)$)

Example (2.2)

Let $T = (T_i)_{i \in N}$ be a generalized higher reverse left (respectively right) centralizer of a ring R, into itself associated with the higher reverse left (respectively right) centralizer $t = (t_i)_{i \in N}$ of R such that, for all x, $y \in R$ and $n \in N$:

$$T_n(xy) = \sum_{i=1}^n T_i(y) t_{i-1}(x)$$

(respectively $T_n(xy) = \sum_{i=1}^n t_{i-1}(y)T_i(x)$)

Let $M = M_{1 \times 2}(R)$ and $\Gamma = \left\{ \begin{pmatrix} n \\ 0 \end{pmatrix}, n \in Z \right\}$. Then M is a Γ -ring.

Let $F = (Fi)_{i \in N}$ be a family of additive mappings from a Γ -ring M into itself, such that for all $(x \ y) \in M$ $F_n((x \ y)) = (T_n(x) \ T_n(y))$.

Then, there exists a higher reverse left (respectively right) centralizer $f = (f_i)_{i \in N}$ of

a $\Gamma\text{-ring}\,M\,$ into itself , such that for all $(x\quad y)\in M,$ the following equation holds :

$$f_n((x \ y)) = (t_n(x) \ t_n(y))$$

Therefore, F_n is a generalized higher reverse left (respectively right) centralizer of M.

Definition (2.3)

Let $T = (T_i)_{i \in N}$ be a family of additive mappings of a Γ -ring M into itself. Then T is called a Jordan generalized higher reverse left (respectively right) centralizer of a Γ -ring M associated with the Jordan higher

reverse left(respectively right) centralizer t = (t_i)_{i \in N} of the Γ -ring M into itself, if for all $x \in M$, $\alpha \in \Gamma$ and $n \in N$, the following equation holds :

$$T(x \alpha x) = \sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(x)$$

(respectively $T_n(x \alpha x) = \sum_{i=1}^n t_{i-1}(x) \alpha T_i(x)$).

Definition (2.4)

Let $T = (T_i)_{i \in N}$ be a family of additive mappings of a Γ -ring M into itself .Then T is called a Jordan triple generalized higher reverse left (respectively right) centralizer of a Γ -ring M, associated with the Jordan triple higher reverse left (respectively right) centralizer $t = (t_i)_{i \in N}$ of the Γ -ring M into itself if, for all x, $y \in M$, α , $\beta \in \Gamma$ and $n \in N$, the following equation holds :

$$T_{n}(x \alpha y \beta x) = \sum_{i=1}^{n} T_{i}(x)\beta t_{i-1}(y)\alpha t_{i-1}(x)$$
(respectively resp.
$$T_{n}(x \alpha y \beta x) = \sum_{i=1}^{n} t_{i-1}(x)\beta t_{i-1}(y)\alpha T_{i}(x)$$

Lemma (2.5)

Let $T = (T_i)_{i \in N}$ be a Jordan generalized higher reverse left (respectively right) centralizer of a Γ -ring M into itself .Then for all $x, y, z \in M$, α , $\beta \in \Gamma$ and $n \in N$, the following equation holds : (i) $T_n(x \alpha y + y \alpha x) = \sum_{i=1}^n T_i(y) \alpha t_{i-1}(x) + \sum_{i=1}^n T_i(x) \alpha t_{i-1}(y)$ (respectively $T_n(x \alpha y + y \alpha x) = \sum_{i=1}^n t_{i-1}(y) \alpha T_i(x) + \sum_{i=1}^n t_{i-1}(x) \alpha T_i(y)$)

$$(\mathbf{ii}) T_{n}(x \alpha y \beta x + x \beta y \alpha x) = \sum_{i=1}^{n} T_{i}(x) \beta t_{i-1}(y) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(y) \beta t_{i-1}(x)$$

(respectively $T_{n}(x \alpha y \beta x + x \beta y \alpha x) = \sum_{i=1}^{n} t_{i-1}(x) \beta t_{i-1}(y) \alpha T_{i}(x) + \sum_{i=1}^{n} t_{i-1}(x) \alpha t_{i-1}(y) \beta T_{i}(x)$

$$(iii) T_{n}(x \alpha y \beta z + z \alpha y \beta x) = \sum_{i=1}^{n} T_{i}(z) \beta t_{i-1}(y) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(x) \beta t_{i-1}(y) \alpha t_{i-1}(z)$$

(respectively $T_{n}(x \alpha y \beta z + z \alpha y \beta x) = \sum_{i=1}^{n} t_{i-1}(z) \beta t_{i-1}(y) \alpha T_{i}(x) + \sum_{i=1}^{n} t_{i-1}(x) \beta t_{i-1}(y) \alpha T_{i}(z)$

(iv) In particular , if M is a 2-torsion free commutative Γ -ring , then

$$T_{n}(x \alpha y \beta z) = \sum_{i=1}^{n} T_{i}(z) \beta t_{i-1}(y) \alpha t_{i-1}(x)$$
(respectively $T_{n}(x \alpha y \beta z) = \sum_{i=1}^{n} t_{i-1}(z) \beta t_{i-1}(y) \alpha T_{i}(x)$)
$$(\mathbf{v})T_{n}(x \alpha y \alpha z + z \alpha y \alpha x) = \sum_{i=1}^{n} T_{i}(z) \alpha t_{i-1}(y) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(y) \alpha t_{i-1}(z)$$

(respectively $T_n(x \alpha y \alpha z + z \alpha y \alpha x) = \sum_{i=1}^n t_{i-1}(z) \alpha t_{i-1}(y) \alpha T_i(x) + \sum_{i=1}^n t_{i-1}(x) \alpha t_{i-1}(y) \alpha T_i(z)$)

<u>Proof:</u>

- (i) Since T is Jordan generalized higher reverse left (respectively right) centralizer,
- (ii) we have that

$$T_{n}((x+y) \alpha (x+y)) = \sum_{i=1}^{n} T_{i}(x+y) \alpha t_{i-1}(x+y)$$

= $\sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(y) + \sum_{i=1}^{n} T_{i}(y) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(y) \alpha t_{i-1}(y)$
....(1)

Meanwhile , we have that

$$T_{n}((x + y) \alpha (x + y)) = T_{n}(x \alpha x + x \alpha y + y \alpha x + y \alpha y)$$

= $T_{n}(x \alpha x) + T_{n}(y \alpha y) + T_{n}(x \alpha y + y \alpha x)$
= $\sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(y) \alpha t_{i-1}(y) + T_{n}(x \alpha y + y \alpha x) \dots \dots (2)$

We obtain the following equation by Comparing equations (1) and (2)

$$T_{n}(x \alpha y + y \alpha x) = \sum_{i=1}^{n} T_{i}(y) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(y)$$

(ii) By substituting that), we have i (Lemma (2.5) in *b*for) $a\beta b + b\beta a$ (

$$= \sum_{i=1}^{n} T_{i}(y) \beta t_{i-1}(x) \alpha t_{i-1}(x) + T_{i}(x) \beta t_{i-1}(y) \alpha t_{i-1}(x) + T_{i}(x) \alpha t_{i-1}(y) \beta t_{i-1}(x) + T_{i}(x) \alpha t_{i-1}(x) \beta t_{i-1}(y)...(1)$$

In addition, we obtain that

$$\begin{split} &T_{n}(x \alpha (x \beta y + y \beta x) + (x \beta y + y \beta x) \alpha x) \\ &= T_{n}(x \alpha x \beta y + x \alpha y \beta x + x \beta y \alpha x + y \beta x \alpha x) \\ &= T_{n}(y \beta x \alpha x)_{+} \quad T_{n}(x \alpha x \beta y)_{+} \quad T_{n}(x \alpha y \beta x + x \beta y \alpha x) \\ &= \sum_{i=1}^{n} T_{i}(y) \beta t_{i-1}(x) \alpha t_{i-1}(x) + T_{i}(x) \alpha t_{i-1}(x) \beta t_{i-1}(y) + T_{n}(x \alpha y \beta x + x \beta y \alpha x) \quad \dots (2) \end{split}$$

We get the following equation by Comparing equations (1) and (2)

$$T_{n}(x \alpha y \beta x + x \beta y \alpha x) = \sum_{i=1}^{n} T_{i}(x) \beta t_{i-1}(y) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(y) \beta t_{i-1}(x)$$

(iii) By substituting (a+c) for a in Definition (2.4), we have

$$= \sum_{i=1}^{n} T_{i}(x) \beta t_{i-1}(y) \alpha t_{i-1}(x) + T_{i}(x) \beta t_{i-1}(y) \alpha t_{i-1}(z) + T_{i}(z) \beta t_{i-1}(y) \alpha t_{i-1}(x) + T_{i}(z) \beta t_{i-1}(y) \alpha t_{i-1}(z)...(1)$$

Moreover,

$$\begin{split} T_n((x+z)\alpha\,y\,\beta(x+z)) &= T_n(x\,\alpha\,y\,\beta\,x + x\,\alpha\,y\,\beta z + z\,\alpha\,y\,\beta\,x + z\,\alpha\,y\,\beta z) \\ T_n(x\,\alpha\,y\,\beta\,x) + T_n(z\,\alpha\,y\,\beta z) + T_n(x\,\alpha\,y\,\beta z + z\,\alpha\,y\,\beta\,x) \end{split} = \end{split}$$

(2)

$$= \sum_{i=1}^{n} T_{i}(x) \beta t_{i-1}(y) \alpha t_{i-1}(x) + T_{i}(z) \beta t_{i-1}(y) \alpha t_{i-1}(z) T_{n}(x \alpha y \beta z + z \alpha y \beta x)$$

The following equation is obtained by comparing equations (1) and (2)

$$T_{n}(x \alpha y \beta z + z \alpha y \beta x) = \sum_{i=1}^{n} T_{i}(z) \beta t_{i-1}(y) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(x) \beta t_{i-1}(y) \alpha t_{i-1}(z)$$

...

(iv) Using Lemma (2.5) (iii) and the fact that $\,M$ is a commutative $\Gamma\text{-ring}$, we have that

$$T_{n}(x \alpha y \beta z + x \alpha y \beta z) = 2T_{n}(x \alpha y \beta z)$$
$$= 2\sum_{i=1}^{n} T_{i}(z) \beta t_{i-1}(y) \alpha t_{i-1}(x)$$

We obtain the required result, by utilizing the fact that M is a 2-torsion free .

(v) The substitution β for α in Lemma (2.5) (iii), gives that

$$T_{n}(x \alpha y \alpha z + z \alpha y \alpha x) = \sum_{i=1}^{n} T_{i}(z) \alpha t_{i-1}(y) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(y) \alpha t_{i-1}(z)$$

Definition (2.6)

Let $T = (T_i)_{i \in N}$ be a Jordan generalized higher reverse left (respectively right) centralizer of a Γ -ring M ring into itself. Then for all $x, y \in M$, $\alpha \in \Gamma$ and $n \in N$, we define

$$\delta_{n}(x, y)_{\alpha} = T_{n}(x \alpha y) - \sum_{i=1}^{n} T_{i}(y) \alpha t_{i-1}(x)$$
(respectively $\delta_{n}(x, y)_{\alpha} = T_{n}(x \alpha y) - \sum_{i=1}^{n} t_{i-1}(y) \alpha T_{i}(x)$)

Lemma (2.7)

Let $T = (T_i)_{i \in N}$ be a Jordan generalized higher reverse left (respectively right) centralizer of a Γ -ring M ring into itself. Then for all x, y, $z \in M$, α , $\beta \in \Gamma$ and $n \in N$, we have that the following equations hold :

(i)
$$\delta_n(x, y)_{\alpha} = -\delta_n(y, x)_{\alpha}$$

(ii) $\delta_n(x + y, z)_{\alpha} = \delta_n(x, z)_{\alpha} + \delta_n(y, z)_{\alpha}$
(iii) $\delta_n(x, y + z)_{\alpha} = \delta_n(x, y)_{\alpha} + \delta_n(x, z)_{\alpha}$
(iv) $\delta_n(x, y)_{\alpha+\beta} = \delta_n(x, y)_{\alpha} + \delta_n(x, y)_{\beta}$

Proof:

(i) By applying Lemma (2.5) (i), we have that

$$T_{n}(x \alpha y + y \alpha x) = \sum_{i=1}^{n} T_{i}(y) \alpha t_{i-1}(x) + \sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(y)$$
$$T_{n}(x \alpha y) - \sum_{i=1}^{n} T_{i}(y) \alpha t_{i-1}(x) = -(T_{n}(y \alpha x) - \sum_{i=1}^{n} T_{i}(x) \alpha t_{i-1}(y))$$
Thus $\delta_{i}(x, y) = -\delta_{i}(x, y)$

Thus, δ_n (x ,y) $_{\alpha} = - \delta_n$ (y , x) $_{\alpha}$

(ii)
$$\delta_{n}(x + y, z)_{\alpha} = T_{n}((x + y)\alpha z) = \sum_{i=1}^{n} T_{i}(z)\alpha t_{i-1}(x + y)$$

$$= T_{n}(x \alpha z + y \alpha z) - \sum_{i=1}^{n} T_{i}(z)\alpha t_{i-1}(x) - \sum_{i=1}^{n} T_{i}(z)\alpha t_{i-1}(y)$$

$$= T_{n}(x \alpha z) - \sum_{i=1}^{n} T_{i}(z)\alpha t_{i-1}(x) + T_{n}(y \alpha z) - \sum_{i=1}^{n} T_{i}(z)\alpha t_{i-1}(y)$$

$$= \delta_{n}(x, z)_{\alpha} + \delta_{n}(y, z)_{\alpha}$$
(iii) $\delta_{n}(x, y + z)_{\alpha} = T_{n}(x \alpha (y + z)) = \sum_{i=1}^{n} T_{i}(y + z)\alpha t_{i-1}(x)$

$$= T_{n}(x \alpha y + x \alpha z) - \sum_{i=1}^{n} T_{i}(y)\alpha t_{i-1}(x) - \sum_{i=1}^{n} T_{i}(z)\alpha t_{i-1}(x)$$

$$= T_{n}(x \alpha y) - \sum_{i=1}^{n} T_{i}(y)\alpha t_{i-1}(x) + T_{n}(x \alpha z) - \sum_{i=1}^{n} T_{i}(z)\alpha t_{i-1}(x)$$

$$= \delta_{n}(x, y)_{\alpha} + \delta_{n}(x, z)_{\alpha}$$
(iv) $\delta_{n}(x, y)_{\alpha+\beta} = T_{n}(x (\alpha + \beta) y) - \sum_{i=1}^{n} T_{i}(y)(\alpha + \beta) t_{i-1}(x)$

 $= \delta_n \; (\; x \; , \; y \;)_{\alpha} + \; \delta_n \; (\; x \; , \; y \;)_{\beta}$

Remark (2.8)

It is noteworthy that $T=(\ T_i\)_{i\in\ N}$ is a generalized higher reverse left (respectively right) centralizer of a Γ -ring M, into itself if and only if $\ \delta_n(\ x\ ,\ y\)_\alpha=\ 0,$ for all $\ x\ ,\ y\ \in\ M$, $\ \alpha\ \in\ \Gamma$ and $\ n\ \in\ N.$

Lemma (2.9)

Let $T = (T_i)_{i \in N}$ be a Jordan generalized higher reverse left (respectively right) centralizer of a prime Γ -ring M, into itself. Then for all x, y, $z \in M$, α , $\beta \in \Gamma$ and $n \in N$, the following equations hold :

(i)
$$\delta_n (x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(y)]_{\alpha} = 0$$

(ii) $\delta_n (x, y)_{\alpha} \alpha t_{n-1}(z) \alpha [t_{n-1}(x), t_{n-1}(y)]_{\alpha} = 0$
(iii) $\delta_n (x, y)_{\beta} \alpha t_{n-1}(z) \alpha [t_{n-1}(x), t_{n-1}(y)]_{\beta} = 0$
Proof:
(i) The Proof is utilizing induction on $n \in N$
If $n = 1$,
let let $w = x \alpha y \beta z \beta y \alpha x + y \alpha x \beta z \beta x \alpha y$
Then, we obtain that
 $T(w) = T (x \alpha (y \beta z \beta y) \alpha x + y \alpha (x \beta z \beta x) \alpha y)$
 $= T (x) \alpha y \beta z \beta y \alpha x + t (y) \alpha x \beta z \beta x \alpha y$...(1)
Moreover, we have that
 $T(w) = T ((x \alpha y) \beta z \beta (y \alpha x) + (y \alpha x) \beta z \beta (x \alpha y))$

 $= T (y \alpha x) \beta z \beta y \alpha x + t (x \alpha y) \beta z \beta x \alpha y$

... (2)

s

 $^+$

The Comparison of equations (1) and (2) $\ yields$ that

$$\begin{array}{ll} 0 = (\mbox{ T}(\mbox{ y } \alpha) \beta \mbox{ z } \beta \mbox{ y } \alpha \mbox{ x } + (\mbox{ T}(\mbox{ x } \alpha \mbox{ y }) - \mbox{ t} (\mbox{ y }) \alpha \mbox{ z } \beta \mbox{ z } \alpha \mbox{ x } \alpha \mbox{ y } 0 = \delta(\mbox{ x }) _{\alpha} \beta \mbox{ z } \beta \mbox{ y } \alpha \mbox{ x } + \delta(\mbox{ x } , \mbox{ y }) _{\alpha} \beta \mbox{ z } \beta \mbox{ x } \alpha \mbox{ y } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ \beta } z \mbox{ \beta } x \mbox{ \alpha } x \mbox{ y }) _{\alpha} \beta \mbox{ z } \beta \mbox{ x } \alpha \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ \beta } z \mbox{ \beta } (\mbox{ x } , \mbox{ y }) _{\alpha} \beta \mbox{ z } \beta \mbox{ x } \alpha \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ \beta } z \mbox{ \beta } (\mbox{ x } , \mbox{ y }) _{\alpha} \beta \mbox{ z } \beta \mbox{ x } \alpha \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ \beta } z \mbox{ \beta } x \mbox{ \alpha } y \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ \beta } z \mbox{ \beta } x \mbox{ \alpha } y \mbox{ \alpha } \alpha \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ \beta } z \mbox{ \beta } x \mbox{ \alpha } y \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ \beta } z \mbox{ \beta } x \mbox{ \alpha } y \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ \beta } z \mbox{ \beta } x \mbox{ \alpha } y \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ \beta } z \mbox{ \beta } x \mbox{ \alpha } y \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ z } \alpha \mbox{ x } y \mbox{ x } z \mbox{ x } 0 \mbox{ x } 0 = \delta(\mbox{ x } , \mbox{ y } \alpha \mbox{ z } \alpha \mbox{ x } y \mbox{ x } z \mbox{ x } 0 \mbox{ x } 0 \mbox{ x } 0 \mbox{ z } 0 \mbox{ x } 0 \mbox{ x } 0 \mbox{ z } 0 \mbox{ x } 0 \mbox{ z } 0 \mbox{ x } 0$$

By comparing equations (3) and $\ (4$) , we have that

$$0 = (T_n(y \alpha x) - \sum_{i=1}^n T_i(x) \alpha t_{i-1}(y)) \beta t_{n-1}(z) \beta t_{n-1}(y) \alpha t_{n-1}(x) +$$

$$(T_n(x \ \alpha \ y) = \sum_{i=1}^n T_i(y) \ \alpha \ t_{i-1}(x) \) \ \beta \ t_{n-1}(z) \ \beta \ t_{n-1} \ (x) \ \alpha \ t_{n-1}(y) +$$

$$+)(x_{1-i} \ t \ \alpha \ (y)_{1-i} \ t \ \beta \ (z)_{1-i} \ t \ \beta) \ y)(_{1-i} \ t \ \alpha \ (x)_i T =) \ x \ \alpha y \ (_i T(\sum_{i=1}^{n-1} x_i - x_i) \ x_i - x_i) \ x_i \ x_i \ (x) \ x_i = 0$$

$$\sum_{i=1}^{n-1} \ (\ T_i(x \ \alpha \ y) \ - \ T_i(y) \ \alpha \ t_{\ i-1} \ (x) \) \ \beta \ t_{\ i-1}(z) \ \beta \ t_{\ i-1} \ (x) \ \alpha \ t_{\ i-1} \ (y)$$

It follows that

$$0 = \delta_{n}(y, x)_{\alpha} \beta t_{n-1}(z) \beta t_{n-1}(y) \alpha t_{n-1}(x) +$$

 $\delta_{n}(x, y)_{\alpha} \beta t_{n-1}(z) \beta t_{n-1}(x) \alpha t_{n-1}(y)$

0 =+

x)(1-n t
$$\alpha$$
 (y) 1-n t β (z)1 -n t β α (x ,y)n δ -

 α , $\beta \in \Gamma$ and $n \in N$

 $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta t_{n-1}(x) \alpha t_{n-1}(y)$

 $0 = \delta_n(x, y)_{\alpha} \,\beta \,t_{\,n-1}(z) \,\beta \,(\,t_{\,n-1}(x) \,\alpha \,t_{\,n-1}(y) \,-\, t_{\,n-1}(y) \,\alpha \,t_{\,n-1}(x) \,)$

Thus , $\delta_n(x,y)_{\alpha} \ \beta \ t_{n-1}(z) \ \beta \ [\ t_{n-1}(x) \ , \ t_{n-1}(y) \]_{\alpha} = 0$, for all $\ x \ , \ y \ , \ z \ \in \ M$,

 $\alpha \ , \ \beta \ \in \ \Gamma \ and \ n \ \in \ N$

(ii) By substituting β for α in Lemma (2.9) (i) and applying similar arguments as in the proof of Lemma (2.9) (i), we obtain Lemma (2.9) (ii).

(iii) We get Lemma (2.9) (iii), by Interchanging α and β in Lemma (2.9) (i).

Lemma (2.10)

Let $T = (T_i)_{i \in N}$ be a Jordan generalized higher reverse left (respectively right) centralizer of a prime Γ -ring

M into itself . Then for all $\,x$, y , z , u , $v\ \in\ M$,

(i) $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(u), t_{n-1}(v)]_{\alpha} = 0$

(ii) $\delta_n(x, y)_{\alpha} \alpha t_{n-1}(z) \alpha [t_{n-1}(u), t_{n-1}(v)]_{\alpha} = 0$

(iii) $\delta_n(x, y)_{\alpha} \alpha t_{n-1}(z) \alpha [t_{n-1}(u), t_{n-1}(v)]_{\beta} = 0$

Proof:

(i) By substituting (a + c) for a in Lemma (2.9)(i), we have that

 $\delta_n(x + u, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x + u), t_{n-1}(y)]_{\alpha} = 0$. Thus

 $\delta_n(x \ ,y)_{\alpha} \ \beta \ t_{n \ \cdot 1}(z) \ \beta \ [\ t_{n \ \cdot \ 1}(x) \ , \ t_{n \ \cdot \ 1}(y) \]_{\alpha} + \\$

 $\delta_n(x,y)_{\alpha} \ \beta \ t_{n-1}(z) \ \beta \ [\ t_{n-1}(u) \ , \ t_{n-1}(y) \]_{\alpha} +$

 $\delta_n(u\,\,,y)_\alpha\;\beta\;t_{n\,\text{--}1}(z)\;\beta\;\;[\;t_{n\,\text{--}1}(x)\;,\,t_{n\,\text{---}1}(y)\;]_\alpha+$

 $\delta_n(u, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(u), t_{n-1}(y)]_{\alpha} = 0$

By applying Lemma (2.9) (i), we obtain that

 $\delta_n(x\,\,,\!y)_\alpha\,\beta\,\,t_{n\,\text{--}1}(z)\,\beta\,[\,\,t_{n\,\text{--}1}(u)\,\,,\,t_{n\,\text{---}1}(y)\,\,]_\alpha\,+\,$

 $δ_n(u, y)_α β t_{n-1}(z) β [t_{n-1}(x), t_{n-1}(y)]_α = 0$

Therefore, we get that

 $\delta_n(x \ ,y)_{\alpha} \ \beta \ t_{n \ -1}(z) \ \beta \ [\ t_{n \ -1}(u) \ , \ t_{n \ -1}(y) \]_{\alpha} \ \beta \ t_{n \ -1}(z) \ \beta \ \delta_n(x \ ,y)_{\alpha}$

 $\beta t_{n-1}(z) \beta [t_{n-1}(u), t_{n-1}(y)]_{\alpha} = 0$

This implies that

 $0 = - \ \delta_n(x \ ,y)_{\alpha} \ \beta \ t_{n \ \cdot 1}(z) \ \beta \ [\ t_{n \ \cdot 1}(u) \ , \ t_{n \ \cdot 1}(y)]_{\alpha} \ \beta \ t_{n \ \cdot 1}(z) \ \beta \ \delta_n(u \ ,y)_{\alpha} \ \beta \ t_{n \ \cdot 1}(z) \ \beta$

1 $[t_{n-1}(x), t_{n-1}(y)]_{\alpha}$ Since M is a prime Γ -ring, we have that $\delta_{n}(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(u), t_{n-1}(y)]_{\alpha} = 0$...(1) The substitution of (y + v) for y in Lemma (2.9) (i), gives that $\delta_n(x, y + v)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(y + v)]_{\alpha} = 0$ $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(y)]_{\alpha} +$ $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(v)]_{\alpha} +$ $\delta_n(x, v)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(y)]_{\alpha} +$ $\delta_n(x, v) \ _{\alpha}\beta \ t_{n-1}(z) \ \beta \ [\ t_{n-1}(x) \ , t_{n-1}(v) \]_{\alpha} = \ 0$ By utilizing Lemma (2.9) (i), we obtain that $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(v)]_{\alpha} +$ $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(y)]_{\alpha} = 0$ Consequently, we have $\delta_n(x \ ,y)_{\alpha} \ \beta \ t_{n \ \cdot 1}(z) \ \beta \ [\ t_{n \ \cdot 1}(x) \ ,t_{n \ \cdot 1}(v)]_{\alpha} \ \beta \ t_{n \ \cdot 1}(z) \ \beta \ \delta_n(x \ ,y)_{\alpha}$ $\beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(v)]_{\alpha} = 0$ This implies that $0 = \delta - \ _n(x \ ,y)_{\alpha} \ \beta \ t_{n \ \cdot 1}(z) \ \beta \ [\ t_{n \ \cdot 1}(x) \ ,t_{n \ \cdot 1}(v) \]_{\alpha} \ \beta \ t_{n \ \cdot 1}(z) \ \beta \ \delta_n(x \ ,v)_{\alpha}$ $\beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(y)]_{\alpha}$ The fact that M is a prime number yields that $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(v)]_{\alpha} = 0$ (2). . . Now, $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x+u), t_{n-1}(y+v)]_{\alpha} = 0$ $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(y)]_{\alpha} +$ $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(x), t_{n-1}(v)]_{\alpha} +$ $\delta_n(x, y)_{\alpha} \beta t_{n-1}(z) \beta [t_{n-1}(u), t_{n-1}(y)]_{\alpha} +$ $\delta_n(x\,\,,y)_\alpha\,\beta\,t_{n\,\text{--}1}(z)\,\beta\,[\,\,t_{n\,\text{--}1}(u)\,\,,\,t_{n\,\text{---}1}(v)\,\,]_\alpha\,=\,0$ By employing equations (1), (2) and Lemma (2.9) (i), we get $\delta_n(x \ ,y)_{\alpha} \ \beta \ t_{n \ -1}(z) \ \beta \ [\ t_{n \ -1}(u) \ , \ t_{n \ -1}(v) \]_{\alpha} \ = \ 0$ (ii) We can obtain Lemma (2.10) (ii) by substituting β in Lemma (2.10) (i). (iii) By substituting $\alpha + \beta$ for α in Lemma (2.10) (ii), we have $\delta_n(x \; , y)_{\alpha + \; \beta} \; \alpha \; t_{n \; \text{--}\, 1}(z) \; \alpha \; \; [\; t_{n \; \text{--}\, 1}(u) \; , \; t_{n \; \text{--}\, 1}(v) \;]_{\alpha + \; \beta} \; = \; 0$ This implies that $\delta_n(x, y)_{\alpha} \alpha t_{n-1}(z) \alpha [t_{n-1}(u), t_{n-1}(v)]_{\alpha} +$ $\delta_n(x, y)_{\alpha} \alpha t_{n-1}(z) \alpha [t_{n-1}(u), t_{n-1}(v)]_{\beta} +$ $\delta_n (x, y)_{\beta} \alpha t_{n-1}(z) \alpha [t_{n-1}(u), t_{n-1}(v)]_{\alpha} +$ $\delta_n(x, y)_{\beta} \alpha t_{n-1}(z) \alpha [t_{n-1}(u), t_{n-1}(v)]_{\beta} = 0$ By applying equations (i) and (ii), we get that $\delta_n(x, y)_{\alpha} \alpha t_{n-1}(z) \alpha [t_{n-1}(u), t_{n-1}(v)]_{\beta} +$ $\delta_n(x, y)_{\beta} \alpha t_{n-1}(z) \alpha [t_{n-1}(u), t_{n-1}(v)]_{\alpha} = 0$

Therefore, we get that

 $\delta_n(x \ ,y)_{\alpha} \ \alpha \ t_n \ _{\text{-1}}(z) \ \alpha \ [\ t_n \ _{\text{-1}}(u) \ , \ t_n \ _{\text{-1}}(v) \]_{\beta} \ \alpha \ t_n \ _{\text{-1}}(z) \ \alpha \ \delta_n(x \ ,y)_{\alpha}$

 $\alpha \, t_{n \, \text{--}\, 1}(z) \alpha \, [\, t_{n \, \text{---}\, 1}(u) \, , \, t_{n \, \text{---}\, 1}(v) \,]_{\beta} \, = \, 0$

This yields that

 $\delta_n(x,y)_\beta \alpha t_{n-1}(z) \alpha [t_{n-1}(u), t_{n-1}(v)]_\alpha$

The fact that M is a prime Γ -ring gives that

 $\delta_n(x\,\,,y)_{\alpha}\,\alpha\,\,t_{n\,\text{--}1}(z)\,\alpha\,\,[\,\,t_{n\,\text{---}1}(u)\,\,,\,t_{n\,\text{----}1}(v)\,\,]_{\beta}\,\,=\,\,0$

Theorem (2.11)

Every Jordan generalized higher reverse left (respectively right) centralizer of a 2-torsion free prime Γ -ring M into itself is a generalized higher reverse left (respectively right) centralizer of M.

Proof:

Let $T = (T_i)_{i \in N}$ be a Jordan generalized higher reverse left (respectively right) centralizer of a prime Γ -ring M into itself. Since M is a prime Γ -ring, then by employing Lemma (2.10)(i), we have that either

 $\delta_n(\;x\;,\;y\;)_\alpha\;=\;0\;\;or\;\;[\;t_{n\;-\;1}(\;u\;)\;,\;t_{n\;-\;1}(\;v\;)\;]_\alpha\;=\;0\;\;,\;for\;all\;\;x\;,\;y\;,\;u\;\;,\;v\;\in\;M\;,$

$$\alpha \in \Gamma$$
 and $n \in N$.

 $If \; [\; t_{n \; - \; 1}(\; u \;) \; , \; t_{n \; - \; 1}(\; v \;)] \; _{\alpha} \; \neq \; 0 \; , \; for \; all \; \; u \; \; , \; \; v \; \in \; M \; , \; \; \alpha \; \in \; \Gamma \; , then \; \; \delta_n(\; x \; , \; y \;)_{\alpha} \; = \; 0 \; ,$

for all $\,x\,,\,y\,\,\in\,\,M\,$ and $\,n\,\,\in\,\,N\,$. Hence , using Remark (2.8) , we obtain that

T is a generalized higher reverse left (respectively right) centralizer of M.

If $[t_{n-1}(u), t_{n-1}(v)]_{\alpha} = 0$, for all $u, v \in M$ and $n \in N$, then

M is commutative .

By utilizing Lemma (2.5)(i), we have that

$$\Gamma_{n}(x \alpha y + x \alpha y) = T_{n}(2x \alpha y)$$
$$= 2T (x \alpha y)$$

$$= 2 \sum_{i=1}^{n} T_{i}(y) \alpha t_{i-1}(x)$$

Since M is a 2-torsion free Γ -ring , we get that

$$T_n(x \alpha y) = \sum_{i=1}^n T_i(y) \alpha t_{i-1}(x).$$

Then T is a generalized higher reverse left (respectively right) centralizer of $\,M\,$.

Proposition (2.11)

Let $T = (T_i)_{i \in N}$ be a Jordan generalized higher reverse left (respectively right) centralizer of a 2-torsion free Γ -ring M into itself, such that $x \alpha y \beta x = x \beta y \alpha x$, for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. Then T is a Jordan triple generalized higher reverse left (respectively right) centralizer of M.

Proof:

The substitution of b for $(x \alpha y + y \alpha x)$ in Lemma (2.5)(i), we have that

$$= \sum_{i=1}^{n} T_{i}(y) \ \beta \ t_{i-1}(x) \alpha \ t_{i-1}(x) + T_{i}(x) \ \beta \ t_{i-1}(y) \ \alpha \ t_{i-1}(x) + T_{i}(x) \ \beta \ t_{i-1}(y) \ \alpha \ t_{i-1}(x) + T_{i}(x) \ \alpha \ t_{i-1}(x) \ \beta \ t_{i-1}(y)...(1)$$

Moreover, we get that

 $T_{n}(x \alpha (x \beta y + y \beta x) + (x \beta y + y \beta x) \alpha x)$ $= t_{n}(x \alpha x \beta y + x \alpha y \beta x + x \beta y \alpha x + y \beta x \alpha x)$ $= T_{n}(y \beta x \alpha x)_{+} T_{n}(x \alpha x \beta y)_{+} T_{n}(x \alpha y \beta x + x \beta y \alpha x)$ $= \sum_{i=1}^{n} T_{i}(y) \beta t_{i-1}(x) \alpha t_{i-1}(x) + T_{i}(x) \alpha t_{i-1}(x) \beta t_{i-1}(y)_{+}$

$$T_n(x \alpha y \beta x + x \beta y \alpha x)...(2)$$

By comparing equations (1) , (2) and the fact that x α y β x = x β y α x ,

for all $x\,,\,y\in\,M\,$ and $\,\,\alpha\,,\,\,\beta\in\,\Gamma,$ we have that

 $T_n(x \alpha y \beta x + x \alpha y \beta x) = 2T_n(x \alpha y \beta x)$

$$= 2\sum_{i=1}^{n} T_{i}(x)\beta t_{i-1}(y)\alpha t_{i-1}(x)$$

Since M is a 2-torsion free Γ -ring, we obtain that F is a Jordan triple generalized higher reverse left

(respectively right) centralizer of M.

References:

- [1] W. E Barnes. " On The Γ-Rings of Nobusawa ", Pac. J. Math., 18, (3), 411-422, 1966.
- [2] Y. Ceven . and M. A Ozturk , " On Jordan Generalized Derivations in Gamma Rings ", Hacet. J. Math Stat., 33, 11-14, 2004.
- [3] B.M Hamad, " (U,M) derivations on Γ-Rings ", M.Sc.Thesis, Department of mathematics, College of Education, Al-Mustansiriya University, 2012
- [4] M.F Hoque and A.C Paul, "On Centralizers of Semiprime Gamma Rings ", International Mathematical Forum, 6(13), 627-638, 2011.

[5] S. Kyuno, "On prime gamma Rings", Pac. J. Math, 75(1), 185 - 190, 1978.

[6] S.M Salih, "generalized higher left Centralizer of prime Rings ", Int.J. curr.Res., 8(11), 40966 - 40975, 2016.

[7] F.R Jarullah and S.M Salih , "Higher Reverse Left (respectively Right) Centralizer of Prime Γ -Rings ", to appear .

[8] F.R Jarullah and S.M Salih, " Jordan Higher Reverse Left (respectively Right) Centralizer of Prime Rings ", to appear .

[9] F.R Jarullah and S.M Salih, " Jordan Generalized Higher Reverse Left (respectively Right) Centralizer of Prime Rings ", to appear .