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Abstract 

Several results assert that the existence of a suitably-constrained derivation on a prime near-ring 

forces the near-ring to be a ring. Our aim in this paper is to investigate the commuting conditions on 

derivations in near ring. Moreover, examples proving the necessity of the primeness condition are  

given.  

Key Words: Commuting condition, Derivation, Prime near-ring, Ring   

 

1.  Introduction 

A left near-ring is a set N with two operations addition (+) and multiplication ( .) such that (N,+) is a 

group and (N, .) is a semigroup satisfying the left distributive law x . (y + z) = x . y + x . z for all x, y, z 

∈ N.  N is called Zero symmetric left near-rings satisfy 0 . x = 0 for all x ∈ N (recall that left 

distributivity yields x . 0 = 0). Throughout this paper we use left near ring, unless otherwise specified, 

we will use the word near-ring to mean zero symmetric left near-ring and denote xy instead of x. y. An 

additive mapping 𝑑: 𝑁 → 𝑁 is said to be a derivation if d(xy) = xd(y) + d(x)y for all x, y ∈ N or 

equivalently that d(xy) = d(x)y +xd(y) for all x, y  ∈  N. A near-ring N is said to be prime if xNy = 0 for 

x, y  ∈ N implies x = 0 or y = 0. As usual, additive commutator is denoted by  

 ( x, 𝑦) = 𝑥- 𝑦 - 𝑥 -  , [x, y] = xy + yx and x o y = xy + yx will denote the well-known Lie and Jordan 

products respectively. An element 𝑥 in a near-ring N is said to be 2-torsion free if 2𝑥 = o implies that 

 𝑥 = o for every 𝑥∈ 𝑁. The symbol Z(N) will represent the multiplicative center of N, that is  

Z(N) ={x ∈ N | 𝑥𝑦 = 𝑦𝑥 for all 𝑦 ∈ 𝑁 }. Properties of commutators:- Let be a near ring, then the 

following properties are satisfied. Then [𝑥 , 𝑦𝑥] = [𝑥 , 𝑦]𝑥, xo(yx) = (xoy)x, [𝑥 𝑦, y]= [𝑥, y]y, (𝑥𝑦 o 𝑦)= 

(𝑥o 𝑦)o 𝑦,  [[𝑥, 𝑦] , 𝑧] + [[𝑦, 𝑧] , 𝑥] + [[𝑧, 𝑥] , 𝑦] , for all 𝑥 𝑦 ∈ N. There is an increasing body of 

evidence that prime near-rings with derivations have ring like behavior, indeed, there are several 

results asserting that the existence of a suitably-constrained derivation on a prime near-ring forces the 

near-ring to be a ring. In this paper we continue the line of investigation regarding the study of prime 

near-rings with derivations. More precisely, we shall prove that a prime near-ring which admits a 

nonzero commuting derivation satisfying certain differential identities. 
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1. PRELIMINARIES RESULTS 

To prove our results we start with the following definition and lemmas: 

Definition 1(see [3]).A mapping 𝑑: 𝑁 → 𝑁 is said to be centralizing (resp. commuting) derivation on a 

near-ring 𝑁 if [𝑑(𝑥), 𝑥] ∈ 𝑍(𝑁) or[𝑑(𝑥), 𝑥] = 0, holds for all 𝑥 in 𝑁. 

Lemma 1 (see [1, Theorem 3]) .If a prime near-ring 𝑁 admits a nontrivial derivation 𝑑 for which  

             𝑑(𝑁) ⊆ 𝑍(𝑁), then (𝑁, +) is abelian. Moreover, if 𝑁 is 2-torsion-free, then 𝑁 is a 

commutative ring. 

Lemma 2(see [2]).Let 𝑑 be an arbitrary derivation on the near-ring 𝑁, then 𝑁 satisfies the following 

partial distributive law: 

(i)  (𝑥𝑑(𝑦) + 𝑑(𝑥)𝑦)𝑧 = 𝑥𝑑(𝑦)𝑧 + 𝑑(𝑥)𝑦𝑧  for all 𝑥, 𝑦 ∈ 𝑁. 

(ii) (𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦))𝑧 = 𝑑(𝑥)𝑦𝑧 + 𝑥𝑑(𝑦)𝑧 for all 𝑥, 𝑦 ∈ 𝑁. 

Lemma 3.A near ring N has no non-zero nilpotent elements if and only if a2 = 0 implies a = 0, ∀a ∈

N. 

2. THE MAIN RESULTS  

Theorem 1(see [4]).Let N be prime near-ring. If N admits anon-zero derivation d satisfying 

d([x,y])=[x, y] ∀𝑥, 𝑦𝜖𝑁. Then d is commuting ( resp. centralizing derivation on N). 

Proof. We have 𝑑([𝑥, 𝑦]) = [𝑥, 𝑦] for all 𝑥, 𝑦 ∈ 𝑁                                                                                        

(1.1) 

Replacing 𝑦 by 𝑥𝑦 in equation (5.1), because of [𝑥, 𝑥𝑦] = 𝑥[𝑥, 𝑦], we get 𝑥[𝑥, 𝑦] = 𝑑(𝑥[𝑥, 𝑦]) for all 

𝑥, 𝑦 ∈ 𝑁 

Since 𝑑(𝑥[𝑥, 𝑦]) = 𝑥𝑑([𝑥, 𝑦]) + 𝑑(𝑥)[𝑥, 𝑦],  

Then according to equation (1.1) we obtain 

𝑥[𝑥, 𝑦] = 𝑥[𝑥, 𝑦] + 𝑑(𝑥[𝑥, 𝑦]) and therefore 𝑑(𝑥)[𝑥, 𝑦] = 0, 

  Hence, 

𝑑(𝑥)(𝑥𝑦 − 𝑦𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝑁                                                                                     (1.2)                                                                       

Substituting 𝑦𝑧 for 𝑦 in equation (1.2), we obtain 𝑑(𝑥)𝑦(𝑥𝑧 − 𝑧𝑥) = 0 and the equation (5.2) which 

leads to 

𝑑(𝑥)𝑁(𝑥𝑧 − 𝑧𝑥) = {0} for all 𝑥, 𝑧 ∈ 𝑁                                                                                 (1.3)                                                                                                                                                                                                                         

Since 𝑁 is prime, equation (1.3) reduces to 

𝑑(𝑥) = 0 or [𝑥, 𝑧] = 0 for all 𝑥, 𝑧 ∈ 𝑁                                                                                 (1.4)                                                       
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From equation (1.4) assume that [𝑥, 𝑧] = 0 for all 𝑥, 𝑧 ∈ 𝑁 .Take x=z implies [x, x]=0 ∀𝑥 ∈ 𝑁, then  

x∈ 𝑍(𝑁) implies that d(x)∈ 𝑍(𝑁). Since z∈ 𝑍(𝑁),since 𝑑 ≠ 0 on 𝑁, then 𝑥 ∈ 𝑍(𝑁) implies  

that 𝑑(𝑥) ∈ 𝑍(𝑁)                                                                                             (1.5)                                                                                 

This shows that from equation(1.4), we obtain that [x, d(x)]=0, ∀𝑥 in 𝑁…….(1.6). 

In the light of equation (1.6), we have 𝑑(𝑁) ⊆ 𝑍(𝑁) by lemma 1.2 and using equation (1.5), we 

conclude that 𝑑 is commuting. 

Example 1(see [4]. Let 𝑅 be a commutative ring which is not a zero ring and consider 

 𝑁 = {(
0 0
𝑥 𝑦

) 𝑥⁄ , 𝑦 ∈ 𝑅}, if we define a derivation 𝑑: 𝑁 → 𝑁 by 𝑑 (
0 0
𝑥 𝑦

) = (
0 0
𝑥 0

), then it is 

straightforward to check that 𝑑 is a nonzero derivation on a near ring 𝑁. On the other hand, if there is 

𝐴 = (
0 0
𝑥1 0

) and 𝐵 = (
0 0
0 𝑦1

) for all 𝑥1,𝑦1 ∈ 𝑅. We have 𝐴𝑁𝐵 = {0} for all  𝐴, 𝐵 ∈ 𝑁, but 𝐴 ≠ 0 

and 𝐵 ≠ 0, from this observations 𝑁 is not prime. Moreover, 𝑑 satisfies the condition 𝑑([𝐴, 𝐵]) =

[𝐴, 𝐵] for all 𝐴, 𝐵 ∈ 𝑁. But  𝐴 ∙ 𝐵 ≠ 𝐵 ∙ 𝐴, which yields that 𝑑 is not commuting.  

Theorem 2 (see [4]).Let N be prime near-ring. If N admits anon-zero derivation d satisfying d(x∘ 𝑦) =

𝑥 ∘ 𝑦  

∀x, y ∈ N.Then d is commuting (resp. centralizing on N). 

Proof: From the hypothesis, we have 𝑑(𝑥𝑜𝑦) = 𝑥𝑦 + 𝑦𝑥  ∀𝑥, 𝑦 ∈ 𝑁. (2.1)                                                                                  

Replacing 𝑦 by 𝑥𝑦 in equation (2.1), we get (𝑥𝑜(𝑥𝑦)) = 𝑥2𝑦 + 𝑥𝑦𝑥 ∀𝑥, 𝑦 ∈ 𝑁. (2.2).                                                                         

Since, we have 𝑥𝑜(𝑥𝑦) = 𝑥(𝑥𝑜𝑦),  

Then equation (2.2) yields 𝑑(𝑥𝑜(𝑥𝑦)) = 𝑑(𝑥(𝑥𝑜𝑦)) 

          = 𝑥𝑑(𝑥𝑜𝑦) + 𝑑(𝑥)𝑥𝑜𝑦 ∀𝑥, 𝑦 ∈ 𝑁. 

From the given we have 𝑑(𝑥𝑜𝑦) = 𝑥𝑜𝑦,  Hence, equation (2.2) reduces to  

𝑑(𝑥𝑜(𝑥𝑦)) = 𝑥(𝑥𝑜𝑦) + 𝑑(𝑥)(𝑥𝑜𝑦) = 𝑥2𝑦 + 𝑥𝑦𝑥 + 𝑑(𝑥)(𝑥𝑜𝑦), ∀𝑥, 𝑦 ∈ 𝑁.         (2.3)                                                                                                                                                                            

As we have from equations (2.3), we get 

𝑥2𝑦 + 𝑥𝑦𝑥 = 𝑥2𝑦 + 𝑥𝑦𝑥 + 𝑑(𝑥)(𝑥𝑜𝑦) 

Then equation (2.3) assures that 

𝑑(𝑥)(𝑥𝑜𝑦) = 0, ∀𝑥, 𝑦 ∈ 𝑁. This leads to   

𝑑(𝑥)𝑥𝑦 = −𝑑(𝑥)𝑦𝑥 for all ∀𝑥, 𝑦 ∈ 𝑁                                                                                  (2.4)                                                                           

Substituting 𝑦𝑧 for 𝑦 in equation (2.4) we find that  

−𝑑(𝑥)𝑦𝑧𝑥 = 𝑑(𝑥)𝑥𝑦𝑧 

                                                                      = (−𝑑(𝑥)𝑦𝑥)𝑧 

                                                                     = 𝑑(𝑥)𝑦(−𝑥)𝑧 , ∀𝑥, 𝑦, 𝑧 ∈ 𝑁.         

Since from equation (2.4), we get 

−𝑑(𝑥)𝑦𝑧𝑥 = 𝑑(𝑥)𝑦(−𝑥)𝑧 and equation (5.10) becomes 
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𝑑(𝑥)𝑦𝑧(−𝑥) = 𝑑(𝑥)𝑦(−𝑥)𝑧,  ∀𝑥, 𝑦, 𝑧 ∈ 𝑁.                                                               (2.5)                                                               

Taking −𝑥 instead of 𝑥 in equation (2.5) gives 𝑑(−𝑥)𝑦𝑧𝑥 = 𝑑(−𝑥)𝑦𝑥𝑧 for all ∀𝑥, 𝑦, 𝑧 ∈ 𝑁          

So that 𝑑(−𝑥)𝑦(𝑧𝑥 − 𝑥𝑧) = 0, ∀x, y, z ∈ 𝑁. 

Therefore we get 𝑑(−𝑥)𝑁[𝑧, 𝑥] = 0, ∀𝑥, 𝑧 ∈ 𝑁.  (2.6)                                                                                  

 By primness, equation (2.6) assures that for each 𝑥 ∈ 𝑁, either 𝑥 ∈ 𝑍(𝑁) or 𝑑(𝑥) = 0,  

Accordingly, 

𝑑(𝑥) = 0 or [𝑥, 𝑧] = 0 , ∀𝑥, 𝑧 ∈ 𝑁.                                                                              (2.7) 

From equation (2.7) it follows that for each 𝑥 ∈ 𝑁, we have 

𝑑(𝑥) = 0 or 𝑥 ∈ 𝑍(𝑁), ∀𝑥 ∈ 𝑁.                                                                                    (2.8) 

But 𝑥 ∈ 𝑍(𝑁)  also implies that 𝑑(𝑥) ∈ 𝑍(𝑁) and equation (2.8) forces 

𝑑(𝑥) ∈ 𝑍(𝑁), ∀𝑥 ∈ 𝑁.                                                                                                  (2.9) 

In the light of equation (2.9), it follows that 𝑑(𝑁) ⊆ 𝑍(𝑁) we conclude that 𝑑 is a commuting. 

Example 2 (see [4]) .Let 𝑆 be any ring. Next, let us consider the ring 𝑁 = {(
0 𝑥 𝑦
0 0 0
0 𝑧 0

) 𝑥⁄ , 𝑦, 𝑧 ∈ 𝑆}. 

Define a map 𝑑: 𝑁 → 𝑁 such that       

𝑑 (
0 𝑥 𝑦
0 0 0
0 𝑧 0

) = (
0 𝑥 𝑦
0 0 0
0 0 0

) for all 𝑥, 𝑦 ∈ 𝑆. Then 𝑑 is a nonzero derivation on 𝑁. If we take  𝐴 =

(
0 𝑥1 0
0 0 0
0 0 0

) and 𝐵 = (
0 0 𝑦1

0 0 0
0 0 0

) with 𝐴 ≠ 0 and 𝐵 ≠ 0, then 𝐴𝑁𝐵 = {0} proving that 𝑁 is not 

prime. Moreover, it can be easily seen that 𝑑 is a derivation on 𝑁 and satisfies 𝑑(𝐴𝑜𝐵) = 𝐴𝑜𝐵 for 

all 𝐴, 𝐵 ∈ 𝑁. In the case of primness hypothesis not satisfied and 𝑑 is not commuting. 

Theorem 3 .Let N be a 2-torsion free prime near-ring. If N admits a non-zero derivation d satisfying  

d([x, y])=𝑥𝑜𝑦 , for all 𝑥, 𝑦 ∈ 𝑁. Then d is centralizer on N. 

Proof: We have d([x, y])=𝑥𝑜𝑦, for all 𝑥, 𝑦 ∈ 𝑁.Replacing y by x, we obtain 2𝑥2 = 0, for all 𝑥, 𝑦 ∈ 𝑁. 

Since N is 2-torsion free, we get 𝑥2 = 0 for all x ∈ N. Replacing x by d(x) with using Lemma1.3 , we 

get d(x)=0,for all 𝑥 ∈ 𝑁…….(3.1).Then from equation (3.1), we obtain d(x)∈ 𝑍(𝑁), for all x ∈ N. 

Theorem 4 .Let N be a 2-torsion free near-ring. If N admits a non-zero derivation d is satisfying  

d(𝑥𝑜𝑦) = [𝑥, 𝑦] ∀𝑥, 𝑦 ∈ 𝑁. Then d(𝑁2) is centralizer on N.   

Proof: Assume that for any x∈ 𝑁, then 𝑥2 ∈ Z(N),where N is 2-torsion free with characteristic 

different from two. We have 2d(x)=0, ∀𝑥 ∈ 𝑁. This implies that d(x)∈ 𝑁, ∀𝑥 ∈ 𝑁 ……(4.1). By the 

definition of derivation on N, we have d(𝑥2)=xd(x)+d(x)x=2d(x)x=d(x)(2x), ∀𝑥 ∈ 𝑁 ……(4.2). Since, 
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d≠ 0 is not left zero divisors in N. It follows that from equation (4.2), 2d(x)x-d(x)(2x)=0, ∀𝑥 ∈

𝑁…..(4.3). Then equation (4.3) reduces  

2[d(x), x]=0, ∀𝑥 ∈ 𝑁……(4.4). Since N is 2-torsion free, we get [d(x), x]=0, ∀𝑥 ∈ 𝑁 … … . (4.5).  

By substituting yx in x, then we have [d(x), yx]=0, ∀𝑥, 𝑦 ∈ 𝑁 ……(4.6). Since from equation (4.6), we 

obtain that [d(x), y]x=0, ∀𝑥, 𝑦 ∈ 𝑁 … … (4.7). By replacing x by zx in equation (4.7), we get 

[d(x),y]zx=0, 

 ∀𝑥, 𝑦, 𝑧 ∈ 𝑁 …..(4.8). For any z∈ 𝑁, then we have [d(x), y]Nx=0, ∀𝑥, 𝑦 ∈ 𝑁 …….( 4.9). Since N is 

prime near-ring, then either [d(x),y]=0 or x=0, ∀𝑥, 𝑦 ∈ 𝑁 …..(4.10). Thus x∈ 𝑁 , then d(x)≠ 0, where 

as  

d(x)∈ 𝑍(𝑁). Then from equation (4.10), we have[d(x),y]=0, ∀𝑥, 𝑦 ∈ 𝑁….(4.11). Therefore, for any x∈

𝑁 implies that d(x)∈ 𝑍(𝑁), ∀𝑥 ∈ 𝑁.Since d(x)∈ 𝑍(𝑁) shows that d(N)⊆ 𝑍(𝑁), by lemma 1.2. Hence 

from equation (4.11), we conclude that d is centralizing in N. 

 

Conclusion 

In this paper, we study the prime near-rings with derivations. We prove that a prime near-ring which 

admits a nonzero derivation satisfying certain differential identities is a commuting on derivations 𝑑. 

For future research, more general constraints on the derivation would be interesting. In addition, can 

the hypotheses of Theorem 4 be weakened such that the identities hold in some nonzero semi-group 

ideal U of N?  
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