Commuting Condition on Derivation in Prime Near Rings

MERKIN MANO ZEGA and DEMEKE DANA

Department of Mathematics, College of Natural and Computational science,

Wolaita Sodo University, P.Box.138

Abstract

Several results assert that the existence of a suitably-constrained derivation on a prime near-ring forces the near-ring to be a ring. Our aim in this paper is to investigate the commuting conditions on derivations in near ring. Moreover, examples proving the necessity of the primeness condition are given.

Key Words: Commuting condition, Derivation, Prime near-ring, Ring

1. Introduction

A left near-ring is a set N with two operations addition (+) and multiplication (.) such that (N,+) is a group and (N, .) is a semigroup satisfying the left distributive law x. $(y + z) = x \cdot y + x \cdot z$ for all x, y, z $\in N$. N is called Zero symmetric left near-rings satisfy 0. x = 0 for all $x \in N$ (recall that left distributivity yields $x \cdot 0 = 0$). Throughout this paper we use left near ring, unless otherwise specified, we will use the word near-ring to mean zero symmetric left near-ring and denote xy instead of x. y. An additive mapping $d: N \to N$ is said to be a derivation if d(xy) = xd(y) + d(x)y for all x, $y \in N$ or equivalently that d(xy) = d(x)y + xd(y) for all x, $y \in N$. A near-ring N is said to be prime if xNy = 0 for x, $y \in N$ implies x = 0 or y = 0. As usual, additive commutator is denoted by (x, y) = x - y - x -, [x, y] = xy + yx and x o y = xy + yx will denote the well-known Lie and Jordan products respectively. An element x in a near-ring N is said to be 2-torsion free if 2x = 0 implies that x = o for every $x \in N$. The symbol Z(N) will represent the multiplicative center of N, that is $Z(N) = \{x \in N \mid xy = yx \text{ for all } y \in N \}$. Properties of commutators:- Let be a near ring, then the following properties are satisfied. Then [x, yx] = [x, y]x, xo(yx) = (xoy)x, [x y, y] = [x, y]y, (xy o y) = (xoy)x. (xo y)o y, [[x, y], z] + [[y, z], x] + [[z, x], y], for all $x y \in N$. There is an increasing body of evidence that prime near-rings with derivations have ring like behavior, indeed, there are several results asserting that the existence of a suitably-constrained derivation on a prime near-ring forces the near-ring to be a ring. In this paper we continue the line of investigation regarding the study of prime near-rings with derivations. More precisely, we shall prove that a prime near-ring which admits a nonzero commuting derivation satisfying certain differential identities.

1. PRELIMINARIES RESULTS

To prove our results we start with the following definition and lemmas:

Definition 1(see [3]).A mapping $d: N \to N$ is said to be centralizing (resp. commuting) derivation on a near-ring *N* if $[d(x), x] \in Z(N)$ or [d(x), x] = 0, holds for all *x* in *N*.

Lemma 1 (see [1, Theorem 3]). If a prime near-ring N admits a nontrivial derivation d for which

 $d(N) \subseteq Z(N)$, then (N, +) is abelian. Moreover, if N is 2-torsion-free, then N is a commutative ring.

Lemma 2(see [2]).Let d be an arbitrary derivation on the near-ring N, then N satisfies the following partial distributive law:

(i) (xd(y) + d(x)y)z = xd(y)z + d(x)yz for all $x, y \in N$.

(ii) (d(x)y + xd(y))z = d(x)yz + xd(y)z for all $x, y \in N$.

Lemma 3.A near ring N has no non-zero nilpotent elements if and only if $a^2 = 0$ implies $a = 0, \forall a \in N$.

2. THE MAIN RESULTS

Theorem 1(see [4]).Let N be prime near-ring. If N admits anon-zero derivation d satisfying $d([x,y])=[x, y] \forall x, y \in N$. Then d is commuting (resp. centralizing derivation on N).

Proof. We have d([x, y]) = [x, y] for all $x, y \in N$

Replacing *y* by *xy* in equation (5.1), because of [x, xy] = x[x, y], we get x[x, y] = d(x[x, y]) for all $x, y \in N$

Since d(x[x, y]) = xd([x, y]) + d(x)[x, y],

Then according to equation (1.1) we obtain

x[x,y] = x[x,y] + d(x[x,y]) and therefore d(x)[x,y] = 0,

Hence,

$$d(x)(xy - yx) = 0 \text{ for all } x, y \in N$$
(1.2)

Substituting *yz* for *y* in equation (1.2), we obtain d(x)y(xz - zx) = 0 and the equation (5.2) which leads to

$$d(x)N(xz - zx) = \{0\} \text{ for all } x, z \in N$$

$$(1.3)$$

Since N is prime, equation (1.3) reduces to

 $d(x) = 0 \text{ or } [x, z] = 0 \text{ for all } x, z \in N$ (1.4)

(2.4)

From equation (1.4) assume that [x, z] = 0 for all $x, z \in N$. Take x=z implies $[x, x]=0 \forall x \in N$, then $x \in Z(N)$ implies that $d(x) \in Z(N)$. Since $z \in Z(N)$, since $d \neq 0$ on N, then $x \in Z(N)$ implies that $d(x) \in Z(N)$ (1.5)

This shows that from equation(1.4), we obtain that $[x, d(x)]=0, \forall x \text{ in } N.....(1.6)$.

In the light of equation (1.6), we have $d(N) \subseteq Z(N)$ by lemma 1.2 and using equation (1.5), we conclude that *d* is commuting.

Example 1(see [4]. Let *R* be a commutative ring which is not a zero ring and consider

$$N = \left\{ \begin{pmatrix} 0 & 0 \\ x & y \end{pmatrix} / x, y \in R \right\}, \text{ if we define a derivation } d: N \to N \text{ by } d \begin{pmatrix} 0 & 0 \\ x & y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix}, \text{ then it is}$$

straightforward to check that d is a nonzero derivation on a near ring N. On the other hand, if there is

$$A = \begin{pmatrix} 0 & 0 \\ x_1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 0 \\ 0 & y_1 \end{pmatrix} \text{ for all } x_1, y_1 \in R. \text{ We have } ANB = \{0\} \text{ for all } A, B \in N, \text{ but } A \neq 0$$

and $B \neq 0$, from this observations N is not prime. Moreover, d satisfies the condition d([A, B]) = [A, B] for all $A, B \in N$. But $A \cdot B \neq B \cdot A$, which yields that d is not commuting.

Theorem 2 (see [4]).Let N be prime near-ring. If N admits anon-zero derivation d satisfying $d(x \circ y) = x \circ y$

 $\forall x, y \in N$. Then d is commuting (resp. centralizing on N).

Proof: From the hypothesis, we have $d(xoy) = xy + yx \ \forall x, y \in N$. (2.1) Replacing *y* by *xy* in equation (2.1), we get $(xo(xy)) = x^2y + xyx \ \forall x, y \in N$. (2.2).

Since, we have xo(xy) = x(xoy),

Then equation (2.2) yields d(xo(xy)) = d(x(xoy))

$$= xd(xoy) + d(x)xoy \ \forall x, y \in N.$$

From the given we have d(xoy) = xoy, Hence, equation (2.2) reduces to

$$d(xo(xy)) = x(xoy) + d(x)(xoy) = x^{2}y + xyx + d(x)(xoy), \forall x, y \in N.$$
 (2.3)

As we have from equations (2.3), we get

$$x^2y + xyx = x^2y + xyx + d(x)(xoy)$$

Then equation (2.3) assures that

 $d(x)(xoy) = 0, \forall x, y \in N$. This leads to

$$d(x)xy = -d(x)yx$$
 for all $\forall x, y \in N$

Substituting yz for y in equation (2.4) we find that

$$-d(x)yzx = d(x)xyz$$
$$= (-d(x)yx)z$$
$$= d(x)y(-x)z, \forall x, y, z \in N.$$

Since from equation (2.4), we get

-d(x)yzx = d(x)y(-x)z and equation (5.10) becomes

www.iiste.org

(2.5)

(2.9)

 $d(x)yz(-x) = d(x)y(-x)z, \ \forall x, y, z \in \mathbb{N}.$

Taking -x instead of x in equation (2.5) gives d(-x)yzx = d(-x)yxz for all $\forall x, y, z \in N$

So that d(-x)y(zx - xz) = 0, $\forall x, y, z \in N$.

Therefore we get $d(-x)N[z, x] = 0, \forall x, z \in N.$ (2.6)

By primness, equation (2.6) assures that for each $x \in N$, either $x \in Z(N)$ or d(x) = 0,

Accordingly,

$$d(x) = 0 \text{ or } [x, z] = 0, \forall x, z \in N.$$
 (2.7)

From equation (2.7) it follows that for each $x \in N$, we have

$$d(x) = 0 \text{ or } x \in Z(N), \forall x \in N.$$
(2.8)

But $x \in Z(N)$ also implies that $d(x) \in Z(N)$ and equation (2.8) forces $d(x) \in Z(N), \forall x \in N.$

In the light of equation (2.9), it follows that $d(N) \subseteq Z(N)$ we conclude that *d* is a commuting.

Example 2 (see [4]) .Let S be any ring. Next, let us consider the ring $N = \begin{cases} \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} / x, y, z \in S \end{cases}$.

Define a map $d: N \to N$ such that

$$d\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & z & 0 \end{pmatrix} = \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ for all } x, y \in S. \text{ Then } d \text{ is a nonzero derivation on } N. \text{ If we take } A = \begin{pmatrix} 0 & x_1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 0 & y_1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ with } A \neq 0 \text{ and } B \neq 0, \text{ then } ANB = \{0\} \text{ proving that } N \text{ is not } prime. \text{ Moreover, it can be easily seen that } d \text{ is a derivation on } N \text{ and satisfies } d(AoB) = AoB \text{ for } D$$

all $A, B \in N$. In the case of primness hypothesis not satisfied and d is not commuting.

Theorem 3 .Let N be a 2-torsion free prime near-ring. If N admits a non-zero derivation d satisfying

d([x, y])=xoy, for all $x, y \in N$. Then d is centralizer on N.

Proof: We have d([x, y])=xoy, for all $x, y \in N$. Replacing y by x, we obtain $2x^2 = 0$, for all $x, y \in N$. Since N is 2-torsion free, we get $x^2 = 0$ for all $x \in N$. Replacing x by d(x) with using Lemma1.3, we get d(x)=0, for all $x \in N$(3.1). Then from equation (3.1), we obtain $d(x) \in Z(N)$, for all $x \in N$.

Theorem 4 .Let N be a 2-torsion free near-ring. If N admits a non-zero derivation d is satisfying

 $d(xoy) = [x, y] \forall x, y \in N$. Then $d(N^2)$ is centralizer on N.

Proof: Assume that for any $x \in N$, then $x^2 \in Z(N)$, where N is 2-torsion free with characteristic different from two. We have 2d(x)=0, $\forall x \in N$. This implies that $d(x)\in N$, $\forall x \in N$ (4.1). By the definition of derivation on N, we have $d(x^2)=xd(x)+d(x)x=2d(x)x=d(x)(2x)$, $\forall x \in N$ (4.2). Since,

d≠ 0 is not left zero divisors in N. It follows that from equation (4.2), 2d(x)x-d(x)(2x)=0, $\forall x \in N....(4.3)$. Then equation (4.3) reduces

 $2[d(x), x]=0, \forall x \in N \dots (4.4)$. Since N is 2-torsion free, we get $[d(x), x]=0, \forall x \in N \dots (4.5)$.

By substituting yx in x, then we have $[d(x), yx]=0, \forall x, y \in N \dots (4.6)$. Since from equation (4.6), we obtain that $[d(x), y]x=0, \forall x, y \in N \dots (4.7)$. By replacing x by zx in equation (4.7), we get [d(x),y]zx=0,

 $\forall x, y, z \in N \dots (4.8)$. For any $z \in N$, then we have $[d(x), y]Nx=0, \forall x, y \in N \dots (4.9)$. Since N is prime near-ring, then either [d(x),y]=0 or $x=0, \forall x, y \in N \dots (4.10)$. Thus $x \in N$, then $d(x) \neq 0$, where as

 $d(x) \in Z(N)$. Then from equation (4.10), we have $[d(x), y] = 0, \forall x, y \in N \dots (4.11)$. Therefore, for any $x \in N$ implies that $d(x) \in Z(N), \forall x \in N$. Since $d(x) \in Z(N)$ shows that $d(N) \subseteq Z(N)$, by lemma 1.2. Hence from equation (4.11), we conclude that d is centralizing in N.

Conclusion

In this paper, we study the prime near-rings with derivations. We prove that a prime near-ring which admits a nonzero derivation satisfying certain differential identities is a commuting on derivations d. For future research, more general constraints on the derivation would be interesting. In addition, can the hypotheses of Theorem 4 be weakened such that the identities hold in some nonzero semi-group ideal U of N?

REFERENCES

[1].Bell, H.E. and Mason, G. 1987. On derivations in near-rings. In *North-Holland Mathematics Studies*, 137:31-35.

[2]. Wang, X.K. 1994. Derivations in prime near-rings. Proceedings of the American Mathematical Society, 121(2):361-366.

[3].Bell, H.E. and Mason, G. 1992. On derivations in near-rings and rings. *Mathematics J. OkayamaUniversity*, 34:135-144.

[4]. Boua, A. and Oukhtite, L. 2011. Derivations on prime near-rings. *International J. Open Problems Computational Mathematics*, 4(2):162-167.

[5]. Bell, H.E. Boua, A. Oukhtite, L. 2012 on derivations of prime near-rings, *African Diaspora J. Mathematics*, 14(1):65-72.

[6]. Boua, A. 2012. Some Condition under which prime Near-Rings are Commutative Rings. *International Journal Open Problems Computational Mathematics*, 5(2):7-15.

[7].Khan, Moharram A. and Madugu, Abdu. 2017. Some Commutativity Theorems for Prime Near-rings

Involving Derivations. Journal of Advances in Mathematics and Computer Science, 25(6):1-9.

[8]. Yihun, Shang. 2011. A study of derivations in prime near-rings, Mathematical Balkanica, 25:413-418.

[9]. Ghowsi, H. 2014. A commutativity study for Near-Rings, Payan Noor University research grant, 1-2.

ACKNOWLEDGEMENTS

The authors are greatly indebted to the referee for his/her useful suggestions.