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ABSTRACT

The main focus of this paper is to develop hybrid numerical method with greater efficiency for
getting the solution of initial value problems (IVPs) in ordinary differential equations (ODEs)
by merging the slopes used in Modified Euler’s method (MEM), Improved Euler’s method and
a 2" stage 2" order contra harmonic mean method. Developed method has tested and analyzed
for the stability, consistency and accuracy and observed that the developed method is more
stable, consistent and accurate as compared to modified Euler’s method (MEM), Improved
Euler’s method(IEM), modified improved modified Euler’s method (MIME) and a 2nd stage
2" order contra harmonic mean method (CoM).
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1. INTRODUCTION

Many researchers are busy for solving different physical problems of real world. They have
generated different theories and laws relating to these physical problems and nature. Mostly,
these laws occur in the differential equations’ form and these differential equations are
categories in ordinary differential equations (ODES) and partial differential equations (PDES)
[1-2]. If any change occurs in any physical problem corresponding to any single parameter,
there arise ordinary differential equations (ODEs) and if any change occurs in any physical
problem corresponding to more than two parameters then, partial differential equations arise
there. The differential equations play a major role in the history of Mathematics to solve
scientific problems. In science and engineering, there are a lot of physical problems which
occur in the differential equations’ form [3]. The differential equations are also widely used in
field of Physics, Chemistry, Biology and economics etc. [3]. There are various analytical
methods are available for getting the solution of differential equations. But at some situations;
analytical methods do not able to give the solution of some complicated or complex differential
equations. For getting the solution of complex differential equation, numerical methods are
employed [4-5]. Numerical methods are very important tools for getting the solution of
complex problems very quickly with the help of computer programming.

Many researchers had developed numerous numerical techniques for getting the solution of
ordinary differential equations (ODESs) which are in the type of initial value problems (IVPs).
These techniques are generated by many researchers from different point of views. Some of
them, tried to improve these methods for accuracy, some of them; they have modified these
methods for the better accuracy, stability and consistency [6]. From time to time some changes
have been made in numerical methods for getting better performance according to our needs.
In this research paper, a hybrid numerical method has been introduced for solving the ordinary
differential equations (ODESs); which are in the nature of initial value problems (I\VPs).That
shows the better performance as compared to other second order well-known methods present
in the literature.
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2. RESEARCH METHODOLOGY

Consider the initial value problems (I\VPs) as

d

%ﬂ(x,y); y (%) = Yo 1)

For solving eq. (1), the most simplest and old method is explicit forward Euler’s method of 1%
order; which is given by equation (2).

ys+1 ys + f (Xs ’ys) h (2)
Another implicit backward Euler’s method is
ys+l ys + h f (Xs+l ’ys+1) (3)

Eq. (3) can be written as

ys+l ys + h f(X + h ys + h f(Xs 1 ys)) (4)
Modified and Improved Euler’s methods (MEM and IEM) are given by eq. (5) and eq. (8)
respectively [3].

1 1
You =Y, +h.f(X + h,y, +Eh.f(xs YS)) (5)
Eqg. (5) can be written as

ys+1 = ys + h K (6)
Where K = f(xs+%.h | ys+%h HXY.)) )
ys+l ys+ h [f(X y)+ f(X +h ys+h f(X ys))] (8)

In [7], a second stage of second order contra harmonic mean method (CoM) is

K? + K2
= +| —4——= |h

ys+1 ys |: Kl + K2 (9)

Where K, = f(X,,Y,) ; K,=fX+h,y.+hxf(x,,Vy,))
Eqg. (9) can be written as

ys+1 ys + hR (10)
2 2

Where, R= [ K + K, } (12)
K, +K,

Now, replace f(x,,y,) and f(X;+h,y.+hxf(x,,y,)) of eq. (8) by eq. (7) and eq. (11)
respectively. We get,

1 1 1 K2+ K?
—.h| f(X.+=xh, —xhxf(x., —1 2 12
ys+1 ys+2 { (s+2X ys_‘—z>< X(sys))+|:Kl+K2}:| ( )
Then Eq. (12) becomes
2 2
Yo =Ys + 4 Zxn| k4| EirKe) (13)
2 (K, +K,)

Where K = f(xs+%><h : ys+%xhxf(xs,ys)) :

K =f(X.,Yy,); K,=fX+h,y+hf(x,,Yy,)); K, Kiand Kz should not be initially zero at

initial conditions y(Xo) = Yo. The autonomous IVPs (initial value problems) which have
negative coefficient of the highest power of y and yo is positive are best to solve by using eq.
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(13). This method is also best to solve non autonomous I\VVPs (initial value problems) in which
the coefficient of y should be equal to initial yo.

Eq. (13) is known as a hybrid numerical method with greater efficiency for solving initial value
problems.

3. STABILITY ANALYSIS

The stability polynomial function of developed hybrid numerical method can be obtained by
using following Dahlquist’s test problem: [4-5]

d

=AYt YO =y, AeC (14
Using developed method (13) for this test problem, we get

1 1 1 K2 +K?
=y. +=h| f(x.+=.h,y.+=.h.f(x_, +| L 2
ys+l ys 2 |: ( S 2 ys 2 ( S ys)) |: K1+ K2:| j|

After applying test problem in developed method;

2 2
ys+1=ys+%xh[/1(ys+%xhleS)Jr[[ﬂys] +[Ay,+hAy,)] } }

Ay, +[Aly,+hAy,)]
2 2,,2 2 )
ys+1=y5+1h ﬂ,ys+/1 Ysn o ATYo +4 (y5+h/21ys)
2 2 Ay, + Ay, +hA%y,
On further simplification we get,
hi h®2® _ha h222 hia?
ys+l = 1+_+ + + + ys
274 T(2+hd) @+hi) 22+h7)

Letting Z = hA, stability function becomes

w(z):l+(1)z+(ljzz+ Z_4 z +[1jz_3
2 4 2+2) (2+z2) \(2)(2+2)

After, further simplification we get,

1 3 4
Z)=2+>z+272 % 15
v(2) 2“4 T22+2) (15)
Figure 1

In the Figure 1, the shaded region shows the unstable region where composed method is not
stable. But in the unshaded region composed method is stable.
4. CONSISTENCY ANALYSIS

For eqg. (1) the numerical formula given by [8] y.., =Yy, +h[#(X, , Y, , h)] will be consistent
with the initial value problems (IVPs) if
lm @(x;, y, . h) = f(X,y,)
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Hence the defined method (12) checked for consistency criteria as:

1

2 2]
ys+1=ys+%h|:f(xs+5h7ys+%hf(xs’ys))+|:u j|

K1+K2_
K2+ K2
K, +K,

L
L 1

Here gé(xs,ys,h)zl f(xs+lh,ys+lhf(xs,ys))+
2 2 2

. o1 1 1 KZ+K?Z

}113(1) PX; 1 Y5, h) _}llir(l) E[f(XsJFEXh1ys+EXth(Xs,ys))+{m

hm 90 .y, ) = Jim %[2- o y)] = Fxay.) (16)

It shows that the hybrid numerical method with greater efficiency for solving initial value

problems is consistent.
5. ANALYSIS OF LOCAL TRUNCTION ERROR

LTE (local truncation error) in [4], is defined as

LT.E =Ch®™y@(x) + O(h**?), (17)
Where “C” is an error constant and “q” is order of accuracy.
Taylor Series Expansion for y(x,+ h) will be expanding as mentioned bellow for obtaining

LTE (local truncation error) of composed method.
2 3

YX,) = YO = YOK) +Y (X)X Y (X)X Dby () x5-+0(hY)  (18)

2
YX,) = YO HR) = YO 26,4 1)

. (19)
+§x(fxx+2ffxy+f2fyy+ffy2+fxfy)+O(h4)
Now expanding the slopes [3] used in (13) by (18);
K =f(x,y)="1;
K, = f(X,+h,y .+ hxf(x,y,))
h2
= f +h(fx+ffy)+z(f2fw+ 2ffxy+fxx)+0(h3)
1 1
K= f(xs+5xh,ys+5hxf(xs,ys))
=f 1hf ff 1h2f 2ff +f°f o(n’
- +§ (x+ y)+§ (xx+ xy+ yy)+ ( )
2 2
KooK of ongr o ff,) +
K, +K,
1 1
fl=f2f +ff +=f 20
o 1(2 W+Xy+xxj+ 3 (20)
he|=f +=f +=ff +— +0(h)

o4 8 Y 2f

(f+ ﬁy)z—%(fx+ ff, )’

X

Substitute (19) in (13), we get
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yo+Sh|2f shff)eht [T e o Dgeg
2 g "2

Xy 8 W+ f

ys+1 ) 1 5
(f,+ff,) —E(fx+ ff, )

(21)
Comparing equations (18) and (20), the local truncation error with leading term [9] as found as
LTE = y(Xs+ h) - ys+1 (22)

2
O (LY ST S
24 8" T T 8"

Hence the composed Hybrid numerical method with greater efficiency for solving IVPs (initial
value problems) is of order 2 and local truncation error isO(h®) .

6. RESULTS AND DISCUSSION

In this section, numerical values of y(x) for initial value problems (IVPs) and relative
percentage error of composed method and few existing methods has been discussed in the
examples 1-3. Tables 1-3 show the results of composed hybrid numerical method, MEM
(modified Euler’s method), MIME (modified Improved Modified Euler’s method), a second
stage second order Contra harmonic mean method, Improved Euler’s method and their relative
percentage errors and exact solution at different x-values. These results and graphs have been
tested by using MATLAB software of version 7.5.0.342 (R2007b). The graphs 1.1, 1.2, 2.1,
and 3.1 show the errors of the methods given in the tables 1-3 of the examples 1-3.

Example.1 Solve y =y/4-y?/80;y(0)=1in the range of0<x<50. The theoretical

: } +0(h*)  (23)

solutionis y (x) = 20/(1+19e7x) andh=0.1
Example: 2 Solve y (X)=1-y*(X); x=0,y=0
solution is y =tanhx and h =0.1.

Example: 3 Solve y'(X)=x+Yy(x); x=0,y=1
solution is y(x) =2e* —(x)—1 and h = 0.1.

in the interval0< x<10. The theoretical

in the interval0< x<10. The theoretical
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Graph 1.1 shows the errors of methods given in table 1. Table.1 shows the results of
example 1 [10].

+0(h?)
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Graph 1.2 shows the Zo.dm In result of graph 1.1. Téble 2 shows the results of example 2 [11]

. et

— 1 0 ] 0 |1 [ 0 ]
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Graph 2.1 shows thé results of table 2 Table 3 shows the results of example 3 [3]

—_———

Graph 3.1 shows the 'Iieiative Percentage Error of the methods given in table 3

In the Graph 1.1, the composed hybrid numerical method shows the better performance from
0<x<b5.5 and then a second stage second order contra harmonic mean method shows better
performance up to x = 33. After that, composed method shows better convergence as
compared to others one. The patterns of relative percentage errors from x > 33, shown by the
graph 1.2, represent that the composed method shows the better convergence as compared to
others.

In the Graph 2.1, MEM (modified Euler’s method) and a second stage second order contra
harmonic mean method shows the fluctuation at x = 0 to x = 2. But composed method
converges smoothly and rapidly as compared to others mentioned methods. From Graph 3.1 it
is clear that the composed method is fast convergent as compared to other methods.

CONCLUSION
In this research work, a hybrid numerical method has been developed for solving the 1VPs

(initial value problems) in ODEs (ordinary differential equations). Developed method has

generated by the combination of slopes used in MEM (Modified Euler’s method), IEM
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(Improved Euler’s method) and a 2" stage 2" order contra harmonic mean method. The result
of developed method has been compared with the MEM, IEM, MIME, and a 2" stage 2"
order contra harmonic mean method and found that, the developed method has been
performing better accuracy as compared to all mentioned methods and others well known
second order methods. Developed method has also been analyzed for the stability, consistency
and for the local truncation error; and found that composed method is more stable, consistent,

and second order accurate.
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