
Mathematical Theory and Modeling                                                                                                                                                                      www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.2, 2020 

 

87 

 

Structural Properties of Marshall-Olkin Extended Inverse 

Exponential Distribution 

 

1Ogunde Adebisi Ade, 2Omosigho Donatus, 2Ajayi Bamidele 

debiz95@yahoo.com, etindon@yahoo.co.uk,dele2403@gmail.com 

1Department of Statistics, University of Ibadan, Ibadan. 

2Department of Mathematics and Statistics, The Federal Polytechnic Ado-Ekiti, Ekiti. 

Abstract  

This paper introduces a new extension of the Inverse Exponential distribution using the 

framework of Marshall-Olkin (1997) family of distributions. The new model is capable of 

modeling various shapes of aging and failure criteria. The statistical properties of the new model 

are discussed and the maximum likelihood and maximum product spacing’s methods are used 

to estimate the parameters involved. Explicit expressions are derived for the moments and the 

order statistics are examined for the new proposed model. Finally, the usefulness of the new 

model for modeling reliability data is illustrated using two real data sets with simulation study. 

Keywords: Inverse Exponential distribution, reliability analysis, maximum likelihood 

estimation, maximum product spacing’s estimates. 

1.0 Introduction 

The inverse exponential (IE) distribution was introduced by Keller and Kamath [9] as special 

form of the inverse Weibull distribution. IE distribution is a lifetime distribution Lin, et al. [10] 

and found application in areas such as medicine, Engineering and biology (especially in event 

that exhibits non-monotone failure rate). More details on the study of IE distribution can be 

found in the work of Singh, et al. [19] ,  Prakash [16] ,  Bakoban and Abu- Zinadah [2], 

Oguntunde and Adeyemo [14]. 

Suppose a random variable 𝑌 has an exponential distribution, the variable 𝑋 =
1

𝑌
, will have an 

IE distribution.   Random variable 𝑋 is said to have IE distribution with parameter   if its 

cumulative density function (cdf) and the probability density function (pdf) is given 

respectively as: 

𝐹(𝑥, ) = 𝑒−


𝑥  ,                            𝑥 ≥ 0,    > 0                                                                                 (1)  

𝑓(𝑥, ) =


𝑥2
𝑒−


𝑥 ,                        𝑥 ≥ 0,    > 0                                                                              (2) 
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Where  is a scale parameter. 

2.0 The Generalised Inverse Exponential Distribution 

The IE distribution was generalised using the beta generated distribution that was introduced 

by McDonald (1984). Its probability density function is given as: 

𝑤𝐺𝐵(𝑥; 𝑐,, ) =
𝑓(𝑥)

𝐵(, )
𝑐[𝐹(𝑥)]𝑐𝜃−1(1 − [𝐹(𝑥)]𝑐)−1  ,   0 < 𝑥 < 1                                (3) 

Two distributions can be obtained from the density above; they are the classical beta 

distribution (𝑐 = 1), the Kumaraswamy distribution ( = 1).suppose we let  = 𝑐 = 1, then 

we have a new pdf given as 

𝑤(𝑥) = 𝑓(𝑥)[𝐹(𝑥)]𝜃−1   ,            𝑥 > 0, > 0                                                                          (4) 

Since, 

𝑊(𝑥) = ∫𝑤(𝑥)𝑑𝑥

∞

−∞

                                                                                                                            (5) 

Then, the cdf is given as 

𝑊(𝑥) = [𝐹(𝑥)]𝜃  ,                             𝑥 > 0, > 0                                                                           (6) 

Where  is a shape parameter that controls both the skewness and kurtosis of the distribution. 

Inserting equation (1) and equation (2) in equation (4) and equation (6) we have the pdf and the 

cdf of a new generalised IE distribution respectively given as 

𝑤(𝑥) =  


𝑥2
𝑒−


𝑥   ,            𝑥 > 0, > 0                                                                                          (7) 

𝑊(𝑥) =  𝑒−

𝑥                                                                                                                                        (8) 

3.0 The Generalised Marshall-Olkin Extended Inverse Exponential Distribution 

The generalised Marshall-Olkin Extended Inverse Exponential distribution was generated using 

the Marshall-Olkin generator which was proposed by Marshall-Olkin [11] . The new 

distribution is flexible to work with and adaptable to various form of survival data. 

For any baseline cdf 𝑊(𝑥), 𝑥 ∈  , the cdf of the Marshall-Olkin Extended Generalised MOEG 

distribution is given by 

 𝐺(𝑥) =
𝑊(𝑥)

+̅𝑊(𝑥)
,               > 0                                                                                                           (9) 

Where ̅ = 1 − , and  is a tilt parameter 
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Since, 
𝑑𝐺(𝑥)

𝑑𝑥
= 𝑔(𝑥) 

Therefore,  

𝑔(𝑥) =
𝑤(𝑥)

[+ ̅𝑊(𝑥)]2
                                                                                                                      (10) 

Where 𝑔(𝑥) is the pdf of 𝐺(𝑥). The MOE-G reverses to baseline distribution when  = 1. 

Several new distributions have been proposed and discussed using the Marshall Olkin approach 

in statistical modelling. Examples, include MOE generalised linear exponential distribution was 

studied by Okasha et al. [15] ,  Benkhelifa [3] , studied the MOE generalised Lindley 

distribution, the properties of the MOE- G distribution was proposed by Cordeiro et al, [4], 

MOE pareto distribution was introduced by Alice and Jose [1], the MOE Lomax distribution 

was proposed by Ghitany et al.  [7] ,  and MOE generalised exponential distribution was 

introduced by Ristic and Kundu [17], MOE normal distribution was proposed by Garcia et 

al. [6], MOE gamma distribution was studied by Ristic et al. [18]. 

4.0 Marshall Olkin Extended Generalised Inverse Exponential Distribution 

The three parameters Marshall Olkin Extended Generalised Inverse exponential (MOEGIE) 

distribution was obtained by inserting (8) into (9) and (10), we obtained  the cdf of MOEGIE 

distribution as : 

𝐺(𝑥;  ,, ) =
𝑒−


𝑥

+ ̅𝑒−

𝑥

             𝑥 > 0;, ,  > 0                                                              (11)  

 

Figure 1.0.  The graph of density function of MOEGIE distribution for various values of the 

parameter of the distribution. 
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The pdf corresponding to (11) is  

 𝑔(𝑥;  ,, ) =
𝑒

−

𝑥

𝑥2[+̅𝑒
−

𝑥 ]

2           𝑥 > 0;, ,  > 0                                                                 (12)  

 

Figure 2.0 The graph of probability density function of MOEGIE distribution. 

✓ The graph of the pdf of MOEGIE distribution drawn above indicates that the distribution 

is positively skewed and also mesokurtic, platykurtic and kleptokurtic for various values 

of the parameters.  

Hence, when a random variable 𝑋  follows a MOEGIE distribution, it will be denoted by 

𝑋~𝑀𝑂𝐸𝐺𝐼𝐸 (,, ). Plots of the MOEGIE cdf and pdf for selected parameter values are 

shown below in figure 1.0 and figure 2.0 respectively has shown below. 

5.0 Survival function of MOEGIE distribution 

The survival function (𝑆(𝑥)) is defined as the probability that a system survive to time 𝑡.  For 

any given system the survival function is given as: 

𝑆(𝑥) = 1 − 𝐺(𝑥)                                                                                                                               (13) 

By putting (11) in (13), we obtained the survival function of MOEGIE distribution which is  

𝑆(𝑥) =
 {1 + 𝑒−


𝑥 }

 + ̅𝑒−

𝑥

                                                                                                                      (14) 

The graph of the survival function of MOEGIE distribution is plotted below in figure 3.0. 
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Figure 3.0 The graph of Survival function of MOEGIE distribution. 

6.0 Hazard rate function of MOEGIE distribution 

The hazard function ℎ(𝑥) is an important quantity that is used to determine the nature of life 

time of a system. It can be said to be the probability of failure of a system having survived to 

time 𝑡. mathematically it can be defined as 

ℎ(𝑥) =
𝑔(𝑥)

𝑆(𝑥)
                                                                                                                                     (15) 

By inserting (12) and (14) in (15), we obtained the hazard function of MOEGIE distribution as  

ℎ(𝑥) =
𝑒−


𝑥

𝑥2 {+ ̅𝑒−

𝑥 } {1 + 𝑒−


𝑥 }

                                                                                                 (16) 
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Figure 4.0 The graph of probability density function of MOEGIE distribution. 

✓ The graph of the hazard function drawn above shows that distribution is increasing, 

decreasing with inverted bathtub shape which implies that it can be used to model a 

phenomenon that exhibits non-monotone failure rate or unimodal distribution 

It can be deduce from above that ℎ(𝑥) =
𝑟(𝑥)

+̅𝐺(𝑥)
, where 𝑟(𝑥) is the hazard function of the 

baseline distribution function. The graph of the hazard function for various values of the 

parameters is shown below in figure 4.0. 

7.0 Mathematical Properties of MOEGIE distribution 

Here, we examine the some mathematical properties of the MOEGIE distribution. 

7.1 Useful expansions 

We provide the some expansion that facilitates the study of the properties of MOEGIE 

distribution. If || < 1 𝑎𝑛𝑑  > 0 is a real non-integer, the following expansion exist 

(1 − )− = ∑ (+𝑖−1
𝑖
)𝑖∞

𝑖=0  ,                                                                                                              (17) 

If  is an integer, index 𝑖 in the previous sum stops at  − 1. Using this we can rewrite the pdf 

of MOEGIE distribution given in (12) as   

𝑔(𝑥;  ,, ) =
𝑒−


𝑥

𝑥2 [1 − ̅ {1 − 𝑒−

𝑥 }]

2 

Since  ∈ (0,1), by applying (17) to the expression above we obtained 
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[1 − ̅ {1 − 𝑒−

𝑥 }]

−2

=∑(𝑗 + 1)̅𝑗 {1 − 𝑒−

𝑥 }

𝑗∞

𝑗=0

=∑(𝑗 + 1)̅𝑗∑(−1)𝑖 (
𝑗

𝑖
)

𝑗

𝑖=0

{𝑒−

𝑥 }

𝑖∞

𝑗=0

 

Finally we have, 

𝑔(𝑥;  ,, ) =


𝑥2
∑∑(𝑗 + 1)

𝑗

𝑖=0

∞

𝑗=𝑜

̅𝑗(−1)𝑖 (
𝑗

𝑖
) 𝑒−


𝑥
(𝑖+1)                                                         (18) 

7.2 𝒓𝒕𝒉 Moment of MOEGIE distribution 
The 𝒓𝒕𝒉 moment of a distribution can be obtained using the relation 

𝐸(𝑋𝑟) = 𝜇𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥, 𝛼, 𝜆, 𝜃)𝑑𝑥

∞

−∞

                                                                                             (19) 

Inserting equation (18) in (19), we have 

𝐸(𝑋𝑟) = 𝛼𝜆𝜃∑∑�̅�𝑗(𝑗 + 1)

𝑗

𝑖=0

∞

𝑗=0

(−1)𝑖 (
𝑗

𝑖
)∫ 𝑥𝑟−2𝑒−

𝜃𝜆
𝑥
(1+𝑖)𝑑𝑥

∞

0

                                             (20)  

Letting, 𝑚 =
𝜃𝜆

𝑥
(1 + 𝑖), 𝑑𝑚 = −𝜃𝜆(𝑖 + 1)𝑥−2𝑑𝑥 

∫ 𝑥𝑟−2𝑒−
𝜃𝜆
𝑥
(1+𝑖)𝑑𝑥

∞

0

= −{𝜃𝜆(𝑖 + 1)}𝑟−1 ∫ 𝑚−𝑟𝑒−𝑚𝑑𝑚

∞

𝜃𝜆
𝑥
(1+𝑖)

                                                   (21) 

Since 𝑋 can only take values on the positive real line we can introduce the exponential 

integral defined by 

𝐸𝑖(−𝑋) = −∫ 𝑡−1𝑒−𝑡𝑑𝑡                                                                                                                   (22)

∞

𝑥

 

For further study see Chapter 5 of Abramowitz and Stegun [8] and Equation (6.2.6) of Oliver 

et al. [7]): and applying it to equation (14) will transform to 

 

∫ 𝑥𝑟−2𝑒−
𝜃𝜆
𝑥
(1+𝑖)𝑑𝑥

∞

0

= {𝜃𝜆(𝑖 + 1)}𝑟−1 ∫ 𝑡𝑟𝑒−𝑡𝑑𝑡

∞

𝜃𝜆
𝑥
(1+𝑖)

                                                              (23) 

From generalised gamma given as  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                                      www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.2, 2020 

 

94 

 

𝛤(𝜂, 𝑣) = ∫𝑤𝜂−1𝑒−𝑤
∞

𝑣

𝑑𝑤 

Then we obtain, 

∫ 𝑥𝑟−2𝑒−
𝜃𝜆
𝑥
(1+𝑖)𝑑𝑥

∞

0

= {𝜃𝜆(𝑖 + 1)}𝑟−1𝛤 {𝑟 + 1,
𝜃𝜆

𝑥
(1 + 𝑖)} 

Finally, 

𝐸(𝑋𝑟) = 𝛼𝜆𝜃∑∑�̅�𝑗(𝑗 + 1)

𝑗

𝑖=0

∞

𝑗=0

(−1)𝑖 (
𝑗

𝑖
) {𝜃𝜆(𝑖 + 1)}𝑟−1𝛤 {𝑟 + 1,

𝜃𝜆

𝑥
(1 + 𝑖)}                 (24) 

Suppose we let, 
𝑖𝑗
= 𝛼𝜆𝜃∑ ∑ �̅�𝑗(𝑗 + 1)

𝑗
𝑖=0

∞
𝑗=0 (−1)𝑖(𝑗

𝑖
). Then equation (24) we transform to 

𝐸(𝑋𝑟) = 
𝑖𝑗
{𝜃𝜆(𝑖 + 1)}𝑟−1𝛤 {𝑟 + 1,

𝜃𝜆

𝑥
(1 + 𝑖)}                                                                        (25) 

7.4      Mean of the MOEGIE distribution  

Setting 𝑟 = 1 in equation (25) leads to the mean of the MOEGIE distribution, which is given 

by 

𝜇1
′ = 

𝑖𝑗
𝛤 {3,

𝜃𝜆

𝑥
(1 + 𝑖)}                                                                                                                   (26) 

7.5     Second moment of the MOEGIE distribution 

Setting 𝑟 = 2 in equation (25) 

𝜇2
′ = 

𝑖𝑗
{𝜃𝜆(𝑖 + 1)}𝛤 {2,

𝜃𝜆

𝑥
(1 + 𝑖)}                                                                                             (27) 

7.6       Variance of the MOEGIE distribution 

The variance of the of the MOEGIE distribution can be obtained using the relation 

𝑉(𝑥) = 
2
= 𝜇2

′ − (𝜇1
′ )
2
                                                                                                                   (28) 


2
= 

𝑖𝑗
{𝜃𝜆(𝑖 + 1)}𝛤 {3,

𝜃𝜆

𝑥
(1 + 𝑖)} − [

𝑖𝑗
𝛤 {3,

𝜃𝜆

𝑥
(1 + 𝑖)}]

2

                                             (29) 

7.7      The third and the fourth moments of the MOEGIE distribution 

Setting 𝑟 = 3 in equation (25), 
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
3
 = 

𝑖𝑗
{𝜃𝜆(𝑖 + 1)}2𝛤 {4,

𝜃𝜆

𝑥
(1 + 𝑖)}                                                                                          (30) 

Then 


3
= 

𝑖𝑗
{𝜃𝜆(𝑖 + 1)}2𝛤 {4,

𝜃𝜆

𝑥
(1 + 𝑖)} − 3𝛤

𝑖𝑗
{2,
𝜃𝜆

𝑥
(1 + 𝑖)} {𝜃𝜆(𝑖 + 1)}𝛤 {2,

𝜃𝜆

𝑥
(1 + 𝑖)}

+ 3 (
𝑖𝑗
)
3

3 {2,
𝜃𝜆

𝑥
(1 + 𝑖)}                                                                               (31) 

Also for, 𝑟 = 4 in equation (24), we have 


4
 = 

𝑖𝑗
{𝜃𝜆(𝑖 + 1)}3𝛤 {5,

𝜃𝜆

𝑥
(1 + 𝑖)}                                                                                         (32) 

Thus, 


4
= 

𝑖𝑗
{𝜃𝜆(𝑖 + 1)}3𝛤 {5,

𝜃𝜆

𝑥
(1 + 𝑖)}

− 4 (
𝑖𝑗
)
2

𝛤 {3,
𝜃𝜆

𝑥
(1 + 𝑖)} 

𝑖𝑗
{𝜃𝜆(𝑖 + 1)}2𝛤 {4,

𝜃𝜆

𝑥
(1 + 𝑖)}                     (33) 

 

7.5       Standard deviation of MOEGIE distribution 

The standard deviation is defined as the positive square root of the variance. It is represented 

as, = √2. From equation (25), the variance of MOEGIE distribution is given as 

2 = 
𝑖𝑗
{𝜃𝜆(𝑖 + 1)}𝛤 {3,

𝜃𝜆

𝑥
(1 + 𝑖)} − [

𝑖𝑗
𝛤 {3,

𝜃𝜆

𝑥
(1 + 𝑖)}]

2

 

 = √
𝑖𝑗
{𝜃𝜆(𝑖 + 1)}𝛤 {3,

𝜃𝜆

𝑥
(1 + 𝑖)} − [

𝑖𝑗
𝛤 {3,

𝜃𝜆

𝑥
(1 + 𝑖)}]

2

 

        = √1 − 1
2 

Where 

𝑘 = 
𝑖𝑗
{𝜃𝜆(𝑖 + 1)}𝑘−1𝛤 {𝑘 + 1,

𝜃𝜆

𝑥
(1 + 𝑖)}                                                                              (34) 

7.6        Coefficient of Variation of MOEGIE distribution 

This is the ratio of standard deviation to the mean. Usually, it ids denoted by C.V and is given 

by 
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𝐶. 𝑉 =



 

This implies that  

𝐶. 𝑉 =
√

𝑖𝑗
{𝜃𝜆(𝑖 + 1)}𝛤 {3,

𝜃𝜆
𝑥 (1 + 𝑖)

} − [
𝑖𝑗
𝛤 {3,

𝜃𝜆
𝑥 (1 + 𝑖)

}]
2


𝑖𝑗
𝛤 {3,

𝜃𝜆
𝑥 (1 + 𝑖)

}
                                       (35) 

7.7     Skewness of MOEGIE distribution 

Ratio of moment is a popular way to measure the skewness and kurtosis of a distribution. Lack 

of tails (about mean) of frequency distribution curve is known as skewness. The measure of 

skewness as given by Karl Pearson in terms of moments of frequency distribution is given by  


1
=

3
2


2
3
 

Putting equation (29) and (31) in the equation above, we will obtain an expression for the 

skewness of MOEGIE distribution. 

8.0     Quantile function 

The 𝑢𝑡ℎ quantile function of the distribution which is defined as the inverse of the distribution 

function 𝐹(𝑥𝑢) = 𝑢, given by  

𝑥 = −{
𝜃𝜆

𝑙𝑛 [
𝛼𝑢

1 − �̅�𝑢
]
}                                                                                                                       (36) 

The equation (36) can be used to obtain a random number that can be used to access the 

asymptotic properties of the MOEGIE distribution.  

When 𝑢 =
1

2
, we obtained the quantile which represent the median of the distribution given by 

𝑚𝑒𝑑𝑖𝑎𝑛 = −{
𝜃𝜆

𝑙𝑛 [
𝛼

1 − �̅�]
} 

For mode of this distribution can be found by solving 
𝛿𝐼

𝛿𝑥
= 0(

𝑑2𝐼

𝑑𝑥2
< 0) 

9.0 Moment generating function (mgf) of MOEGIE Distribution 

The mgf of the (MOEGIE) distribution is given by 
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𝑀𝑥(𝑡) = 𝐸(𝑒
𝑡𝑥) =∑

𝑡𝑟

𝑟!

∞

𝑟=0

𝐸(𝑇𝑟)                                                                                                     (37)  

Putting equation (25) into equation (37), we have 

𝑀𝑥(𝑡) = 𝛼𝜆𝜃∑∑∑
𝑡𝑟

𝑟!
�̅�𝑗(𝑗 + 1)

𝑗

𝑖=0

∞

𝑗=0

(−1)𝑖 (
𝑗

𝑖
) {𝜃𝜆(𝑖 + 1)}𝑟−1𝛤 {𝑟 + 1,

𝜃𝜆

𝑥
(1 + 𝑖)}

∞

𝑟=0

      (38) 

This is the required mgf of Marshall Olkin Extended Generalised inverse Exponential 

distribution. 

10.0     Renyi entropy 

The Renyi entropy of a random variable 𝑇 represents a measure of uncertainty. A large value 

of entropy indicates the greater uncertainty in the data. The measure have been shown to be 

effective in comparing the tails and shapes of various standard distributions, Song [20]. The 

Renyi, A. (1961), Ref. [17] introduced the Renyi entropy defined as 

𝐻𝛼(𝑇) =
1

1 − 
𝑙𝑜𝑔 ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

 ,                      > 0 𝑎𝑛𝑑  ≠ 1                                                               (39) 

Then substituting equation (12) in (39) we have 

𝐻𝛼(𝑇) =
1

1 − 
𝑙𝑜𝑔

{
 
 

 
 

∫

(

 
 𝑒−


𝑥

𝑥2 [1 − ̅ {1 − 𝑒−

𝑥 }]

2

)

 
 



𝑑𝑥

∞

−∞

}
 
 

 
 

                                                                   (40) 

Then we have 

=
1

1 − 
𝑙𝑜𝑔 {() (

+ 𝑗 − 1

𝑗
) ̅𝑗(−1)𝑗 (

𝑖

𝑗
) ∫ 𝑥−2𝑒−


𝑥
(+1)𝑑𝑥

∞

−∞

}                                                    (41) 

If we let 𝑚 =


𝑥
(+ 1), finally we have 

𝐻𝛼(𝑇) =
−1

1 − 
𝑙𝑜𝑔 {() (

+ 𝑗 − 1

𝑗
) ̅𝑗(−1)𝑗 (

𝑖

𝑗
) [(+ 𝑖)]−(2+3) 〈2

+ 1;


𝑥
(+ 1)〉}                                                                                                                 (42) 
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11.0 Order Statistics 

Order statistics are among the most fundamental tools in non-parametric statistics and inference. 

The pdf 𝑓𝑖:𝑛(𝑥) of the 𝑖𝑡ℎ order statistic for a random sample 𝑥1, 𝑥2, . . . 𝑥𝑛 from the MOEGIE 

distribution id given by 

𝑓𝑖:𝑛(𝑥) = 𝑓(𝑥)∑(−1)𝑗
𝑛−𝑖

𝑖=1

(
𝑛 − 𝑖

𝑗
) 𝐹𝑖+𝑗−1(𝑥)                                                                              (43) 

Where  

 =
𝑛!

(𝑖−1)!(𝑛−𝑖)!
;  

𝑓𝑖:𝑛(𝑥) = 
𝑒−


𝑥

𝑥2 [1 − ̅ {1 − 𝑒−

𝑥 }]

2∑(−1)𝑗
𝑛−𝑖

𝑖=1

(
𝑛 − 𝑖

𝑗
) [

𝑒−

𝑥

1 − ̅ {1 − 𝑒−

𝑥 }

]

𝑖+𝑗−1

 

𝑓𝑖:𝑛(𝑥) = ∑∑∑(
𝑖 + 𝑗 + 𝑙

𝑙
) ̅𝑙(−1)𝑘 (

𝑙

𝑘
) 𝑒−


𝑥
(𝑖+𝑗+𝑘)

𝑙

𝑘=0

∞

𝑙

𝑛−𝑖

𝑖=𝑖

                         (44) 

 

12.0 Estimation of the parameters 

In this section method of maximum likelihood is used to estimate the parameters and also we 

construct a confidence interval for the unknown parameters. Here we find the estimators for the 

𝑀𝑂𝐸𝐺𝐼𝐸 distribution. Let 𝑇1, 𝑇2, . . . , 𝑇𝑛 be a random sample from 𝑇~𝑀𝑂𝐸𝐺𝐼𝐸( , 𝜆, ) with 

observed values 𝑡1, 𝑡2, . . . , 𝑡𝑛 then the likelihood function 𝐿 ≡ 𝐿(: 𝑡𝑖) can be written as 

𝐿 =∏

{
 
 

 
 

𝑒−

𝑥

𝑥2 [1 − ̅ {1 − 𝑒−

𝑥 }]

2

}
 
 

 
 𝑛

𝑖=1

 

The log- likelihood is given as 

𝑙 = 𝑛𝑙𝑜𝑔() − ∑𝑥𝑖
−1

𝑛

𝑖=1

− 2∑ log (𝑥𝑖

𝑛

𝑖=1

) − 2∑ 𝑙𝑜𝑔 [1 − ̅ {1 − 𝑒−

𝑥 }]

𝑛

𝑖=1

 

To obtain numerical solution for the values of the estimates of MOEGIE distribution we may 

employ software such as R, Maple, OX Program etc. 

 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                                      www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.2, 2020 

 

99 

 

13.0 Applications 

In this section, we illustrate the usefulness and application of the MOEGIE distribution to real 

data sets. We fit the density function of Marshall Olkin Extended Generalised inverse 

Exponential (MOEGIE), Extended Generalised inverse Exponential (EIW) and Inverse 

Exponential (IE) distributions. 

The data set from Bjerkedal (1960) represents the survival times, in days of guinea pigs injected 

with different doses of tubercle bacilli. The data set consists of 72 observations and are listed 

below: 12, 15, 22, 24 ,24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 

59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68,70, 70, 72, 73, 75, 76,76, 81, 83, 84, 85, 87, 91, 95, 

96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 

341, 341, 376.   

Exploratory Data Analysis of the first data was given in table 1.0, table 2.0 gives the estimates 

of the parameters of MOEGIE distribution (standard error in parentheses), Akaike Information 

Criterion (AIC), Consistent Akaike Information Criterion (AICC), Bayesian Information 

Criterion (BIC) and the Hanan Quinin Information Criteria (HQIC) 

Table 1.0 Exploratory Data Analysis of Data 

𝑚𝑖𝑛 𝑄1 𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑎𝑛 𝑄3 𝑚𝑎𝑥 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑟𝑎𝑛𝑔𝑒 

12.0 54.75 70.0 99.82 112.80 376 1.84 2.89 364 

 

Table2.   MLEs(standard error in parenthesis) and the statistics  𝒍(�̂�),         

                𝑨𝑰𝑪, 𝑩𝑰𝑪 𝒂𝒏𝒅 𝑯𝑸𝑰𝑪 

𝑀𝑜𝑑𝑒I 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 −𝑙 𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 𝐶𝐴𝐼𝐶 

𝑀𝑂𝐸𝐺𝐼𝐸 

(𝛼, 𝜆, ) 

0.6448 

(0.07735) 

0.6278 

(5.5670) 

0.6135 

(05.4406) 

443.18 892.36 897.96 892.39 

𝐸𝐼𝐸 

(,) 

- 

- 

0.4950 

(4.4171) 

0.6059 

(5.4056) 

449.96 903.91 907.64 903.93 

𝐼𝐸 

() 

- 

- 

0.2999 

(0.0095) 

- 

 - 

449.96  901.91 903.78 900.92 
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13.0 Discursion/ Conclusion 
Since the Marshall-Olkin Extended generalised Inverse Exponential distribution possess 

the Minimum likelihood, AIC, CAIC and HQIC, it can be considered to be a better 

model in modeling real life data than the Generalised Inverse Exponential and the 

Inverse Exponential distribution. 
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