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ABSTRACT 

In this paper we introduced the Truncated Exponential Skew Symmetric Gumbel II (TESSG II) 

distribution which generalizes the Gumbel II distribution using the method proposed by 

Nadarajah et al (2013). Unlike the Gumbel II distribution which exhibits a monotone decreasing 

failure rate, the new distribution is useful for modeling unimodal (Bathtub-shaped) failure rates 

which has a wider class of applications in solving real life problems. Structural properties of 

the new distribution namely, density function, hazard function, moments and moment 

generating function were obtained. The maximum likelihood was employed to estimate 

parameters of the new distribution. Real data set for failures of Air conditional system of Jet air 

planes were used to validate its tractability, we discovered that the Truncated Exponential Skew 

Symmetric Gumbel II (TESSG II)  has a better fit than Gumbel II distribution.  

Keywords: Quantile function, Bathtub-shaped failure rate, Renyl entropy, moments  

 

1.0 INTRODUCTION 

The Gumbel distribution, belong to the class of type-1 extreme value distribution which is often 

used for extreme value analysis of extreme events. Another type of this distribution is the 

Gumbel II distribution which is not widely used in statistically modelling because of its lack of 

fits. For further studies see Okorie et al [7], Pinheiro Ferrari [12]. 

The cumulative density function cdf (𝑥) of the Truncated Exponentiated Skew symmetric 

family of distributions according to Nadarajah et al. [10] is defined by 

𝐹(𝑥) =
1−exp[−𝜆𝐺(𝑥)]

1−ex p(−𝜆)
                                                                                                                  (1)  

Differentiating the equation (1) above will yield the probability density of Truncated 

exponentiated Skew Symmetric family of distribution given as  
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𝑓(𝑥) =
𝜆𝑔(𝑥)exp [−𝜆𝐺(𝑥)]

1 − exp (−𝜆)
                                                                                               (2) 

A random variable 𝑋 is said to follow the Gumbel type-2 distribution if its cumulative density 

function (cdf) (𝑥) is given as defined Gumbel [2–5], 

𝐹(𝑥) = 1 − 𝑒−𝜂𝑥−𝛼
                                                                                                                         (3) 

And the probability density function given as 

𝑓(𝑥)

= 𝛼𝜂𝑥−𝛼−1𝑒−𝜂𝑥−𝛼
                                                                                                                            (4) 

Substituting equation (3) in (1), we have the cumulative density function of Truncated 

Exponential Skew Symmetric Gumbel Type-II (TESSG II) distribution given as 

𝐺(𝑥) =
1−𝑒

−𝜆(1−𝑒−𝜂𝑥−𝛼
)

1−𝑒−𝜆                                           𝑥 > 0, 𝛼, 𝜂 > 0                                              (5)  

The equation above when differentiated gives the probability density function (pdf) of the 

TESSG II distribution is given as 

𝑔(𝑥) =
𝛼𝜂𝜆𝑥−𝛼−1𝑒−𝜂𝑥−𝛼

𝑒[𝜆(1−𝑒−𝜂𝑥−𝛼
)]

1 − 𝑒−𝜆
                    𝑥 > 0 , 𝛼, 𝜂 > 0                                (6) 

The graph of pdf of TESSG II distribution for different values of the parameters is given below 

 

Figure 1.0 The graph of the TESSG II distribution 

 
2.0 Reliability Function 

 The reliability function or the survival function of a random variable 𝑋 is given by R(𝑥) = P(𝑋 

>𝑥) = 1−G(𝑥). This could be interpreted as the probability of a system not failing before some 

0 2 4 6 8 10

-0
.4

-0
.3

-0
.2

-0
.1

0
.0

Truncated Exponential Skew Symmetric Gumbell II Distribution

x

g
(x

)

a=1.5,b=-1.5,c=-0.5

a=0.5,b=-1.5,c=-0.8

a=0.1,b=-0.5,c=-1.5

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.2, 2020 

 

161 

specified time 𝑡, Lee and Wang [5]. The reliability function of the TESSG II distribution is 

given 

by 

𝑅(𝑥) = 1 −
1 − 𝑒−𝜆(1−𝑒−𝜂𝑥−𝛼

)

1 − 𝑒−𝜆
                                           𝑥 > 0 , 𝛼, 𝜂, 𝜆 > 0               ( 7)  

 

The graph of the Reliability function of TESSG II distribution is given below for various 

values of the parameters. 

 

Figure 2.0 The graph of survival function of TESSG II distribution 

 
3.0 Hazard Rate Function 

The hazard rate function ℎ(𝑥) or the instantaneous failure rate of a random variable 𝑋 is the 

probability that a system fails given that it has survived up to time 𝑡 and is given by 

ℎ(𝑥) =
𝑓(𝑥)

1 − 𝐹(𝑥)
=

𝑓(𝑥)

𝑅(𝑥)
                                                                                                           (8)  

Then the hazard rate function of TESSG II distribution is given as 

ℎ(𝑥) =
𝛼𝜂𝜆𝑥−𝛼−1𝑒−𝜂𝑥−𝛼

𝑒[𝜆(1−𝑒−𝜂𝑥−𝛼
)]

𝑒−𝜆 + 𝑒−𝜆(1−𝑒−𝜂𝑥−𝛼
)

                                                                              (9) 

The graph of the hazard rate function of TESSG II Distribution for various parameters values 

is drawn below 
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Figure 3.0 The graph of function of TESSG II distribution 

• The graph of the hazard function of TESSG II drawn above indicates that the 

distribution can effectively be used to model real life data that possesses 

non-monotone failure rate. 

 

4.0 The Moments and Moment generating function 

The moments of a random variable 𝑋 are one of the most important properties of a distribution 

that could be used to  obtain other essential properties such as mean, variance, skewness, and 

kurtosis statistics which can also be used to describe a probability distribution. The moment of 

a distribution function can be obtained by using the relation given as 

𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥                                                                                                              (10)

∞

−∞

 

For TESSG II distribution, the 𝑟𝑡ℎ moment is given as 

𝐸(𝑋𝑟) = 𝛼𝜂𝜆 ∫ 𝑥𝑟
𝑥−𝛼−1𝑒−𝜂𝑥−𝛼

𝑒[𝜆(1−𝑒−𝜂𝑥−𝛼
)]

1 − 𝑒−𝜆
𝑑𝑥                                                             (11)

∞

−∞

  

 

Then we have  

𝐸(𝑋𝑟) =
𝛼𝜂𝜆

1 − 𝑒−𝜆
∫ 𝑥𝑟−𝛼−1𝑒−𝜂𝑥−𝛼

𝑒[𝜆(1−𝑒−𝜂𝑥−𝛼
)]

∞

−∞

𝑑𝑥                                                          (12) 
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If we let, 𝑦 = 𝜂𝑥−𝛼, 𝑥 = (
𝜂

𝑦
)

1

𝛼
, 𝑑𝑥 =

𝜂
1
𝛼

𝛼
𝑦−

1

𝛼
−1𝑑𝑦 and substitute it in equation (12), we have 

𝐸(𝑋𝑟) = −
𝜂𝜆

1 − 𝑒−𝜆
𝜂

𝑟
𝛼𝑒−𝜆 ∫ 𝑦−

𝑟
𝛼𝑒−𝜆(1−𝑒−𝑦)𝑑𝑦

∞

−∞

                         𝑦 > 0                                   (13) 

Since 

𝑒𝑥 = ∑
𝑥𝑘

𝑘!

𝑘

𝑖=1

                                                                            (14) 

Finally, we have  

𝐸(𝑋𝑟) = −
𝜂𝜆

1 − 𝑒−𝜆
𝜂

𝑟
𝛼𝑒−𝜆 ∑

𝜆𝑘

𝑘!

𝑘

𝑖=1

(
1

𝑘
)

1−
𝑟
𝛼

∫ 𝑧−
𝑟
𝛼𝑒−𝑧𝑑𝑧  

∞

𝑘+1

                                                      (15) 

Since 𝑋 can only take values on the positive real line we can introduce the exponential 

integral defined by 

𝐸𝑖(−𝑋) = − ∫ 𝑡−1𝑒−𝑡𝑑𝑡                                                                                                                  (16)

∞

𝑥

 

For further study see Chapter 5 of Abramowitz and Stegun [8] and Equation (6.2.6) of Oliver 

et al. [7]): and applying it to equation (14) will transform to 

𝐸(𝑋𝑟) =
𝜂

1 − 𝑒−𝜆
𝜂

𝑟
𝛼𝑒−𝜆 ∑

𝜆𝑘+1

𝑘!

𝑘

𝑖=1

(
1

𝑘
)

1−
𝑟
𝛼

∫ 𝑡
𝑟
𝛼𝑒−𝑡𝑑𝑡  

∞

𝑥

                                                           (17) 

Using a generalised gamma function to summarize equation (17), we obtain the moment TESSG 

II distribution given as 

𝐸(𝑋𝑟) =
𝜂

1 − 𝑒−𝜆
𝜂

𝑟
𝛼𝑒−𝜆 ∑

𝜆𝑘+1

𝑘!

𝑘

𝑖=1

(
1

𝑘
)

1−
𝑟
𝛼

𝛤 (
𝑟

𝛼
− 1; 𝑥)                                                          (18) 

Using equation (18), we obtain the 1𝑠𝑡 , 2𝑛𝑑 , 3𝑟𝑑 , 4𝑡ℎ  moment for 𝑟 = 1,2,3,4, we have 

𝜇1
′ =

𝜂

1 − 𝑒−𝜆
𝜂

𝑟
𝛼𝑒−𝜆 ∑

𝜆𝑘+1

𝑘!

𝑘

𝑖=1

(
1

𝑘
)

1−
𝑟
𝛼

(
1

𝛼
− 1; 𝑥)                                                                         (19) 

𝜇2
′ =

𝜂

1 − 𝑒−𝜆
𝜂

𝑟
𝛼𝑒−𝜆 ∑

𝜆𝑘+1

𝑘!

𝑘

𝑖=1

(
1

𝑘
)

1−
𝑟
𝛼

𝛤 (
2

𝛼
− 1; 𝑥)                                                              (20) 

𝜇3
′ =

𝜂

1 − 𝑒−𝜆
𝜂

𝑟
𝛼𝑒−𝜆 ∑

𝜆𝑘+1

𝑘!

𝑘

𝑖=1

(
1

𝑘
)

1−
𝑟
𝛼

𝛤 (
3

𝛼
− 1; 𝑥)                                                                     (21) 
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𝜇4
′ =

𝜂

1 − 𝑒−𝜆
𝜂

𝑟
𝛼𝑒−𝜆 ∑

𝜆𝑘+1

𝑘!

𝑘

𝑖=1

(
1

𝑘
)

1−
𝑟
𝛼

𝛤 (
𝑟

𝛼
− 1; 𝑥)                                                                 (22) 

The mean of TESSG II distribution is the first moment about the origin (𝜇1
′ ) which corresponds 

to equation (19). It then follows that the variance (𝜇2), the coefficient of variation (𝜌), the 

coefficient of skewness (𝛾1), and the coefficient of kurtosis (𝛾2) of the TESSG II distribution 

are respectively, obtained as 

(𝜇2) = 𝜇2
′ − (𝜇1

′ )2                                                                                      (23) 

𝜌 =
√𝜇2

𝜇1
′ =   

√𝜇2
′ − (𝜇1

′ )2

𝜇1
′  ,                                                                     (24)  

𝛾1 =
𝜇3

(𝜇2)
3
2

=
𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 2(𝜇1
′ )2

{𝜇2
′ − (𝜇1

′ )2}
3
2

                                                     (25) 

𝛾2 =
𝜇4

(𝜇2)2
=

𝜇4
′ − 4𝜇3

′ 𝜇1
′ + 6𝜇2

′ 𝜇1
′ − 3(𝜇1

′ )2

{𝜇2
′ − (𝜇1

′ )2}2
                                     (26) 

 

5.0 Moment generating function of TESSG II distribution 

The moment generating function of a random variable x is defined by 

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥

∞

−∞

𝑓(𝑥)𝑑𝑥                                                                                                                     (27) 

The above expression can further be simplify as 

𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!

∞

𝑘=0

∫ 𝑥𝑟

∞

−∞

𝑓(𝑥)𝑑𝑥                                                                                                           (28) 

Since, 

𝑒𝑡𝑥 = ∑
𝑡𝑟𝑥𝑟

𝑟!

∞

𝑟=0

                                                                                                                                      (29) 

Inserting equation (18) in equation (29), then we have 

𝑀𝑥(𝑡) =
𝜂

1 − 𝑒−𝜆
𝑒−𝜆 ∑ ∑

𝜆𝑘+1

𝑘!

𝑡𝑟

𝑟!

∞

𝑟=1

𝑘

𝑖=1

𝜂
𝑟
𝛼 (

1

𝑘 + 1
)

1−
𝑟
𝛼

𝛤 (
𝑟

𝛼
− 1; 𝑥)                                          (30) 

 

6.0 Estimation of the parameters 

In this section method of maximum likelihood is used to estimate the parameters and also we construct 

a confidence interval for the unknown parameters. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample from 
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𝑋~𝑇𝐸𝑆𝑆𝐺 𝐼(𝛼, 𝜂, 𝜆) with observed values 𝑥, 𝑥2, . . . , 𝑥𝑛 then the likelihood function 𝐿 ≡ 𝐿(𝛼, 𝜂, 𝜆) can 

be written as 

𝐿 = ∏
𝛼𝜂𝜆𝑥−𝛼−1𝑒−𝜂𝑥−𝛼

𝑒[𝜆(1−𝑒−𝜂𝑥−𝛼
)]

1 − 𝑒−𝜆
                         (39)

𝑛

𝑖=1

 

And the log likelihood (𝑙𝑜𝑔𝐿 = 𝑙) is given as 

𝑙(𝜃) = 𝑛𝑙𝑜𝑔 (
𝛼𝜂𝜆

1 − 𝑒−𝜆
) − (𝛼 − 1) ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

− 𝜂 ∑ 𝑥𝑖
−𝛼

𝑛

𝑖=1

+ 𝜆 ∑(1 − 𝑒−𝜂𝑥−𝛼
)

𝑛

𝑖=1

 

And the element of the score vector is given as 

𝑑𝑙

𝑑𝛼
=

𝑛

𝛼
− ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

− 𝜂 ∑(𝑙𝑛𝑥𝑖
−𝛼)(𝑙𝑛𝑥𝑖)

𝑛

𝑖=1

 

𝑑𝑙

𝑑𝜂
=

𝑛

𝜂
− ∑ 𝑥𝑖

−𝑎

𝑛

𝑖=1

− ∑ 𝑥
𝑖(1−𝑒−𝜂𝑥−𝛼

)

𝑛

𝑖=1

 

𝑑𝑙

𝑑𝜆
=

𝑛

𝜆
−

𝑛𝑒−𝜆

1 − 𝑒−𝜆
+ 𝜆 ∑(1 − 𝑒−𝜂𝑥−𝛼

)

𝑛

𝑖=1

 

 

7.0 Application 

We consider the number of failures for the air conditioning system of jet airplanes. These data 

were reported by Cordeiro and Lemonte [1]: 194,413, 90, 74, 55, 23, 97, 50, 359, 50, 130, 487, 

57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 493, 33, 18, 209, 41, 58, 60, 48, 56, 87, 11, 

102, 12, 5, 14, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 61, 100, 61, 502, 220, 120, 141, 

22, 603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239, 14, 18, 39, 3, 12, 5, 32, 9, 438, 43, 134, 184, 

20, 386, 182, 71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 156, 21, 

16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 26, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 

5, 82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 216, 139, 67, 310, 3, 46, 210, 57, 

76, 14, 111, 97, 62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130, 90, 163, 208, 

1, 24, 70, 16, 101, 52, 208, 95, 62, 11, 191, 14, 71. 

Table 1 gives the exploratory data analysis of the data, Table 2 provides the maximum 

likelihood estimate of the unknown parameters (and the corresponding standard errors in 

parentheses) and the measure of goodness-of-fit tests that was used to verify which distribution 

fits better to the data set between the Truncated Exponentiated Skew Symmetric Gumbel II 

distribution and the Gumbel II (G II) distribution. We consider the Akaike Information Criterion 
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(AIC), Bayesian Information Criterion (BIC) and the Hanna Quinn Information Criteria (HQIC) 

as the selection criteria. 

 

RESULTS 

Descriptive Statistics of the failure data 

𝑀𝑖𝑛 𝑄
1
 Median 𝑚𝑒𝑎𝑛 𝑄

3
 𝑀𝑎𝑥 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 Range Skewness 

1.00 2.75 54.00 92.07 118.00 603.00 5.20 600 2.17 

 

Table 2.0 

Distributi

ons 

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓  𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒔 𝒍 𝑨𝑰𝑪 𝑩𝑰𝑪 𝑯𝑸𝑰𝑪 

𝑻𝑬𝑺𝑺𝑮 𝑰𝑰 

  (𝒂, 𝜼,λ) 

1.4004 

(0.0254) 

0.0188 

(0.0020) 

11.2907 

(1.0062) 

−260.78 527.56 542.28 533.15 

𝑮 𝑰𝑰 

 (𝒂, 𝜼) 

1.0287 

(0.0179) 

0.2854 

(0.0131) 

− −448.68 901.37 911.18 905.10 

 

CONCLUSION 

Since the Truncated exponential skew symmetric Gumbel II distribution possess the smaller 

AIB,BIC and HQIC it can be considered as better model than the Gumbel II model most 

especially in modeling data that exhibits non-monotone failure rate. 
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