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Abstract 

In this study, the intersection algebra of two principal ideals of the unique factorization 

domain is explained. The generators of the intersection algebra of two principal ideals. The 

important and sufficient conditions are obtained for the said intersection algebra to be finitely 

generated. It is also shown that intersection algebra of principal ideals in the polynomial ring 

is a semigroup ring.  
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1. Introduction 

The research of the unique factorization domain has an importance in the field of 

commutative algebra and a very interesting concept is intersection algebra of mathematical 

structures. In this article, some cases of intersection algebra are discussed in the context of 

UFD. This research is divided into three parts. 

In the first part, the basic definitions and concepts of algebra and especially in commutative 

algebra are given which are necessary to understand the work, and also some examples are 

presented to explain the definitions or concepts where it is needed. 

In the second part, some important results are given which are already have been proved about 

the intersection algebra of different mathematical structures. These results are exceptional and 

helped to complete the work of this research.  

In the third Part, the UFD (Unique Factorization Domain) is considered and then studied the 

intersection algebra of principal ideals. The proof of this section is mainly taken from [1]. In 

this part, the following results are proved.  
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An example of the intersection algebra of monomial ideals in the polynomial ring is created to 

illustrate the theory. 

• Found the generators of intersection algebra of principal ideals in UFD. 

• Found the if and only if conditions for the intersection algebra to be finitely generated. 

It also showed that the intersection algebra of monomial ideals in the polynomial ring is a 

semigroup ring. 

2. Preliminaries 

In this section of the article, some basic definitions and introductory concepts of algebra are 

given in general. Particularly the basic definitions of commutative algebra are given and also 

some examples are presented to illustrate the concepts. These definitions are taken from [2], 

[3], [4], [5], [6] and [7]. 

2.1. Abelian group: “An abelian group is a set A , together with an operation  that 

combines any two elements a  and b  to form another element denoted .a b  the symbol   is a 

general placeholder for a concretely given operation. To qualify as an abelian group, the set 

and operation, ( ),A  , must satisfy five requirements known as the abelian group axioms: 

• Closure: For all ,a b  in A ,the result of the operation a b is also in A  . 

• Associativity: For all ,a b  and c  in A , the equation ( ) ( )a b c a b c  =    holds. 

• Identity element: There exists an element e  in A  , such that for all elements a  in A  , 

the equation e a a e a =  =  holds. 

• Inverse element: For each a  in A  , there exists an element b  in A  such that 

a b b a e =  =  where e  is the identity element. 

• Commutativity: For all ,a b  in A  , .a b b a =   

A group in which the group operation is not commutative is called a non-abelian group or 

non-commutative group” 

2.2. Ring: “A ring is a set R  equipped with two binary operations and+   satisfying the 

following three sets of axioms, called the ring axioms 

1. R is an abelian group under addition, meaning that: 

▪ ( ) ( ) , ,a b c a b c a b c R+ + = + +    (that is,+  is associative) 

▪ ,a b b a a b+ = +  in R (that is,+  is commutative). 

▪ There is an element 0  in R  such that 0a a+ =  for all a  in R  (that is , 0  is the additive 

identity) 

▪ For each a  in R  there exists a−  in R  such that ( ) 0a a+ − =  (that is a− is the additive 

inverse of a  ). 

2. R is a semi multiplicative group, meaning that: 
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▪ ( ) ( )a b c a b c  =   for all , ,a b c  in R  (that is ,   is associative). 

▪ There is an element 1 in R  such that 1a a =  and 1 a a =  for all in R  (that is, 1 is the 

multiplicative identity). 

3.  Multiplication is distributive with respect to addition: 

▪ ( ) ( ) ( )a b c a b a c + =  +   for all , ,a b c  in R  (left distributivity) 

▪ ( ) ( ) ( )b c a b a c a+  =  +  for all , ,a b c  in R  (right distributivity).” 

2.3. Ideal: Let R  be a ring. A sub ring I  of R  is called an ideal if it satisfies the 

following conditions: 

( )1. ,I + is a subgroup of ( ),R +  

2. , :      x r I.x I r R       

Equivalently, a right ideal of R  is a right modr sub ule− of R  . 

Similarly a subset I  of R  is called left ideal of R  if it is an additive subgroup of R  absorbing 

multiplication on the left: 

( )1. ,I + is a sub group of ( ),R +  

2. , :     r x Ix I r R       

Equivalently, a left ideal of R  is a left modR sub ule−   of R .” 

Examples of ideal: 

• “In a ring R  the set R itself forms an ideal of R . Also, the subset containing only the 

additive identity 0R  forms an ideal. These two ideals are usually referred to as the 

trivial ideals of .R  

• The set of all polynomials with real coefficients which are divisible by the polynomial
2 1x +  is an ideal in the ring of all polynomials. 

• The set of all n by n− −  matrices whose last row is zero forms a right ideal in the ring 

of all n by n− −  matrices. It is not a left ideal. The set of all n by n− −  matrices whose 

last column is zero forms a left ideal but not a right ideal.” 

2.4. Polynomial ring: “The polynomial ring,  F X , in X  over a field F  is defined as 

the set of expressions, called polynomials in X , of the form 

2 1

0 1 2 1

m m

m mp p p X p X p X p X−

−= + + + + +  

Where 0 1, ,..., mp p p the coefficient of p , are element of F , and
2,X X ,are symbols, which are 

considered as “powers of X ”, and, by convention, follow the usual rules of exponentiation:
0 11,  X X X= = , and 
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,k l k lX X X +=  

For any nonnegative integers k  and l . The symbol X is called an indeterminate or variable.” 

2.5. Principal ideal: “A principal ideal is an ideal in a ring R  that is generated by a 

single element a  of R  through multiplication by every element of R .  

• A left principal ideal of R  is a subset of R of the form  :  in RRa ra r= ; 

• A right principal ideal is a subset of the form  :  in R ;aR ar r=  

• A two sided principal ideal is a subset of all finite sums of elements of the form ras , 

namely,  1 1 1 1, : , ,..., ,  in Rn n n nRaR ras r as r s r s= + + . 

While this definition for two-sided principal ideal may seem to contrast with the 

others, it is necessary to ensure that the ring remains closed under addition. 

If R  is a commutative ring, then the above three notions are all the same. In that case, it is 

common to write the ideal generated by a  as .a ” 

2.6. Integral domain: “An integral domain is basically defined as a nonzero 

commutative ring in which the product of any two nonzero elements is nonzero.  

• An integral domain is a nonzero commutative ring with no nonzero divisors. 

• An integral domain is a commutative ring in which the zero ideal 0  is a prime ideal. 

• An integral domain is a nonzero commutative ring for which every nonzero element is 

cancellable under multiplication.” 

Examples: 

• “The archetypical example is the ring Z  of all integers. 

• Every field is an integral domain. For example, the field F  of all real numbers is an 

integral domain. Conversely, every artinian integral domain is a field. In particular, all 

finite integral domains are finite fields. The ring of integers Z  provides an example of 

a non-Artinianinfinite integral domain that is not a field, possessing infinite 

descending sequences of ideals such as: 
12 2 2n nZ Z Z Z+       

• Rings of polynomials are integral domain if the coefficients come from an integral 

domain. For instance, the ring  Z x  of all polynomials in one variable with integer 

coefficients is an integral domain; so is the ring  1,..., nC x x  for all polynomials in n−  

variables with complex coefficients.” 

2.7. Unique factorization domain: “A unique factorization domain is defined to be 

an integral domain R  in which every non-zero element x  of R  can be written as a 

product (an empty product if x  is a unit) of irreducible elements ip  of R  and a unitu  

: 

1 2... nx up p p=  With 0n   
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And this representation is unique in the following sense: If 1,..., mq q  are irreducible elements 

of R  and w  is a unit such that  

1 2... mx wq q q= With 0.m   

Then m n=  , and there exists a bijective map    : 1,..., 1,...,n m →  such that ip  is associated 

to ( )i
q


 for  1,...,i n  . 

         A unique factorization domain is an integral domain R  in which every non-zero element 

can be written as a product of a unit and prime elements of R .” 

Examples:“Most rings familiar from elementary mathematics are UFDs: 

1. All principal ideal domains, hence all Euclidean domains, are UFDs. In particular, the 

integers (also see fundamental theorem of arithmetic), the Gaussian integers and the 

Eisenstein integers are UFDs. 

2. 
2 i

nZ e
 

 
 

is a UFD for all integers1 22n   ,but not for 23n =  . 

3. If R  is a UFD, then so is  R X , the ring of polynomials with coefficients in R . Unless

R  is a field,  R X is not a principal ideal domain. By iteration, a polynomial ring in 

any number of variables over any UFD (and in particular over a field)is a UFD. 

4. The Auslander-Buchsbaum theorem states that every regular local ring is a UFD.” 

2.8. Radical of an ideal: “The radical of an ideal I  in a commutative ring R  , denoted 

by Rad( I  ) or I  is defined as  

 | nI r R r I=   for some positive integer n  

Intuitively, one can think of the radical of I  as obtained by taking all the possible roots of 

elements of I  . Equivalently, the radical of I  is the pre-image of the ideal of nilpotent 

elements (called nilradical) in /R I  . The latter shows I  is an ideal itself, containing I  

If an ideal I  coincides with its own radical, then I  is called a radical ideal or semiprime 

ideal.” 

Examples:“Consider the quotient ring 

  ( )4, /R C x y y= . Notice that any morphism R C→  must have y  in the kernel in order to 

have a well-defined morphism (if we said, for example, that the kernel should be ( ), 1x y −  the 

composition of  ,C x y R C→ →  would be ( )4, , 1x y y −  which is the same as trying to force

1 0=  ). Since C  is algebraically closed, every morphism R F→  must factor throughC ,so we 
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only have the compute the intersection of ( ) ( ) ker : ,Hom R C  to compute the radical of

( )0  . We then find that ( ) ( )0 .y R=   

Consider the ring Z  of integers: 

• The radical of the ideal 4Z  of integer multiples of 4  is 2Z  

• The radical of 5Z  is 5Z  

• The radical of 12Z is 6Z ” 

2.9. Monomial ideal: “A monomial ideal is an ideal generated by some monomials in 

a multivariate polynomial ring over a field  

             An ideal I  that can be written  

 | ,I a x A a k

 =    

For some 0

nA Z  is a monomial ideal. 

       An ideal I in S  1,..., nQ x x= is called a monomial ideal if it satisfies any of the following 

equivalent conditions: 

(a) I  is generated by monomials, 

(b) If nN
f k x
=  belongs to I  then x I   whenever 0k   , 

(c) I  is torus-fixed; in other words, if ( ) ( )1,...,
n

nc c Q  then I  is fixed under the action

i i ix c x for all i ” 

Example: Let 2 .I x  Then I  is a monomial ideal and  | , 2A n Z n=    

2.10. Semigroup ring: “Let G  be a monoid. Let R  be a ring. Then the semi 

group ring of G  over R  is actually the structure that can be seen as the set of formal 

sums, 

g

g G

r g


  

Where gr R  and g G and 0gr =  for all but finitely many g  . 

Note:Actually the semi group ring can be seen as the direct product of R  with its copies. For 

each element of G  . There is one copy of R  .   

2.11. Noetherian ring: “In mathematics, more specifically in the area of abstract 

algebra known as ring theory, a noetherian ring is a ring that satisfies the ascending 

chain condition on ideals; that is, given any chain of ideals: 

1 1 1k k kI I I I− +      
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There exists an n  such that: 

1n nI I += =   

There are other equivalent formulations of the aNoetherian ring. 

For non-commutative rings, it is necessary to distinguish between three very similar concepts: 

• A ring is left-noetherian if it satisfies the ascending chain condition on left ideals. 

• A ring is right-noetherian if it satisfies the ascending chain condition on right ideals. 

• A ring is noetherian if it is both left-and right-noetherian. 

For commutative rings, all three concepts coincide, but in general they are different.” 

Examples: 

• “Any field, including fields of rational numbers,real numbers, and complex numbers, 

is noetherian. (A field only has two ideals itself and ( )0  ) 

• Any principal ideal domain, such as the integers, is noetherian since every ideal is 

generated by a single element.” 

2.12. Ascending chain condition: “The ascending chain condition (ACC) and 

descending chain condition (DCC) are finiteness properties satisfied by some 

algebraic structures, most importantly ideals in certain commutative rings. 

                  A partially ordered set (poset) P  is said to satisfy the ascending chain condition 

(ACC) if every strictly ascending sequence of elements eventually terminates. 

Equivalently, given any sequence 

1 2 3 ,a a a     

There exists a positive integer n  such that 

1 2n n na a a+ += = = ” 

2.13. Prime ideal: “A prime ideal is a proper ideal whose complement is closed 

under multiplication. 

    This is equivalent to saying: 

 or b pab p a p     

An ideal P  of a commutative ring R  is prime if it has the following two properties: 

• If a  andb  re two elements of R  such that their product ab  is an element of P , then a  

is in P  orb  is in P  , 

• P is not equal to R  for the whole ring.” 

Examples: 

http://www.iiste.org/
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• “A simple example: For R Z=  . the set of even numbers is a prime ideal  

• In the ring  Z X  of all polynomials with integer coefficients, the ideal generated by 2  

and X  is a prime ideals. It consists of all those polynomials whose constant coefficient 

is even.” 

2.14. Quotient ring: “A quotient ring, also known as factor ring, difference ring 

or residue class ring, is a construction quite similar to the quotient groups of group 

theory and the quotient spaces of linear algebra. It starts with a ring R  and a two sided 

ideal I  in R , and constructs a new ring, the quotient ring /R I  , whose elements are 

the cosets of I in R  subject to special +  and   operations.” 

2.15. Local ring: “A ring R  is a local ring if it has any one of the following 

equivalent properties: 

• R has a unique maximal left ideal. 

• R has a unique maximal right ideal. 

• 1 0 and the sum of any two non-units in R  is a non-unit. 

• 1 0 and if x  is any element of R , then x  or1 x−  is a unit. 

• If a finite sum is a unit, then it has a term that is unit(this says in particular that the 

empty sum cannot be a unit, so it implies1 0 ) 

A local ring that is an integral domain is called a local domain.” 

Examples: 

• “All fields (and skew fields) are local rings, since 0  is the only maximal ideal in 

these rings. 

• A nonzero ring in which every element is either a unit or nilpotent is a local ring. 

• An important class of local rings is discrete valuation rings, which are local principal 

ideal domain that are not fields. 

• Quotient rings of local rings are local.” 

2.16. Commutative ring: “A ring is a set R  equipped with two binary 

operations, i.e operations combining any two elements of the ring to a third. They are 

called addition and multiplication and commonly denoted by +  and  ;e.g. a b+ and

a b . To form a ring these two operation have to satisfy a number of properties: the 

ring has to be an abelian group under addition as well as a monoid under 

multiplication, where multiplication distributes over addition; i.e., 

( ) ( ) ( )a b c a b a c + =  +   

The identity elements for add multiplication are denoted 0 and1, respectively. The coordinate 

plan had four different quadrants. 

If the multiplication is commutative, i.e 

a b b a =   

http://www.iiste.org/
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Then the ring R  is called commutative. In the reminder of this article, all rings will be 

commutative, unless explicitly stated otherwise.” 

Example: “An important example, and in some sense crucial,is the ring of integers Z  with the 

two operations of addition and multiplication. As the multiplication of integers is a 

commutative operation, this is a commutative ring. It is usually denoted Z  as an abbreviation 

of the German word Zahlen (numbers) 

A field is a commutative ring where every non-zero element a  is invertible; i.e. has a 

multiplicative inverseb  such that . 1a b =  

Therefore, by definition, any field is a commutative ring. The rational, real andcomplex 

numbers form field. If R  is a given commutative ring, then the set of all polynomial in the 

variable X  whose coefficient are in R  forms the polynomial ring, denoted  R X  . The same 

holds true for several variables.” 

2.17. Module: “Let R  be a ring and M  an abelian group. We call M  a left

modR ule−  if there is a function  

( ): , ,R M M r m rm →  

Called a scalar multiplications, satisfying 

( )

( )

( ) ( )

1.

2. ,

3.

r s m rm sm

r m n rm rn and

rs m r sm

+ = +

+ = +

=
 

For all , ,   m,n G.r s R   

We call R the ring of scalars of M . 

     We can also define a right modR ule−  analogously by using a function 

( ): , .M R M m r mr →  

In particular the third property then reads 

( ) ( )m rs mr s=  

Note that the two notions coincide if R  is a commutative ring, and in this case we can simply 

say that M  is an R -module.” 

Examples of module: 

• The modK ules−  over a field K  are simply the K  -vector spaces. 

• Any matrix ring of a ring R  is a R -module under componentwise scalar. 
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2.18. Submodules: Given a left R -module M  a submodule of M  is a subset

N M  satisfying 

1. N  is a subgroup of M  and 

2. For all r R  and all n N  we have rn N  

The second condition above states that submodules are closed under left multiplication by 

elements of R  ; it is implicit that they inherit their multiplication from their containing 

module; 

R N N → must be the restriction of R M M →  

Examples: Any module M  is a submodule of itself, called the improper submodule, and the 

zero submodule consisting onlyof the additive identity of M  , called the trivial submodule. 

• A left ideal I  is a submodule of R  viewed as an S  -module, where S  is any(not 

necessarily proper) subring of R  

2.19. Quasi polynomial: “A quasi polynomial (pseudo polynomial) is a 

generalization of polynomials. While the coefficients of a polynomial come from a 

ring, the coefficients of quasi polynomial are instead periodic functions with 

integral period. Quasi polynomial appear throughout much of combinatorics as the 

enumerators for various objects. 

          A quasi polynomial can be written as 

( ) ( ) ( ) ( )1

1 0,...,d d

d dq k c k k c k k c k−

−= + + +  

Where ( )ic k  is a periodic function with integral period. If ( )dc k  is not identically zero, then 

the degree of q  is d  

Equivalently, a function :f N N→  is a quasi-polynomial if there exist polynomials 0 1,..., sp p −  

such that ( ) ( )if n p n=  when mod .n i s The polynomials ip are called the constituents of f .” 

Example: Given two quasi polynomial F and G  , the convolution of F  and G  is  

( )( ) ( ) ( )
0

k

m

F G k F m G k m
=

 = −  

Which is a quasi-polynomial with degree deg deg 1.F G + +  

2.20. Characteristic of ring: “The characteristic of a ring R  , often denoted char ( )R

, is defined to be the smallest number of times one must use the rings multiplicative 

identity ( )1  in a sum to get the additive identity ( )0 if the sum does indeed 

eventually attain 0;  the ring is said to have characteristic zero if this sum never 

reaches the additive identity. 
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That is, ( )char R  is the smallest positive number n  such that 

 summands

1 1 0
n

+ + =  

If such a number n  exists, and 0  otherwise. 

The characteristic may also be taken to be the exponent of the rings additive group, that is, the 

smallest positive n  such that 

 summands

0
n

a a+ + =  

For every element a  of the ring (again, if n  exists; otherwise zero).” 

2.21. Dimension of ring: “The Krull dimension has been introduced to provide an 

algebraic definition of the dimension of an algebraic variety: the dimension of the 

affine varity defined by an ideal I  in a polynomial ring S  is the krull dimension of

/S I ” 

2.22. Power of an ideal: “Let R  be a commutative unital ring I  be an ideal in R  . The 

thn  power of I , denoted
nI ,is defined in the following equivalent ways: 

• It is the ideal generated by n  -fold products of elements from I  

• It is the product of the ideal I  with itself, n  times. 

In symbols, it is the additive subgroup generated by elements of the form

1 2...  where an ia a a I  . The second power of an ideal is termed its square, and the third power 

is termed its cube.” 

2.23. Generators of ideals: 

• Let R  be a commutative ring. 

• Let I R  be an ideal. 

• Let S I  be a subset. 

Then S  is a generator of I  if and only if I  is the ideal generated by S . 

2.24. Generator of power of ideal: let I  be a graded ideal in a polynomial ring R , 

which is generated minimally by
1, , kx x  . Then the power of ,I i.e tI is generated by 

monomials of the form 1

1 ,..., naa

nx x  where
1 ... .na a t+ + =  Denote this set by S .” 

2.25. Noetherian filtration: An a noetherian A  is called filtered, if for every non-

negative integer i  there is a subspace iA  such that 

1)  if i j,i jA A   

2) i j i jA A A +   

3) 
.

0

i

i

A A


=

=  
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The set |iA i N  is called a filtration of .A  

3. Literature Review 

During recent years a lot of research has been done in this region of commutative algebra. For 

instance see [8], [9], [10], [11], [12], [13], [14] and [15]. Some results are presented here. 

A lot of studies have been done since the definition of monomial ideals of a ring. Because it is 

really easy to deal with the monomial ideals and in this way, we can prove some results about 

the generic ideals in the case of the polynomial ring. Because we can generalize the results 

from the monomial ideals to any ideal generated by polynomials. 

 In [8] the authors consider A  such that ij I i  . The authors took I  is not nilpotent. 

Let A  be a commutative noetherian ring with identity and ,I J  ideals in A  with .J I   

Also,assume that the ideal I  is not nilpotent and (0).K

k
I =  Then for each positive integer 

m one can define ( )1 ,v J m  to be the largest integer n  such that .m nJ I  Similarly , ( ),Jw I n  

is defined to be the smallest integer m  such that m nJ I  .Then the following results are 

found. 

Definition: [8]“Let  A  be a noetherian ring. We say that  :v A→  Z is a discrete 

valuation on A  if ( ) |x A v x =   is a prime ideal P  ,v  factors through

 / ,A A P→ →  Z  and the induced function on /A P  is a rank one discrete valuation on

/A P . If I  is an ideal in A  , then we denote ( ) ( ) : min |v I v x x I=  .” 

If R  is a noetherian ring, we denote by R  the integral closure of R  in its total quotient ring

( )Q R .  

Definition: [8]“Let I  be an ideal in a noetherianring A . An element x A  is a said to be 

integral over I  if x  satisfies an equation
1

1 0n n

nx a x a−+ + + =  with .iia I The set of all 

elements in A  that are integral over I  is an ideal I ,and the ideal I  is called integrally closed 

if I I= .If all the powers nI  are integrally closed, then I  is said to be normal. 

After the above definition the author gave an interesting remark.” 

Remark: [8]with the notation established above, for every positive integer n  we have 

1

.
h

n n

i

i

I I V R
=

=   

In particular, we have the following. 
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Remark: [8]If ,K L  are ideals in 1, , , hA v v are the Rees valuations of L ,and 

( ) ( )i iv K v L  for all 1,..., ,i h=  then K  L  . 

Definition: [8]A local noetherian ring ( ),A m  is analytically unramified if its m-adic 

completion Â  is reduced. 

Theorem: [8]Let A be a locally analytically unramified ring .Then for each 1,.....,j r=  we 

have  

( )1

0 .k

j j jE Q C D R E+

      

Theorem: [8] Let 1,..., ka a be thereal numbers. The limit 

( )
1

1 1

,...,
1 1

, ,....,
lim

k

k

m m
k k

v J m m

a m a m→ + +
 

exists if and only if there exists a rational number l  such that 1 2s s s srla   = = =  = for all 

1,...., .s k=  In this case the limit is equal to l  . 

Theorem: [8]Assume that the ideal I  has only one Rees valuation. Then the limit 

( )
1

1 1

,....,
1 1

, ,....,
lim

k

k

m m
k k

v J m m

a m a m→ + +
 

exists if and only if 

( ) ( )1 1 1 1 ./ /k kl J a l J a=  =  

In mathematics a unique factorization domain is an integral domain. 

A commutative ring in which the product of non-zero element is non-zero non-unit 

element can be written as a product of prime elements uniquely up to orders an units. 

In [9] the authors discussed some results about monomial ideals. Let  1,..., dA K x x=  

with 1,..., dx x  indeterminates and B be a lgsub k a ebra− − of A  generated by monomials in 

1,..., dx x  .Then B  is also a lgsub k a ebra− −  module of A  ,generated over K  as a module 

by monomials. 

Theorem: [9]If 1M  and 2M  are finitely generated submonoids of m , then so is  

1 2.M M M=   
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Theorem: [9]If  1 2 1, ,..., dI I k x x  are monomial ideals, then the length functions kf  are 

quasipolynomial for all 0k   . 

Theorem:[9]If I  is an ideal generated by finitely many monomials, then ( )logK conv I=  is 

the intersection of finitely many closed half-spaces. 

Theorem: [9]Let 
11,1 1, ,1 ,,..., ,..., ,...,

nk n n kH H H H+ + + +
 be half-spaces, and let  

1 ,..., ,

,
na a i i j

i j

Q a H=  

be a family of polytopes indexed by 1,..., na a  . Then the volume of 
1,..., na aQ  is a continuous 

function of 1,..., na a  . In addition, there exist a finite number of hyper planes in 0

nR  such that 

for 1,..., na a  not contained in any of the hyper planes, the volume of the polytope 
1,... na aQ is 

given by a degree d  form in 1 .,..., na a  

Theorem: [9]If 1,..., nI I  are each generated by a single monomial, then 0f  has the form given 

in the above theorem, hence is quasipolynomial of degree 2d + . 

Theorem: [9]Let I  and J  be monomial ideals in  1,..., dR x x= , where k  has characteristic p

, and let /S R I=  .Assume I J+  is Rm -primary. Then the Hilbert-Kunz function, ( ), ,S JHK e  

is eventually a polynomial of degree dimS  in
ep  . 

Definition: [9]If 1 1, ,...,N nM M M I I=  = =  are all principal ideals, and R  has 

characteristic 0p   ,  then the function ( ), 0: ,...,a a

M IHK a f p p→  is called the Hilbert-Kunz 

function on M of the ideal 1 .nI I I= ++ The more standard definition is in term of bracket 

powers, 

 ( )| .
e

ep pI i i I
 
  =   

With this notation,  

( ) ( ), / .
ep

M JHK a length M I M
 
 =  

Because R  has characteristic p  ,
1

e
e ep p p

nI I I
 
  = + + ,which shows that ,M IHK  is dependent 

only on I  and not on the choice of 1,..., nI I  

Theorem: [9] If H is a half-space containing log I ,then aH  contains log aI . 
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Theorem: [9]If I  is generated by h  monomials, and if K  is the convex hull of ( )log I  , then  

( ) ( )log .a dI a h K   +  

Theorem: [9] Let A  be a subset of dR such that both A  and its boundary A  

have finite volume. Then  

( ) ( ) ( ) ( ) ( )2 # 2vol A vol A A vol A vol A−    +   

Theorem: [9]Fix ( )1,..., , 0.n

nb b a   then  

1

1
lim 1

nmbmb

n

m

i i

i

R
length

I I

vol mb A
→

 
 

+ +  =
 
 
 

 

In [12] the authors proved very important and interesting results about power of ideals.

A be commutative noetherian ring with unit a  and b  two ideals of A  . By “radical of a ” mean 

the ideal ( )R a  composed of the x A such that some power of x  lies in a . 

Theorem: [12]the sequences ( )( ), /b a n n  and ( )( ), /bw a n n infinite) limits ( )bl a  and ( )bL a  . 

Theorem: [12]the operations of multiplication and addition are compatible with the 

equivalence relation ~a b  between ideals of A  . 

Theorem: [12](“Cancellation law”). If ,   and   are equivalence classes of ideals of A

having the same radical,the relation  =  implies =  . 

Theorem: [12] the relations    and   = +  in ( )A  are equivalent. 

Theorem:[12]If s  and t  are defined in ( )A  ,then s t +  is defined, and one has 

s t s t  + =  .If s and st   are defined in ( )A  ,then ( )
t

s  is defined and one has 

( ) .
t

st s =  If s  and 
s are defined in ( )A  , then ( )

s
  is defined ,and one has 

( )
ss s  =  . 

Theorem: [12]the relation s t =  implies s t=  . The relation 
s s =  implies . =  

Theorem: [12] If  , then ( )
w

x y u v    
=  implies  

x u w= and .y v w=  
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Theorem: [12]If ,   and when elements   and  are chosen in   and  , then the 

ratio /s t  is uniquely determined by .  

Theorem:[12] Let A  be a local ring of dimension 1,d b  an ideals of A  which is primary 

for the ideal od non units , and a  an ideal of A  such that ( )dim / .A a d Then ( )sl a  is 

defined , and is a finite real numbers. 

In [13] the author proved the important results about Noetherian filtration and finite 

algebra. Some are presented here. 

Definition:[13]A ring A   is said to be Noetherian if it satisfies the ascending chain condition 

on ideals, i.e. for any increasing chain 1 2 3I I I  of ideals of R  there exists an integer 

K  such that n kI I=  for all n k  . A left modA ule− M is Noetherian if it satisfies the 

ascending chain condition on submodules. 

Definition: [13]Let A  be a ring. If A has a maximal ideal m  , then we say that A  is a local 

ring, denoted ( ),A m  . 

Definition: [13] A unique factorization domain is defined to be an integral domain R  in 

which every non-zero element x  of R  can be written as a product (an empty product if x  is a 

unit) of irreducible elements ip   of R   and a unitu : 

1 2 ... nx u p p p= With 0n   

and this representation is unique in the following sense: If 1,..., m
q q  are irreducible elements of

R and w  is a unit such that 

1 2 ... mx w q q q= With 0,m   

then m n= , and there exists a bijectivemap 

   : 1,..., 1,...,n m →  

such that ip is associated to ( )iq for  1,..., .i n  

Definition: [13]A principal ideal domain is an integral domain in which every proper ideal 

can be generated by a single element. The term "principal ideal domain" is often abbreviated 

P.I.D. Examples of P.I.D.s include the integers, the Gaussian integers, and the set of 

polynomials in one variable with real coefficients 
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Definition: [13] A pair ( ),I J of ideals of a ring A  , call the algebra ( ),

r s r s

r s I J u v =   the 

intersection algebra of I and J  . If this algebra is finitely generated over R , we say that I  and 

J  have finite intersection algebra. 

Definition: [13]Let A  be a Noetherian ring, and ,I J ideals in A  with J I  . Also 

assume that I  is not nilpotent and ( )0 .k

k
I = Then for each positive integer m ,define 

( )1 ,v J m  to be the largest n such that
.m nJ I . Also, we can examine the sequence 

( ) 1 , ,
m

v J m which here we will abbreviate to ( )v m . 

Theorem: [13]let R  be aUnique factorization domain and ,I J  principal ideals in R  . Then 

,I J  have finite intersection algebra. 

Theorem:[13]For any 

( ) ( ) ( ) ( ) ( )( )( ), , , ,max , max , max ,  0.a b c d a b c d b d a c a b c d b d − − + =  − − − −   

Theorem:[13]Let R  be a principal ideal domain with ,I J  ideals in R   . Then I  and J  have 

finite intersection algebra.  

Theorem:[13]Let ,I J  be ideals in a Noetherian local ring A  such that J I  , the ideals 

,I J  are not nilpotent, and ( )0k

k
I =  . Assume that J  is principal and the ring 

,

m n

m n J I =    

isNoetherian. Then there exists a positive integer t  such that  

( ) ( ) ( )v m t v m v t+ = +  

for All .m t  

Theorem: [13]Let R  be a unique factorization domain and I and J  nonzero principal ideals 

in R such that 

J I  

Then there exists a positive integer t  such that  

( ) ( ) ( ).v m t v m v t+ = +  

Some Results on Principal Ideals in Unique Factorization Domain 
In this analysis throughout the ring will be a polynomial ring. Also in this analysis, our 

ring will be commutative.  
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The aim of this chapter to study the intersection of two principal ideals and powers of 

the principal ideals. The concept of intersection algebra is used to study the said structures. 

Also, find the generators of the intersection of two principal ideals and also the intersection of 

powers of these principle ideals in the Noetherian ring. Our Noetherian ring is a polynomial 

ring. 

Let S  is a polynomial ring and I and J are ideals of S . Then the intersection algebra 

of these ideals is a structure which is denoted and defined as  

,

n m

n m NB I J=    

Further we introduced two new variables 1 2,u u  then the intersection algebra can be redefined 

as  

( ) 1 2

,

, n m n m

s

n m N

B I J I J u u


=   

Clearly ( )  1 2, , .sB I J S u u  

If this algebra has finite generators then is called finitely generated. 

The concept is illustrated with the help of following example. 

Let  1 2,S k x x=  be a ring and let ( )3 3

1 2I x x= and ( )4

1 2J x x= . Then the elements of the 

intersection algebra B  will be of the form 

10 13 3 3 7 16 2 4 17 17 4 4

1 2 1 2 1 2 3 1 2 1 2 4 1 2 1 2k k x x u u k x x u u k x x u u+ + +  

Clearly 
0 0

1 2 3 4, , ,k k k k I J   , and  

( ) ( ) ( )10 13 3 3 3 3 3 3 9 6 3 12 3 3 9 12 3 3

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2x x u u I J u u x x x x u u x x u u  =  =  

And  

( ) ( ) ( )7 16 2 4 2 4 2 4 6 4 4 16 2 4 6 16 3 3

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2x x u u I J u u x x x x u u x x u u  =  =  

And with this example it is clear that this algebra has natural grading that is 2N  -grading. 

A semi group G  is called an affine semigroup if there is an isomorphism between G  and any 

subgroup of d  for some integer d  . 

              An affine semigroup is called pointed if it contain the identity element. 

We consider any two sets of numbers  1,..., nA a a=  and  1,..., nB b b=  then these sets of 

numbers are called fan ordered if  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.3, 2020 

 

19 

 

1

1

i i

i i

a a

b b

+

+

 for all 1,..., 1i n= −  

If there exists a fan order between A and B . And if 1 0 0ia b+ = = and 0 1 1na b += =  . 

Let  

( ) ( ) 1 2 1 1 1 2 0, , | ,i i i i im b a b a R   + + = +   

Then the fan associated with these sets of numbers is defined as  

 , | 0,...,A B im i n= =  

Theorem3.1 

If S  be a unique factorization domain. Let ( )1

1 ,..., naa

nI w w=  and ( )1

1 2,..., nbbJ w w=  are 

principal ideals generated by irreducible elements. Let 
,A B  be the associated fan for 

 1,..., nA a a=  and  1,..., .nB b b= Then the intersection algebra is generated by the set  

1 1

1 1{ ,..., ,..., | 0,..., , 1,..., }ij i ij i ij n ija r a r b s b s

i i n iw w w w i n j n+

+ = =  

Where ( ),ij ijr s  run over the Hilbert basis for each 
2

i iQ m=   where
,i A B

m  .  

Proof: 

As we already know that the intersection algebra is 2 -graded. So to complete the proof of 

theorem we will consider only a homogenous monomial from algebra. Letb B  . 

Let  

( ) ( )deg ,b r s=  

Where ( ) 2, ir s m   for some 
,

,i A B
m   hence ( ) 2, .r s   

Now according to the definition of associated fan 

1

1

i i

i i

a as

b r b

+

+

   

Now if we consider 
i

i

a s

b r
  then ,i ia r b s  and by the ordering of ,i ia b  we can easily see that 

j ja r b s j i    
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If we consider 
1

1

i

i

as

r b

+

+

  then 
1 1ia ia r b s
+ +  and by same argument we can easily see that  

j ja r b s j i    

So  

r s r sb I J u v   

( ) ( )

( )

1 1

11

1 1

1 1

,..., ,...,

,..., ,...,

n n

i i n

r s
a ba b r s

n n

a r b s b sa r r s

i i n

b w w w w u v

b w w w w u v+

+

 


 

As b  belong to this ideal then b  will be of the type  

11

1 1,..., ,...,i i na r b s b sa r r s

i i nb gw w w w u v+

+=  

Where g S be a monomial. 

Now since ( ) ,, ir s Q  so this ordered pair has a decomposition of the form  

( ) ( )
1

, ,
in

j ij ijj
r s q r s

=
=  

Where jq  . Hence 
1

in

j ijj
r q r

=
=  and 

.1

in

j ijj
s q s

=
=  

Therefore   

( )11

1 1,..., ,...,i i na r b s b sa r r s

i i nb g w w w w u v+

+=  

Further  

( ) ( ) ( ) ( )1 1

1 1

1

,..., ,...,
i

j ij j i ij j i ij j n ij j ij j ij

n
q a r q a r q b s q b s q r q s

i i n

j

b g w w w w u v+

+

=

=   

As jq  is common power of every term so we can write it as  

( )1 1

1 1

1

,..., ,...,
i

j
ij i ij i ij n ij ij ij

n q
a r a r b s b s r s

i i n

j

b g w w w w u v+

+

=

=   

This shows that every monomial of ring S  is generated by finite set of generators, which 

complete the proof of the theorem. 

Definition 3.2 Let F  be a field. The semigroup ring ( )F G  of a semigroup G  is the 

lgF a ebra− with F basis−  |al a G  and multiplication defined as 

a b a bl l l + =  
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When  1,..., iK f f=  is a collection of monomial inW  

( )F K is equal to the semigroup ring ( )F G  , where  

( ) ( )1log ,..., log iG f f=  + +  

is the subsemigroup of i  generated by ( )log K  

Let B  both as an lgW a ebra− and as a lgF a ebra− and keep in mind which structure one is 

considering when proving results. While there are important distinctions between the two, 

finite generation as an algebra overW  is equivalent to finite generation as algebra over F . 

Theorem 3.3 

                 Let S  be a ring that is finitely generated as an algebra over a field F  . Then B  is 

finitely generated as an algebra over S iffit is finitely generated as an algebra over F . 

Proof: 

Let B  be finitely generated over F  . 

Which means there must exists a finite subset of F  which generate B . So every element of 

B can be written as a combination of those elements. 

Since  

F S  

So the subset which generates B  is also subset of S . 

Hence B  is automatically finitely generated over S  . 

 Let 1{ ,..., }nc c  be the set of generators. For any c B  , 

We have 

1

q i

i ii
c rc

=
=  Where ir S  

Where i ’s are integral powers.  

But we know that S    is finitely generated over F , which means every element of S  can be 

written as a combination of elements of finite subset of F . 

Say that set is 1{ ,..., }ms s , 

So  
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1

ij
p

i ij jj
r a s



=
= where ija F  

So  

( )ij
i p i

ij j ie j
c a s c

 =   

B is finitely generated as an algebra over F   with  1 1,..., , ,...,n mc c s s ,which is proved 

complete proof of the theorem.  

 

Definition3.4 Let  S F x=  and  1,..., nx x x=  be the set generators. Then 

   1,... nF x F x x=  it is the polynomial ring over a field F . It contains n  number of 

variables. 

Suppose  1,..., qA f f=  in which set the number of elements are finite. So this called the 

finite  

set of distinct monomials in S . Such that   

1    if i   

The monomial subring spanned by A  is the lg .F suba ebra−  

 F A S  

We know that   1,... qF A F f f =    

Then 

  1,... qF A F f f S =    

Definition 3.5 A monomial, also called power product. A monomial is a product of powers 

of variables with nonnegative integer exponent. 

For any nd , the set 1

1 ,..., nddd

nx x x=  where  1,... nd d d=  is the set of nonnegative integer 

exponents. 

Suppose that f  is a monomial in polynomial ring S . The f  has an exponent vector  

f x=  

Which is an exponent vector, the exponent vector is denoted by 

( )log nf =   
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If R  is the set of monomials in the polynomial ring S  

Then  

( )log R denotes the set of nonnegative integer exponent vectors of monomial in R  . 

Theorem 3.6 

If S  is a polynomial ring over a field F . The polynomial ring S  contains n  numbers of 

variables. I and J  are two ideals of polynomial ring S  ,  

these ideals are generated by monomials (nonnegative power product of variables whose 

leading coefficient is one) in S  ,then G  is a semi group ring. 

 

Proof: As we already know that I  and J  are monomial ideals. Then the intersection of all 

these ideals denoted as  

                           n and mn mI J   

Where, 

,n mare powers of the principal ideals. 

So, 

Each power of principal ideals such as ( ),n m  are the component of G  . The each component 

of G is generated by monomials. 

Therefore, 

G is a subring of  1 1 2,... , ,nF x x u u  .The subring G  is generated over the field F . 

Now, 

From the list of monomials 

 | .ib i A  

Now, 

Consider theQ is the semi group. The semi group Q  is generated by  

( ) log |ib i A  

Then, 

 G F Q=  

And G  is a semi group over the field F  .  
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This show that a polynomial ring over the field and ideals generated by monomials in S  . 

ThenG is semi group ring, which complete the proof of the theorem. 
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