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Abstract 

The current state as regards the spread of the coronavirus disease 2019 indicates that the major preventive 

measure is minimizing individual contact with the virus. Consequently, this paper derived a mathematical model 

using saturated incidence rate with the disease incubating period as a delay parameter along other parameters 

measuring the inhibitory effects of awareness dissemination from the media, general campaign and individual 

interactions. The analytical evaluation of the model indicates that the stability of the disease-free and the 

endemic steady states of the model are determined by the basic reproduction number. In addition, the disease-

free steady state is independent of the incubating period, whereas the endemic steady state is initially stable but 

undergoes Hopf bifurcation as the incubating period exceeds the critical value by exhibiting periodic oscillation 

and become unstable. The outcome of the numerical simulation of the model via MATLAB application affirmed 

the results obtained analytically. 
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1. Introduction 

The advent of the coronavirus disease 2019 (COVID-19) has sprung a lot of scientific and clinical researches in 

search for means of treating, controlling and/or preventing the spread of the disease. Though there is no specific 

treatment for the cure of COVID-19 (that is, currently there is no effective vaccine or specific drug for 

preventing or treating the virus), a number of pharmacologic treatments have been suggested as potential 

therapies for COVID-19. These treatments are virtually supportive based on the severity of the individual illness. 

The following are some suggested drugs that have been found to be helpful in controlling the infection: 

Chloroquine Phosphate (Devaux et al., 2020; Colson et al., 2020), Hydroxychloroquine Solphate (Gautret et al., 

2020; Yao et al., 2020), Lopinavir/Ritonavir (Cao et al., 2020; Costanzo et al., 2020), Umifenovir (Costanzo et 

al., 2020), Remdesivir (Al-Tawfiq et al., 2020; Dong et al., 2020; Sheahan et al., 2020), Favipiravir (Dong et al., 

2020), Tocilizumab (Xu et al., 2020).  

The most common transmission mode of COVID-19 is by inhalation of infected droplets as a result of the 

susceptible having direct contact with the infected droplets (Singhal, 2020). Consequently, as preventive and 

control measures, several researchers recommended the used of face masks (Cheng et al., 2020; Einkenberry et 

al., 2020; Greenhalgh et al., 2020), social distancing (Courtemanche et al., 2020; Kissler et al., 2020; Singh & 

Adhikari, 2020), hand washing with soap and water or alcohol based hand sanitizers (Adhikari et al., 2020; 

Malhotra et al., 2020; WHO 2020), along with awareness creation and information dissemination (Agaba, 2020; 

Agaba & Soomiyol, 2020). 

Cheng et al. (2020) considered masking to be as important as other preventive measures noting that it has large 

population benefit. They also opined that if worn by most people, it is capable of reducing the reproduction 

number. Furthermore, Einkenberry et al. (2020) states that face masks are able to decrease the effective 

transmission rate and cause a decrease in epidemic mortality and healthcare system burden when combined with 

other non-pharmaceutical control measures. While Greenhalgh et al. (2020) are of the view that the use of face 

mask is a good precautionary measure that is simple, cheap and can have a sizeable impact on the transmission 

of the virus with little impact on social and economic life. They suggested that people be educated consistently 

on the proper usage of face masks without disregarding other anti-contagion measures. 

Kissler et al (2020) from their research on the effect of social distancing on the transmission rate of COVID-19 

opined that a one-time intervention will not be sufficient enough to maintain the disease; it will only postpone the 

epidemic peak to a later time. A better way will be by periodic distancing measures which may be maintained 

into 2022 along with other interventions. The impact of imposed social distancing measures, such as closure of 

schools and other crowding areas, on COVID-19 growth rate was evaluated by Courtemanche et al. (2020) and 

they discovered daily reduction in the growth rate of confirmed cases. In addition, the Indian society of 

anesthesiologists recommends frequent hand washing with soap and water or an alcohol based sanitizer 

(Malhotra, 2020). Similarly, in a technical brief by the World Health Organisation (WHO), frequent hand 
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hygiene is proposed as one of the most important measures for preventing infection and transmission of COVID-

19 (WHO, 2020). 

Consequently, wearing of face masks, social distancing and washing of hands with soap and water or sanitizers 

are measures that inhibit individual contact with the virus. The susceptible uses these measures for protection 

whereas the infected uses same for preventing or controlling the spread of the disease. In both scenarios, the 

adherence to these measures is geared by their level of awareness. Hence, the dynamical model for the spread of 

the disease can be evaluated using the saturated incidence rate similar to other epidemic models. Incidence rate 

that are either linear or non-linear have been used to reflect the dynamical behaviour of epidemic models.  

Li & Liu (2014) gave details of the following types: the bilinear incidence rate SI  with   as the transmission 

rate, the standard incidence rate NSI  with RISN ++= , the Holling incidence rate of the form 

)1( 1SSI  +  where 1  is a positive constant, the saturated incidence rate of the form )1( 2ISI  + , where 

2  is a positive constant, and the saturated incidence rate of the form )1( 21 ISSI  ++ , where 21,  are 

positive constants. Abta et al. (2014) also used )1( 2ISI  +  with delay while Xiao & Ruan proposed the non-

linear incidence rate )1( 2
2IKSI +  that accounts for the effect of mass media coverage (see Sun et al., 2011), 

whereas Zhao et al. (2014) proposed SIImI ])([ 21 +−  with 1  denoting the maximum contact rate, 

)(2 ImI +  the maximum reduced contact rate due to mass media alert and m  represents the impact of media 

coverage. This paper proposes a model using the saturated incidence rate )( ISSI  ++  where ,  , ,  

are positive parameters that measure the inhibitory effect of awareness springing from global sources, the 

susceptible and number of infected cases respectively. 

2. Model derivation 

An SIR (Susceptible-Infective-Recovered) epidemic model for the spread of infectious diseases is proposed 

using saturated incidence rate with delay, denoting the incubating period of the disease, and awareness 

dissemination from both global and local sources of information. The model is derived as follows: 
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with the initial conditions 
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defined within the region 3),,( += RIS . The parameter β represents the transmission rate of the infectious 

disease from the infective to the susceptible individuals, τ is the incubating period of the disease, while ε is the 

recovery rate and d  is the disease-related death rate. The population is considered to be growing logistically 

with r as the growth rate and K as the carrying capacity while λ is the natural death rate. The parameter ω 

denotes the rate at which disease related awareness circulates from global sources such as the media, awareness 

campaigns and so on whereas α and ϕ are the respective rate at which awareness stems from reported number of 
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where 10  nh  is true for all values of 0  but for 0= , it is satisfied if  rd +++ )( . At the 

endemic steady state, it is also obtained that 





++
=++

IS

S
d




  and 





++
=














−

IS

I

K

S
r




1   (4) 

The disease-free and endemic steady states of the system (1) are determined by the basic reproduction number, 

0R  obtained as 
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This implies that the system has a disease-free steady state when it is less than one but if greater than one there 

exists an endemic steady state. 

3.2 Stability and Hopf bifurcation analyses of the model 

The linearization of the model (1) near any steady state ),,( RISEa
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where SSy


−=1 , IIy


−=2  and RRy


−=3 . 

Theorem 1: The trivial steady state of the model equation (1) is unstable and independent of  . 

Proof: Considering the model (1), the linearization near the trivial steady state )0,0,0(=tE  reduces the system 

(6) to 
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which indicates that the system is independent of   and gives the Jacobian matrix 
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whose diagonal entries represent the eigenvalues of the characteristic equation. Hence, r=1 , 

)(2  ++−= d  and  −=3  which implies that the trivial steady state is unstable since 01  . □ 

Theorem 2: The model equation (1) has a disease-free steady state that is linearly asymptotically stable if 

10 R  for all 0  and unstable for 10 R , where 0R  is as defined in (5). 

Proof: For the disease-free steady state )0,0,(KEd =  of the model (1), the linearized system (6) reduces to 
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 Consequently, from the Jacobian matrix the characteristic equation is generated as 
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from which the first two eigenvalues are obtained as r−=1 and  −=2 . Indicating that the stability of the 

disease-free steady state is determined by the equation 
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For 0= , the third eigenvalue is obtained from (7) as 
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whereas for 10 R , the disease-free steady state is unstable for 0=  and remains unstable for 0 . Hence, it 

is unstable for all 0 . 

Next, using the transcendental equation (7) to solve for ix= when 0  gives 
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Equating real and imaginary parts of this equation generate 
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Squaring and adding both equations in (8) produce 
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Therefore, with 10 R  there exists no positive real root x  for which ix=  and this indicates that the disease-

free steady state is stable for all values of   greater than zero. □ 

The linearization of the model (1) around the endemic steady state ),,( = RISEn  reduces (6) to 
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and  is the eigenvalue. The characteristic equation is obtained as 
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For 0= , the transcendental equation (10) become 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.5, 2020 

 

30 

0)()( 213221
2 =−++−++ amaaaama   

with negative real roots if and only if 021 −+ ama  and 0)( 2132 −+ amaaa . Using (4) and (9) indicate 

 

0
)()(

)(

))((
)()(

)(

)()()(

))((
)(

3

2

2

2

4

2

2

2

224

2

2132


++

+
++

=

−++
++

+
++

=













++
−

++
+

++

++
=−+































IS

IS

ISK

SIr

ISIS
IS

IS

ISK

SIr

IS

IS

K

rS

IS

IS

IS

ISIS
amaaa






























 

and 

2

2221

)(

)(

)(

)(

)(

















++

−
+=

++

+
−

++
+

++
−=−+

IS

IS

K

rS

IS

SS

IS

S

IS

IS

K

rS
ama

















 

Let 0:)( 211 −+ amaH  and 0:)( 212 −+ amaH  then if the condition )( 1H  is satisfied the endemic steady 

state is linearly asymptotically stable for 0=  but unstable when )( 2H  is satisfied. Therefore, when the 

condition )( 2H  is satisfied, it will remain unstable for all 0  (see Figures 1(b) and 3).  

Analysing the stability of the endemic steady state to check if it will lose its stability for 0  when the 

condition )( 1H  is satisfied implies setting ix=  since for 0=  it is clear that 0=  is not a solution of the 

characteristic equation (10). This generates the equation 
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and from (4) and (9) it is obvious that 02 −am . Hence, 01 z which implies that 0)(  xf . Next, considering 

  as the Hopf parameter, without any loss of generality, it is assumed that there are four distinct positive real 

roots, 4,,1  , =ixi , which implies that for each x  
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Investigating if the endemic steady state actually undergoes Hopf bifurcation at 0 = , the transcendental 

equation (10) is differentiated with respect to   in order to obtain the sign of  dd /)][Re( . This gives 
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Therefore, evaluating at 0 =  and 0ix=  gives 
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Collecting the real part and substituting (12) gives the following result after simplification: 
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Hence, the result can be summarized as the following theorem: 

Theorem 3: For 10 R , let 0 , 0x  be as defined in (13) and  the condition )( 1H  satisfied, then the endemic 

steady state of the model (1) is linearly asymptotically stable for 0  , undergoes Hopf bifurcation at 0 =  by 

oscillating periodically and is unstable for 0  . Whereas for the condition )( 2H , the endemic steady state is 

unstable for all 0 . 

4. Numerical simulation 

The numerical study for the stability region of the model (1) using some varied parameter values with respect to 

the incubating period of the disease was carried out via MATLAB application. The extracted results were then 

applied on GNUPLOT software for smoother output. The outcome generated is captured in Figure 1 while a 

magnified replicates of Figure 1(a) and (d) for smaller range of the parameter values are represented in Figure 

2(a) and (b) respectively. The results show the different stability regions of the model (1) which are distinguished 

by colours displayed using the colour bar denoting the values of the eigenvalues generated from solving the 

model around the endemic steady state. The dark blue and blue colours indicate stable region for the endemic 

steady state with 10 R , while the unstable region is captured by the range of colours, green to dark red as 

shown on the colour bar. The portions with white colour signify region of non-existence of the endemic steady 

state, that is 10 R , whereas the disease-free steady state exists and is stable. 
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Figure 1 indicates that with very small values of  ,   and d  (that is, the inhibitory parameters measuring the 

impact of awareness stemming from global sources such as the media, awareness campaigns, and the awareness 

springing from the susceptible respectively, and the disease-related death rate), the endemic steady state is stable 

for small incubating period   and become unstable as the incubating period increases. But as these parameter 

values increases respectively the system remains stable for all values of   and eventually the disease is gradually 

eradicated. In the contrast, with little value of the inhibitory parameter  , measuring the influence of awareness 

emerging from the number of infected cases, and   denoting the recovery rate, the endemic steady state is 

unstable for all values of   but become stable as the values of   and   increases. Eventually the disease is 

eradicated as the recovery rate becomes large enough which is in contrast to  . As regards the gradual 

increment in the transmission rate of the disease,   the system has an initial stable disease-free steady state 

which eventually transit to an endemic steady state that is stable for all values of  . But as   increases the 

system become unstable signifying increase in the spread of the disease. 

 

Figure 1: Stability region for the endemic steady state of the model (1) using some parameters against the period of incubation,  . 

Parameter values used are 084.0=r , 052.0= , 6.0= , 48.0= , 25.0= , 07.0= , 003.0=d , 0056.0= , 100=K . Whereas 

varied parameters are captured respectively in (a)-(f). The dark blue and blue colours indicate stable region, while unstable region is captured 

by the range of colours; green to dark red as shown on the colour bar representing the eigenvalues. The portions with white colour signify 

region of non-existence. 

In Figure 3, the results obtained from the dynamics of the model (1) using different values of   for some 

specific values of   confirmed the statement in Theorem 2 and Theorem 3 and also the result in Figure 1(b). For 

1.0= , 0203.021 =−+ ama  and 2413.60 =R  which implies that the condition )( 1H  is satisfied and the stable 

endemic steady state exhibits Hopf bifurcation at a certain time within the incubating period (the critical value) 

and thus become unstable. Similarly, for the value of 5.0=  the condition )( 1H  is also satisfied with 

0198.021 =−+ ama  and 3075.10 =R  but the endemic steady state remains stable for all 0 . Whereas for 
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35.0= , 0042.021 −=−+ ama  and 8584.10 =R  therefore the condition )( 2H  is satisfied while 7.0=  gave a 

disease-free steady state with 9371.00 =R  and is stable for all 0  hence the outcome in Figure 3 which 

confirms the result in Figure 1(b). The dynamic of the model (1) for the endemic steady state with 10 R  is 

captured by Figure 4 for different values of the parameter   while the result in Figure 5 represents the outcome 

for the disease-free steady state with 10 R . 

 

Figure 2: Magnified replicates of Figure 1(a) and 1(d) are represented in (a) and (b) respectively for smaller range of values. The other 

parameter values used are as defined in Figure 1. 

 

Figure 3: Showing the dynamics of the model (1) for the infective individuals with respect to different values of   using (a) 1=  (b) 6=  

(c) 12=  (d) 18= . The values for other parameters used are as defined in Figure 1. 

 

Figure 4: Dynamics of the model (1) for the endemic steady state with 3613.10 =R  using (a) 1=  (b) 6=  (c) 12=  (d) 18= . The 

parameter values are same as those defined in Figure 1. 
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Figure 5: Dynamics of the model (1) showing the disease-free steady state when 8377.00 =R . The parameter values used are same as the 

ones defined in Figure 1 except that 032.0= . 

5. Conclusion 

The study has derived a mathematical model for analysing the spread of infectious disease using saturated 

incidence rate to evaluate the impact of awareness dissemination alongside the incubating period of the disease. 

Based on the outcome of the study, the impact of awareness generally on the incidence rate indicates that 

increasing influence from awareness dissemination, especially the susceptible individuals adhering to available 

information, tends to minimize the spread of the disease with a likelihood of disease eradication. Consequently, it 

is pertinent to intensify the creation of awareness and to ensure that the populace adhere to the preventive 

measures such as wearing of face masks, social distancing and regular hand washing in order to curtail the spread 

and possibly eradicate the infectious disease.  
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