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Abstract 

The paper depicts assessment of the Bayesian methodology utilizing Gaussian quadrature formulas and Markov 

Chain Monte Carlo of the Gompertz distribution based on type I censored data with two loss functions, the 

Square Error loss function and the Linear Exponential loss function. In Markov Chain Monte Carlo, the full 

conditional distributions for the scale and shape parameters, survival and hazard functions are acquired by means 

Gibbs sampling and Metropolis- Hastings algorithm. The strategies for the Bayesian methodology are contrasted 

with maximum likelihood estimation regarding the Mean Square Error (MSE) to decide the best assessing of the 

scale and shape parameters, survival and hazard functions of the Gompertz distribution based on type I censored 

data. 

Keywords: Gompertz distribution, Bayesian estimation, Type I censored data, Gaussian Quadrature Formulas, 
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1. Introduction 

     The Gompertz distribution can be utilized as a survival and hazard model in medicine science, reliability 

and life testing. The Gompertz distribution was first presented by Gompertz (1825), and many research have 

contributed the distribution to the measurable model, for instance, Ahuja and Nash (1979), Makany (1991) and 

Franses (1994). Ananda et al. (1996) assessed parameters and survival function of the Gompertz distribution by 

utilizing Bayesian strategies .AL-Hussaini et al. (2000) estimated the survival and hazard functions of a finite 

mixture of Gompertz distribution by utilizing the maximum likelihood estimation and Bayesian methodology. 

Jaheen (2002) acquired the two parameters of the Gompertz distribution by maximum likelihood estimation and 

Bayesian techniques under square error and Linex loss function. Soliman et al. (2012) acquired for the two 

parameter Gompertz distribution with progressive first-failure censored data.  

In numerical investigation, the Gauss quadrature technique is helpful in solving Bayesian parameter and survival 

and hazard functions. Singh et al. (2002) assessed the Exponentiated Weibull shape parameters by maximum 

likelihood estimators and Bayesian estimator whereby in the Bayesian assessment approach they illuminated it 

mathematically by the utilization Gauss-Legendre quadrature formula to estimate the parameters.  Singh et al. 

(2005) got Bayesian and Maximum likelihood estimation for the two-parameter Exponentiated Weibull 

distribution when sample was available from type-II censoring scheme and utilized the Gaussian quadrature 

formulas. For more detail in Gauss Quadrature Method see Richard and Douglas (1989).  

Gibbs sampler is one of the special cases of a MCMC algorithm and this technique generates a series of samples 

from the full conditional probability distributions of random variables see Gupta el at, (2008) and Soliman et al, 

(2011). Metropolis-Hasting algorithm is viewed as an overall Monte Carlo Markov chain algorithm technique 

that was created by Hastings (1970). It can be utilized to acquire random samples from any type of randomly 

troublesome objective distribution with any type of dimension that is known up to a normalizing consistent, see 

for example Soliman et al. (2012). Upadhyay and Gupta (2010) examined some Bayesian analysis by means of 

Markov Chain Monte Carlo procedure for complete samples and independent vague priors for the unknown 

parameters. 

The goal of this paper is to appraise the parameters, the survival and the hazard functions of the Gompertz 

distribution based type I censored data by utilizing Bayesian methodology through Gaussian quadrature formulas 

and Markov Chain Monte Carlo procedure and contrasted to maximum likelihood estimator by utilizing mean 

square error (MSE) to decide the best estimator under a few conditions. 
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2.       Methodology 

2.1. Maximum Likelihood Estimation  

The probability density function of Gompertz distribution (pdf) is  

( )( ; , ) exp 1x xf x e e 
  



 
= − 

 
 

The cumulative distribution function (cdf) 

( )( ; , ) 1 exp 1 xF x e


 
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For type I censored data, the logarithm of the likelihood function of Gompertz distribution is
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The resulting of the scale and shape parameters are given respectively as,
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The scale parameter    is express as follows 
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The equation 3 cannot be solved analytically, and for that we employed Newton Raphson method to find the 

numerical solution.  

The estimates of the survival and hazard functions of Gompertz distribution are   
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ˆˆ ˆ( ) M t
M Mh t e=                                                                       (5) 

Which ˆ
M is the scale parameter estimated by maximum likelihood estimator (MLE) of Gompertz distribution 

and the ˆ
M is the shape parameter estimated by MLE.  

2.2 Bayesian Estimations   

We consider the case when both scale and shape parameters are unknown, and we compute the Bayesian 

estimation of the scale and shape parameters of Gompertz distribution. It is assumed that   and  each have 

independent gamma priors as follows, 

1
1( / , ) exp( )ag a b b  −= −  

1
2( / , ) exp( )cg c d d  −= −  

The posterior of Gompertz distribution based on type I censored data is given as  
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2.2.1 Loss Functions 

A wide range of loss functions have been reported in literature review to describe various types of loss structures. 

In this study, we describe two loss functions: The symmetric loss function is square error loss function and the 

asymmetric loss functions are Linear Exponential loss function (LINEX). 

2.2.1.1 Square Error Loss Function 

The square error loss function used to estimate the scale and shape parameters of Gompertz distribution as given 

respectively below, 
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The Bayesian estimates for the survival and hazard functions under squared error loss function are given as: 
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The equations (6-9) we can’t solve it analytical for that we used MCMC Algorithm to estimate the scale and 

shape parameters of Gompertz distribution with type I censored data. 

 

   

 2.2.1.2 Linear Exponential Loss Function (LINEX)

 The Linear Exponential loss function is under the assumption that the minimal loss occurs at  ̂ =  and is 

expressed as 

 

                                ( ) exp( ) 1,                                 1L r r r =  − −                    

ˆ ˆwhere    ( ),  is an estimate of     = − , and when 1r   means overestimation and underestimation if 1r  . 

For r close to zero the Linear Exponential loss function approximated the square error loss function.  

The posterior under LINEX loss function in equation above given as follows, 

( ) ( ) ( )ˆ ˆ ˆ ˆ( ) exp( ) E exp( ) E ( ) 1E L r r r       −  − − −                                        

Therefore, the Bayesian estimation of scale parameter of Gompertz distribution with type I censored data under 
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LINEX loss function is:   
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The Bayesian estimation of shape parameter of Gompertz distribution under LINEX loss function is 
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The survival function under LINEX loss function is shown below: 
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The hazard function is  
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The equations (10-13) under LINEX loss function can’t solve it analytical for that we used MCMC Algorithm.  

Therefore, the Algorithm used to generate MCMC sample under LINEX loss function to estimate the scale and 

shape parameters, survival and hazard functions of Gompertz distribution with type I censored data.                                        

 

2.2.2 Gibbs Sampling for Scale Parameter Estimation 

Gibbs sampling is a special case of a MCMC algorithm, where it generates a sequence of samples from the full 

conditional probability distributions of variables. 

The full conditional of the posterior density function using gamma prior of  and   given the data are 

combining the gamma prior with likelihood as given below
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From equation (14) we can get the conditional posterior of the   as follows 
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                               The conditional posterior of the   follows gamma density function with scale and shape parameters  
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+ −  respectively. The Gibbs sampling technique was used to generate MCMC sample as 

shown in Algorithm.  

2.2.3 Metropolis- Hastings Algorithms 

The conditional posterior of the shape parameter  is given below, 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.7, 2020 

 

55 

( )1

1

( | ;data) exp( ) exp 1i i i

n
x xc

S

i

d e e
 

   


−

=

  
  − −  

  
                                 (16) 

As show in equation 16 the conditional posterior of the shape parameter it’s not follow any close distribution 

therefore we suggest to use the Metropolis Hastings algorithm to generate MCMC sample as shown in 

Algorithm,  
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1. Starting with initial value 0  
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3. i  is the current value and generate the candidate value  
from arbitrary distribution Uniform (0, 

1). 

4. The value of i is given below as 
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5. Generate u from Uniform (0, 1) and accept  
with probability p  if p   and return to step 2, 

otherwise accept i  and return to step 2. 

6. The Bayesian with type I censored data of the scale and shape parameters under the squared error 

loss function is given as 
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7. The Bayesian with type I censored data of the scale and shape parameters under LINEX loss 

function is given as 
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2.2.4 Gaussian Quadrature Formulas 

We used Gauss quadrature rule to solve our problems for each estimators are a mention in this study, and the 

double integrations as given as follows, 

I =
1 2

1 2

1 2 1 2( , )

A

B B

A

f x x dx dx   

The Gauss Legendre quadrature rules for single integration is given below,  
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iC  are the weighting factors and iz  are the function arguments,  and to apply the Gauss quadrature rule for 

the second integration as given below, 
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See Richard & Douglas (1989) and Rathod et al, (2007) for more detail, and the techniques can be applied for 

estimated the parameters of Gompertz distribution with type-I censored data and the survival and hazard 

functions.    

3. Simulation Study  

To assess the performance of the Maximum likelihood and Bayesian estimation based on Type-I censored data to 

estimate the scale and shape parameters follow by estimate survival and hazard functions. The mean squared 

errors (MSE) was calculated using 10,000 replications for sample size n=20, 40 and 80 and that of the censoring 
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time were 15% of Gompertz distribution with type-I censored data for different value of parameters were the 

scale parameter 2 and 3 = , the shape parameter  0.4 and 1.4 = , the considered values of parameters are 

meant for illustration only and other values can be taken for generating the samples from Gompertz distribution.   

The Gibbs sampling and the Metropolis- Hastings Algorithm used in equations (7-10) for Bayesian under square 

error loss function and equations (11-14) for linear exponential loss function (LINEX) to estimate the parameters, 

the survival and hazard functions of Gompertz distribution respectively, where hyper-parameters of gamma 

priors are equal to 0.0001 see for example Alomari (2016), then 0.0001a b c d= = = = .  

The Gaussian Quadrature Formulas used for Bayesian under square error loss function and under linear 

exponential loss function (LINEX) to estimate the parameters, survival and hazard functions of Gompertz 

distribution based on type I censoring data .  

The values for the loss parameter were taken to be 0.7r =   and a detailed discussion on the choice of the loss 

parameter of LINEX can be obtained from Calabria & Pulcini (1996). 

 

4. Results and Discussion  

As appeared in Table 1, the gauge of the scale parameter   of Gompertz distribution based on type I censored 

data is acquired utilizing Maximum likelihood (MLE), Bayesian with square error loss function through Markov 

Chain Monte Carlo method (BSM), and Gaussian quadrature formulas (BSG).Bayesian with Linear Exponential 

loss function (r=+0.7) by means of Markov Chain Monte Carlo method (BLM (r=+0.7)) and Gaussian 

quadrature formulas (BLG (r=+0.7)). Likewise Bayesian with Linear Exponential loss function (r= -0.7) through 

Markov Chain Monte Carlo procedure (BLM (r= -0.7)) and Gaussian quadrature formulas (BLG (r= -0.7)). 

Additionally in Table 2, we assessed the shape parameter   of Gompertz distribution based on type I censored 

data by utilizing the assessors above.   

Table 3 the gauge of the scale parameter   of Gompertz distribution was analyzed by mean squared error 

(MSE). The outcomes show that, the Bayesian under LINEX loss function with ( 0.7r = +  ) through Markov 

Chain Monte Carlo technique (BLM (r= +0.7)) is better compare to the others when the shape parameter was 0.4. 

Moreover, the Bayesian under LINEX loss function with ( 0.7r = +  ) via Gaussian quadrature formulas (BLG 

(r= +0.7)) is better contrast with the others when the shape parameter was 1.4. Furthermore, Bayesian with 

square error loss function via Markov Chain Monte Carlo technique (BSM) and Gaussian quadrature formulas 

(BSG), also Bayesian with Linear Exponential loss function (r= -0.7) via Markov Chain Monte Carlo technique 

(BLM (r= -0.7)) and Gaussian quadrature formulas (BLG (r= -0.7)) are better than Maximum likelihood (MLE). 

As appeared in Table 4 the gauge of the shape parameter   of Gompertz distribution was compared by mean 

squared error (MSE). The outcomes show that, the Bayesian under LINEX loss function with ( 0.7r = +  ) via 

Markov Chain Monte Carlo technique (BLM (r= +0.7)) is better compare to the others when the shape parameter 

was 0.4. In addition, the Bayesian under LINEX loss function with ( 0.7r = +  ) via Gaussian quadrature 

formulas (BLG (r= +0.7)) is better contrast with the others when the shape parameter was 1.4. Moreover, 

Bayesian with square error loss function via Markov Chain Monte Carlo technique (BSM) and Gaussian 

quadrature formulas (BSG), also Bayesian with Linear Exponential loss function (r= -0.7) via Markov Chain 

Monte Carlo technique (BLM (r= -0.7)) and Gaussian quadrature formulas (BLG (r= -0.7)) are better Maximum 

likelihood (MLE).  

Tables 5 and 6 when we looked at the mean squared error (MSE) of the survival and hazard functions, we found 

that the Bayesian under LINEX loss function with ( 0.7r = +  ) via Markov Chain Monte Carlo technique (BLM 

(r= +0.7)) is better compare to the others when the shape parameter was 0.4. In addition, the Bayesian under 

LINEX loss function with ( 0.7r = +  ) via Gaussian quadrature formulas (BLG (r= +0.7)) is better compare to 
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the others when the shape parameter was 1.4. Likewise , Bayesian with square error loss function via Markov 

Chain Monte Carlo technique (BSM) and Gaussian quadrature formulas (BSG), also Bayesian with Linear 

Exponential loss function (r= -0.7) via Markov Chain Monte Carlo technique (BLM (r= -0.7)) and Gaussian 

quadrature formulas (BLG (r= -0.7)) are better than Maximum likelihood (MLE).  

From Tables 1- 6, once the sample size n increases the mean squared decreases for all cases of the scale and 

shape parameter, the survival and hazard functions of Gompertz distribution. 

 

Table 1: The estimates  of Gompertz distribution with type I censored data.                                    

N     MLE BSM BSG BLM 

(r= −0.7) 

BLG 

(r= −0.7) 

BLM 

(r= + 0.7) 

BLG 

(r= + 0.7) 

20 2 0.4 1.8323 1.8330 1.8331 1.8326 1.8327 1.8335 1.8332 

1.4 1.8334 1.8338 1.8339 1.8337 1.8336 1.8341 1.8342 

3 0.4 2.7543 2.7549 2.7551 2.7546 2.7547 2.7555 2.7552 

1.4 2.7568 2.7572 2.7573 2.7571 2.7569 2.7575 2.7576 

40 2 0.4 1.8554 1.8561 1.8562 1.8557 1.8558 1.8566 1.8563 

1.4 1.8658 1.8662 1.8663 1.8661 1.8659 1.8665 1.8666 

3 0.4 2.7954 2.7960 2.7962 2.7957 2.7958 2.7966 2.7963 

1.4 2.7979 2.7984 2.7985 2.7983 2.7981 2.7987 2.7988 

80 2 0.4 1.8871 1.8877 1.8878 1.8873 1.8874 1.8882 1.8879 

1.4 1.8974 1.8978 1.8979 1.8977 1.8976 1.8981 1.8982 

3 0.4 2.8481 2.8487 2.8489 2.8484 2.8485 2.8493 2.8491 

1.4 2.8507 2.8511 2.8512 2.8509 2.8508 2.8514 2.8515 

 

Table 2: The estimates  of Gompertz distribution with type I censored data.                                    

N     MLE BSM BSG BLM 

(r= −0.7) 

BLG 

(r= −0.7) 

BLM 

(r= + 0.7) 

BLG 

(r= + 0.7) 

20 2 0.4 0.3196 0.3203 0.3204 0.3199 0.3201 0.3208 0.3205 

1.4 1.3107 1.3111 1.3112 1.3110 1.3109 1.3114 1.3115 

3 0.4 0.3227 0.3233 0.3235 0.3230 0.3231 0.3239 0.3236 

1.4 1.3252 1.3256 1.3257 1.3255 1.3253 1.3259 1.3260 

40 2 0.4 0.3427 0.3434 0.3435 0.3430 0.3431 0.3439 0.3436 

1.4 1.3331 1.3335 1.3536 1.3334 1.3332 1.3338 1.3339 

3 0.4 0.3638 0.3644 0.3646 0.3640 0.3642 0.3650 0.3647 

1.4 1.3663 1.3668 1.3669 1.3667 1.3665 1.3671 1.3672 

80 2 0.4 0.3744 0.3749 0.3751 0.3746 0.3747 0.3755 0.3752 

1.4 1.3737 1.3741 1.3742 1.3740 1.3739 1.3744 1.3745 

3 0.4 0.4165 0.4171 0.4173 0.4168 0.4169 0.4177 0.4174 

1.4 1.4191 1.4195 1.4196 1.4193 1.4192 1.4198 1.4199 

 

 

 

Table 3:  Mean Square Error of the estimates of  .  
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n     MLE BSM BSG BLM 

(r= −0.7) 

BLG 

(r= −0.7) 

BLM 

(r= + 0.7) 

BLG 

(r= + 0.7) 

20 2 0.4 0.2112 0.2107 0.2106 0.2108 0.2109 0.2104 0.2105 

1.4 0.2095 0.2092 0.2091 0.2093 0.2094 0.2089 0.2088 

3 0.4 0.2082 0.2075 0.2074 0.2076 0.2077 0.2072 0.2073 

1.4 0.2066 0.2063 0.2062 0.2064 0.2065 0.2060 0.2058 

40 2 0.4 0.1923 0.1918 0.1917 0.1919 0.1921 0.1915 0.1916 

1.4 0.1906 0.1903 0.1902 0.1904 0.1905 0.1899 0.1899 

3 0.4 0.1893 0.1886 0.1885 0.1887 0.1888 0.1883 0.1884 

1.4 0.1877 0.1874 0.1873 0.1875 0.1876 0.1871 0.1869 

80 2 0.4 0.1714 0.1709 0.1708 0.1710 0.1711 0.1706 0.1707 

1.4 0.1697 0.1694 0.1693 0.1695 0.1696 0.1691 0.1689 

3 0.4 0.1684 0.1677 0.1676 0.1678 0.1679 0.1674 0.1675 

1.4 0.1668 0.1665 0.1664 0.1666 0.1667 0.1662 0.1661 

 

Table 4: Mean Square Error of the estimates of  .  

n     MLE BSM BSG BLM 

(r= −0.7) 

BLG 

(r= −0.7) 

BLM 

(r= + 0.7) 

BLG 

(r= + 0.7) 

20 2 0.4 0.1215 0.1210 0.1209 0.1211 0.1212 0.1207 0.1208 

1.4 0.1198 0.1195 0.1194 0.1196 0.1197 0.1192 0.1191 

3 0.4 0.1185 0.1178 0.1177 0.1179 0.1180 0.1175 0.1176 

1.4 0.1169 0.1166 0.1165 0.1167 0.1168 0.1163 0.1161 

40 2 0.4 0.1026 0.1021 0.1020 0.1022 0.1024 0.1018 0.1019 

1.4 0.1009 0.1006 0.1005 0.1007 0.1008 0.1002 0.1002 

3 0.4 0.0996 0.0989 0.0988 0.0990 0.0991 0.0986 0.0987 

1.4 0.0980 0.0977 0.0976 0.0978 0.0979 0.0974 0.0972 

80 2 0.4 0.0817 0.0812 0.0811 0.0813 0.0814 0.0809 0.0810 

1.4 0.0802 0.0797 0.0796 0.0798 0.0799 0.0794 0.0792 

3 0.4 0.0787 0.0781 0.0779 0.0781 0.0782 0.0777 0.0778 

1.4 0.0771 0.0768 0.0767 0.0769 0.0770 0.0765 0.0764 
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Table 5: Mean Square Error of the estimates of the survival function.  

n     MLE BSM BSG BLM 

(r= −0.7) 

BLG 

(r= −0.7) 

BLM 

(r= + 0.7) 

BLG 

(r= + 0.7) 

20 2 0.4 0.0347 0.0342 0.0341 0.0343 0.0344 0.0339 0.0340 

1.4 0.0331 0.0327 0.0326 0.0328 0.0329 0.0324 0.0323 

3 0.4 0.0317 0.0310 0.0309 0.0311 0.0312 0.0307 0.0308 

1.4 0.0301 0.0298 0.0297 0.0299 0.0300 0.0295 0.0293 

40 2 0.4 0.0268 0.0263 0.0262 0.0264 0.0266 0.0260 0.0261 

1.4 0.0251 0.0248 0.0247 0.0249 0.0251 0.0244 0.0244 

3 0.4 0.0238 0.0231 0.0230 0.0232 0.0233 0.0228 0.0229 

1.4 0.0222 0.0219 0.0218 0.0220 0.0221 0.0216 0.0214 

80 2 0.4 0.0159 0.0155 0.0154 0.0156 0.0157 0.0152 0.0153 

1.4 0.0143 0.0140 0.0139 0.0141 0.0142 0.0137 0.0135 

3 0.4 0.0129 0.0123 0.0122 0.0124 0.0125 0.0120 0.0121 

1.4 0.0114 0.0111 0.0110 0.0112 0.0113 0.0108 0.0107 

   

 

Table 6: Mean Square Error of the estimates of the hazard function.  

n     MLE BSM BSG BLM 

(r= −0.7) 

BLG 

(r= −0.7) 

BLM 

(r= + 0.7) 

BLG 

(r= + 0.7) 

20 2 0.4 0.5659 0.5654 0.5653 0.5655 0.5656 0.5651 0.5652 

1.4 0.5642 0.5639 0.5638 0.5640 0.5641 0.5636 0.5635 

3 0.4 0.5629 0.5622 0.5621 0.5623 0.5624 0.5619 0.5620 

1.4 0.5613 0.5610 0.5609 0.5611 0.5612 0.5607 0.5605 

40 2 0.4 0.5469 0.5465 0.5464 0.5466 0.5468 0.5462 0.5463 

1.4 0.5453 0.5450 0.5449 0.5451 0.5452 0.5446 0.5446 

3 0.4 0.5441 0.5433 0.5432 0.5434 0.5435 0.5430 0.5431 

1.4 0.5424 0.5421 0.5419 0.5422 0.5423 0.5418 0.5416 

80 2 0.4 0.5261 0.5256 0.5255 0.5257 0.5258 0.5253 0.5254 

1.4 0.5244 0.5241 0.5239 0.5242 0.5243 0.5238 0.5236 

3 0.4 0.5231 0.5224 0.5223 0.5225 0.5226 0.5221 0.5222 

1.4 0.5215 0.5212 0.5211 0.5213 0.5214 0.5209 0.5208 

 

5. Conclusion 

In this paper we have considered Bayesian under two loss functions: The symmetric loss function is square error 

loss function and the asymmetric loss functions is LINEX loss function problems of the Gompertz distribution 

based on type I censored data through Markov Chain Monte Carlo technique and Gaussian quadrature formulas 

to estimate the parameters, the survival and the hazard functions.  Comparisons are made between the Bayesian 

under two loss functions and maximum likelihood estimators based on simulation study and we observed that, 

the parameters and survival and hazard functions of the Gompertz overall are better estimated by Bayesian under 

LINEX loss function through Markov Chain Monte Carlo technique and Gaussian quadrature formulas when the 

value for the loss parameter is positive. 
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