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Abstract 
The unbounded Self-adjoint operators that strongly commute on a common dense subset of their domain 
commute pointwise. When the operators commute pointwise on the same dense subset, there is to guarantee that 
they will commute strongly. By imposing some conditions, we on the operators as well as the underlying space, 
we get pointwise commuting unbounded operators that commute strongly.  This article shows that by suitably 
selecting two unbounded positive Self-adjoint operators with compact inverses we get a set of pointwise 
commuting self-adjoint operators that commute on common core. then prove that it strongly commutes on the 
same subspace.  
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1. Introduction 
The unbounded Self-adjoint operators are said to be commute strongly if their bounded transforms commute. 
Equivalently, the unbounded Self-adjoint operators commute strongly if their spectral measures commute [8]. It 
is known that strongly commuting unbonded Self-adjoint operators that commute on a common core also 
commute pointwise, however, the pointwise commuting unbounded Self-adjoint operators do not necessarily 
commute strongly. This was discovered by Nelson in [4] when he sited an example of a pair unbounded Self-
adjoint operators that commute pointwise on a common core but do not commute strongly. These led to a series 
of studies of such operators as discussed in [5,6,7].  

In general, pointwise commuting unbounded Self-adjoint operators do not commute strongly. However, 
with the provision of conditions on the operators as well as the underlying space, this aspect in question can be 
achieved. In this article, we show that by making the underlying space be a separable Hilbert Space and suitably 
selecting a special positive operator, the pointwise commutating unbounded Self-adjoint operators commute 
strongly. 
 
2. Preliminary Concepts 
In this section, we briefly provide the preliminary concepts of the paper. We will use ℍ to denote a Complex 
valued Hilbert space over a field 𝔽. We will use 𝐸 and 𝐹 to denote the two pairs of pointwise unbounded Self-
adjoint operators with domains 𝐷ሺ𝐸ሻ and 𝐷ሺ𝐹ሻ and spectral measures denoted by 𝑃ாሺ𝜆ሻ and 𝑃ிሺ𝜆ሻ respectively. 
The range of the operate 𝐹 will be denoted by Ranሺ𝐹ሻ. The restriction of an operator 𝐸  on ℍ௜ ⊆ ℍ will be 
denoted by 𝐸|ℍ಺ and the commutator of two operators 𝐸 and 𝐹 will be denoted by ሾ𝐸,𝐹ሿ ൌ 𝐸𝐹 െ 𝐹𝐸. We begin 
by some definitions. 
Definition: Separable Hilbert Space 
A Hilbert space ℍ is separable if it can be represented in the form 

                                                                                       ℍ ൌໄℍ௜

௜∈ℕ

          

Definition: Compact operator 
An operator 𝐸:ℍଵ → ℍଶ is compact if the closure of 𝐸ሺ𝐶ሻ that is, 𝐸ሺ𝐶ሻ ∈ ℍଶ is compact for a compact set  𝐶 ∈
ℍଶ. 

The results in [2] provides a way of constructing unbounded Self-adjoint operators that are pointwise 
commutative, hence strongly commutative. The result states in part that if A is a closed and densely defined 
Dirichlet operator on a square-integrable space that is associated with a uniformly elliptic differential operator, 
then there exists a sufficiently large 𝛼଴ such that ሺ𝐴 ൅ 𝛼ሻିଵ exists given that 𝛼 ൒ 𝛼଴ ∈  ℝ. 

This is a case of unbounded operators with compact inverses. In this paper, we will have 𝐴 and 𝐵  be 
unbounded positive Self-adjoint operators as they satisfy the hypothesis of the above results. Let 𝛼஺଴ and 𝛼஻଴ be 
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sufficiently such that 𝐴 ൅ 𝛼஺  and 𝐵 ൅ 𝛼஻  are invertible for 𝛼஺ ൒ 𝛼஺଴ ∈ ℝ  and 𝛼஻ ൒ 𝛼஻଴ ∈ ℝ  . Define 
𝛼଴ ൌ max ሼ𝛼஺଴,𝛼஻଴ሽ,  then 𝐸 ൌ 𝐴 ൅ 𝛼  and 𝐹 ൌ 𝐵 ൅ 𝛼  are invertible for 𝛼 ൒ 𝛼଴ ∈ ℝ , thus ሺ𝐴 ൅ 𝛼ሻିଵ and 
ሺ𝐵 ൅ 𝛼ሻିଵ   exists and are compact operators. Compact operators are always bounded, hence ሺ𝐴 ൅ 𝛼ሻିଵ and 
ሺ𝐵 ൅ 𝛼ሻିଵ are bounded operators. 

The operators 𝐴 and 𝐵 are bounded self-adjoint operators hence, by the spectral theorem [8], there exists 
unique spectral measures 𝑃஺ሺ𝜆ሻ 𝑎𝑛𝑑 𝑃஻ሺ𝜆∗ሻ such that 

𝐴 ൌ න𝜆𝑑𝑃஺ሺ𝜆ሻ
ℐ

 and   𝐵 ൌ න 𝜆∗𝑑𝑃஻ሺ𝜆∗ሻ
ℐ∗

 

for 𝜎ሺ𝐴ሻ ∈ ℐ  and 𝜎ሺ𝐵ሻ ∈ ℐ∗  where ℐ  and ℐ∗  are compact invervals on ℝ and 𝜆, 𝜆∗ ∈ ℝ . The basics of 
unbounded Self-adjoint operators and their functional calculus are found in [1, 3, 8]. Using the functional 
calculus for self-adjoint operators, the spectral representation for ሺ𝐴 ൅ 𝛼ሻିଵ and ሺ𝐵 ൅ 𝛼ሻିଵ are 

ሺ𝐴 ൅ 𝛼ሻିଵ ൌ න
1

𝜆 ൅ 𝛼
 𝑑𝑃஺ሺ𝜆ሻ

ℐ
 

ሺ𝐵 ൅ 𝛼ሻିଵ ൌ න
1

𝜆∗ ൅ 𝛼
 𝑑𝑃஻ሺ𝜆∗ሻ

ℐ
 

The functions 𝑓ሺ𝜆ሻ ൌ
ଵ

ఒାఈ
∈ ℝ  and 𝑔ሺ𝜆∗ሻ ൌ

ଵ

ఒ∗ାఈ
∈ ℝ  because 𝜆, 𝜆∗,𝛼 ∈ ℝ . Thus, the operators ሺ𝐴 ൅

𝛼ሻିଵ and ሺ𝐵 ൅ 𝛼ሻିଵ  are Self-adjoint operators. Likewise, 𝐸 ൌ 𝐴 ൅ 𝛼  and 𝐹 ൌ 𝐴 ൅ 𝛼  are positive Self-adjoint 
operators. By choice, 𝐴 and 𝐵 were unbounded Self-aajoint operators, consquently, 𝐸 ൌ 𝐴 ൅ 𝛼 and 𝐹 ൌ 𝐴 ൅ 𝛼 
are unbounded, hence, unbounded positive Self-adjoint operators. 

Having established that 𝐸  and 𝐹  are unbounded positive Self-adjoint operators with compact inverses 
ሺ𝐴 ൅ 𝛼ሻିଵ and ሺ𝐵 ൅ 𝛼ሻିଵ respectively, we move forward to investigate the commutativity of these operators. 
 
3. Commutativity of Unbounded Self-adjoint operators 
This section provides the main results of this article. We will show that suitably selected unbounded positive 
Self-adjoint operators commute pointwise on a common core. We will further show this pointwise 
commutativity implies strong commutativity, for that selected case. We begin by providing a proposition with 
respect to the first statement above.  
Proposition 3.1  
Let 𝐸 ൌ 𝐴 ൅ 𝛼  and 𝐹 ൌ 𝐵 ൅ 𝛼  be unbounded positive Self-adjoint operators having compact Self-adjoint 
inverses on a Hilbert Space ℍ  for sufficiently large 𝛼 ∈ ℝ . Let the inverses be 𝑇 ൌ ሺ𝐴 ൅ 𝛼ሻିଵ  and 𝑆 ൌ
ሺ𝐵 ൅ 𝛼ሻିଵ respectively. Define 𝒞 as 𝒞 ൌ ሺ𝐴 ൅ 𝛼ሻିଵሺ𝐵 ൅ 𝛼ሻିଵሺ𝐼 െ 𝑃ሻℍ ൌ 𝑇𝑆ሺ𝐼 െ 𝑃ሻℍ where 𝑃 is a projection 

on ሾሺ𝐴 ൅ 𝛼ሻିଵ, ሺ𝐵 ൅ 𝛼ሻିଵሿℍ ൌ ሾTSሿℍ. Then  
1. 𝒞 ⊆ 𝐷ሺ𝐸𝐹ሻ ∩  𝐷ሺ𝐹𝐸ሻ and 𝐸𝐹𝑥 ൌ 𝐹𝐸𝑥 for all 𝑥 ∈ 𝒞  
2. If 𝑃ℍ ∩  𝑇ℍ ൌ 𝑃ℍ ∩  𝑆ℍ ൌ ሼ0ሽ, then 𝒞 is a core for 𝐸 and 𝐹  
3. 𝐹 and 𝐸 are invariant under 𝒞 

 
Proof 
ሺ1ሻ  

Let 𝑣 ∈  ℍ be arbitrary. Since 𝑃 is a projection on ሾTSሿℍ, then 𝐼 െ 𝑃 is a projection on ቀሾTSሿℍቁ
ୄ

. As such, the 

null space of 𝐼 െ 𝑃 is on ሾTSሿℍ, hence on ሺ𝐼 െ 𝑃ሻሾTSሿℍ ൌ 0 equivalently,  ሺ𝐼 െ 𝑃ሻሾTSሿℍ ൌ 0. Applying the 
properties of the adjoint to the bounded self-adjoint operators 𝑆,𝑇 and ሺ𝐼 െ 𝑃ሻ and taking an element 𝑦 ∈ ℍ, we 
have 

          0 ൌ 〈𝑦, ሺ𝐼 െ 𝑃ሻሾ𝑇𝑆ሿ𝑣〉 
ൌ 〈ሺ𝐼 െ 𝑃ሻ∗ 𝑦, ሾ𝑇𝑆ሿ𝑣〉 

        ൌ 〈ሺ𝐼 െ 𝑃ሻ𝑦, ሺ𝑇𝑆 െ 𝑆𝑇ሻ𝑣〉 
          ൌ 〈ሺ𝑇𝑆 െ 𝑆𝑇ሻ∗ሺ𝐼 െ 𝑃ሻ𝑦, 𝑣〉 

                   ൌ 〈ሺሺ𝑇𝑆ሻ∗ െ ሺ𝑆𝑇ሻ∗ሻሺ𝐼 െ 𝑃ሻ𝑦, 𝑣〉 
                ൌ 〈ሺ𝑆∗𝑇∗ െ 𝑇∗𝑆∗ሻሺ𝐼 െ 𝑃ሻ𝑦, 𝑣〉 

        ൌ 〈ሺ𝑆𝑇 െ 𝑇𝑆ሻሺ𝐼 െ 𝑃ሻ𝑦, 𝑣〉 
                      ൌ 〈 𝑆𝑇ሺ𝐼 െ 𝑃ሻ𝑦 െ 𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦, 𝑣〉 

From the choice of 𝑣, we have 𝑣 ് 0 hence, we have 𝑆𝑇ሺ𝐼 െ 𝑃ሻ𝑦 െ 𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ൌ 0 implying that         𝑆𝑇ሺ𝐼 െ
𝑃ሻ𝑦 ൌ 𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ൌ 0.  
Let us define 𝑥:ൌ 𝑆𝑇ሺ𝐼 െ 𝑃ሻ𝑦 ൌ 𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦. Then 𝑥 ∈ 𝒞.   
From the relations, 𝑥 ൌ 𝑆𝑇ሺ𝐼 െ 𝑃ሻ𝑦  and 𝑥 ൌ 𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 , since 𝑇 ൌ ሺ𝐴 ൅ 𝛼ሻିଵ  and 𝑆 ൌ ሺ𝐵 ൅ 𝛼ሻିଵ  are 
invertible, we have 
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                        ሺ𝑆𝑇ሻିଵ𝑥 ൌ ሺ𝐼 െ 𝑃ሻ𝑦                         
                        𝑇ିଵ𝑆ିଵ𝑥 ൌ ሺ𝐼 െ 𝑃ሻ𝑦                         

ሺ𝐴 ൅ 𝛼ሻሺ𝐵 ൅ 𝛼ሻ𝑥 ൌ ሺ𝐼 െ 𝑃ሻ𝑦                 
                                                𝐸𝐹𝑥 ൌ ሺ𝐼 െ 𝑃ሻ𝑦                                         

Likewise, we have  
                 ሺ𝑇𝑆ሻିଵ𝑥 ൌ ሺ𝐼 െ 𝑃ሻ𝑦 
                𝑆ିଵ𝑇ିଵ𝑥 ൌ ሺ𝐼 െ 𝑃ሻ𝑦 
ሺ𝐵 ൅ 𝛼ሻሺ𝐴 ൅ 𝛼ሻ𝑥 ൌ ሺ𝐼 െ 𝑃ሻ𝑦 
                        𝐹𝐸𝑥 ൌ ሺ𝐼 െ 𝑃ሻ𝑦 

Thus, 𝑥 ∈ 𝐷ሺ𝐸𝐹ሻ  and 𝑥 ∈ 𝐷ሺ𝐹𝐸ሻ  implying that 𝑥 ∈ 𝐷ሺ𝐸𝐹ሻ ∩ 𝐷ሺ𝐹𝐸ሻ.  Therefore, 𝒞 ⊆ 𝐷ሺ𝐸𝐹ሻ ∩ 𝐷ሺ𝐹𝐸ሻ . The 
choice of 𝑦 determining the definition of 𝑥 was arbitrary, hence, the inclusion 𝒞 ⊆ 𝐷ሺ𝐸𝐹ሻ ∩ 𝐷ሺ𝐹𝐸ሻ is true for 
all 𝑥 ∈ 𝒞. 
ሺ2ሻ 
We first show that ሺ𝐴 ൅ 𝛼ሻିଵ𝒞 ൌ 𝑇𝒞 is dense in ℍ. If we take 𝑣 ⊥ 𝑇𝒞 for any 𝑣 ∈ ℍ, we only need to show that 
𝑣 ൌ 0. From (1) above𝒞 ൌ ሺ𝐴 ൅ 𝛼ሻିଵሺ𝐵 ൅ 𝛼ሻିଵሺ𝐼 െ 𝑃ሻℍ ൌ 𝑇𝑆ሺ𝐼 െ 𝑃ሻℍ By choice of 𝑣, for any 𝑦 ∈ ℍ, we 
have 〈𝑣,𝐸𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦〉 ൌ 0. Since 𝐸 and 𝑇 are inverses of one another, we have 

 0 ൌ 〈𝑣,𝐸𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦〉 
ൌ 〈𝑣, 𝑆ሺ𝐼 െ 𝑃ሻ𝑦〉 

  ൌ 〈𝑆∗𝑣, ሺ𝐼 െ 𝑃ሻ𝑦〉 
ൌ 〈𝑆𝑣, ሺ𝐼 െ 𝑃ሻ𝑦〉 

Thus, 𝑆𝑣 ⊥ ሺ𝐼 െ 𝑃ሻ𝑦  implying that 𝑆𝑣 ∈ Ranሺ𝑃ሻ. By hypothesis,  𝑃ℍ ∩  𝑆ℍ ൌ ሼ0ሽ, hence 𝑆𝑣 ൌ 0 implying that 
𝑣 ൌ 0 as required. 
We now show that 𝒞 is the core of 𝐷ሺ𝐸ሻ, that is, 𝒞 ൌ 𝐷ሺ𝐸ሻ. For any convergent sequence  ሼ𝑥௡ሽ௡ୀଵஶ  such that 
𝑥௡ ∈ 𝒞 and 𝑥௡ → 𝑥 . We expect 𝑥 ∈ 𝐷ሺ𝐸ሻ.  Let 𝑥 ∈ 𝐷ሺ𝐸ሻ, since 𝐹𝒞 is dense in ℍ and 𝐷ሺ𝐸ሻ ⊆ ℍ  𝐸𝑥௡ → 𝐸𝑥. 
Pre-multiplying by the bounded operator 𝑇, we get 𝑇𝐸𝑥௡ ൌ 𝑥௡ hence 

𝑥௡ ൌ 𝑇𝐸𝑥௡ →  𝑇𝐸𝑥 ൌ 𝑥. 
Thus, 𝑥௡ → 𝑥 as required.  
We do the same for 𝐹. We show that ሺ𝐵 ൅ 𝛼ሻିଵ𝒞 ൌ 𝑆𝒞 is dense in ℍ. If we take 𝑣 ⊥ 𝑆𝒞 for any 𝑣 ∈ ℍ, we only 
need to show that 𝑣 ൌ 0. 
From (1) above 𝒞 ൌ ሺ𝐴 ൅ 𝛼ሻିଵሺ𝐵 ൅ 𝛼ሻିଵሺ𝐼 െ 𝑃ሻℍ ൌ 𝑇𝑆ሺ𝐼 െ 𝑃ሻℍ equivalently, 𝒞 ൌ 𝑆𝑇ሺ𝐼 െ 𝑃ሻℍ. For any 𝑦 ∈
ℍ, we have 〈𝑣,𝐹𝑆𝑇ሺ𝐼 െ 𝑃ሻ𝑦〉 ൌ 0. Since 𝐹 ൌ 𝑆ିଵ, we have 

                  0 ൌ 〈𝑣,𝐹𝑆𝑇ሺ𝐼 െ 𝑃ሻ𝑦〉 
ൌ 〈𝑣,𝑇ሺ𝐼 െ 𝑃ሻ𝑦〉 

  ൌ 〈𝑇∗𝑣, ሺ𝐼 െ 𝑃ሻ𝑦〉 
ൌ 〈𝑇𝑣, ሺ𝐼 െ 𝑃ሻ𝑦〉 

Thus, 𝑇𝑣 ⊥ ሺ𝐼 െ 𝑃ሻ𝑦   implying that 𝑇𝑣 ∈ Ranሺ𝑃ሻ. By hypothesis,  𝑃ℍ ∩ 𝑇ℍ ൌ ሼ0ሽ, hence 𝑇𝑣 ൌ 0 implying 
that 𝑣 ൌ 0 as required. 
We now show that 𝒞 ൌ 𝐷ሺ𝐹ሻ. For any convergent sequence ሼ𝑥௡ሽ௡ୀଵஶ  such that 𝑥௡ ∈  𝒞 and 𝑥௡ → 𝑥 ∈ 𝐷ሺ𝐹ሻ. Let 
𝑥 ∈ 𝐷ሺ𝐹ሻ, since 𝐹𝒞 is dense in ℍ and 𝐷ሺ𝐹ሻ ⊆ ℍ  𝐹𝑥௡ → 𝐹𝑥. Pre-multiplying by 𝑆, we get 

𝑥௡ ൌ 𝑆𝐹𝑥௡ → 𝑆𝐹𝑥 ൌ 𝑥. 
Thus, 𝑥௡ → 𝑥 as required. 
(3) 
Let 𝑦 ∈ ℍ, then by the preceeding statements, 𝑢 ൌ 𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ∈ 𝒞 hence  

𝐸𝑢 ൌ 𝐸𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ൌ 𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ∈ 𝐷ሺ𝑇𝑆ሺ𝐼 െ 𝑃ሻሻ ൌ  𝒞 
Hence 𝐸𝑢 ∈ 𝒞 . The set 𝒞 is an invariant subpace under 𝐸.  
On the other hand, let 𝑦 ∈ ℍ, then by the preceding statements, 𝑢 ൌ 𝑆𝑇ሺ𝐼 െ 𝑃ሻ𝑦 ∈ 𝒞 hence  

𝐹𝑢 ൌ 𝐹𝑆𝑇ሺ𝐼 െ 𝑃ሻ𝑦 ൌ 𝑇ሺ𝐼 െ 𝑃ሻ𝑦 ∈ 𝐷ሺ𝑆𝑇ሺ𝐼 െ 𝑃ሻሻ ൌ ሼ𝐶ሽ 
Hence 𝐹𝑢 ∈ 𝒞. The set 𝒞 is an invariant subpace under 𝐹.  
So far, we have now established that the two operators 𝐸 ൌ 𝐴 ൅ 𝛼  and 𝐹 ൌ 𝐵 ൅ 𝛼  specially defined above 
commute pointwise on a common core 𝒞 defined above. We now prove that they commute strongly. For easy 
reference, we denote the collection of operators satisfying the conditions and results of the proposition 3.1 by 
𝒞௣௦. Therefore, 𝐸,𝐹 ∈ 𝒞௣௦. 
 
Proposition 3.12 
Let 𝐸 ൌ 𝐴 ൅ 𝛼  and 𝐹 ൌ 𝐵 ൅ 𝛼 be unbounded positive Self-adjoint operators having compact Self-adjoint 
inverses on a seperable Hilbert Space ℍ  for sufficiently large 𝛼 ∈ ℝ . If 𝐸,𝐹 ∈  𝒞௣௦  then 𝐸  and 𝐹  commute 
strongly.  
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Proof 
Consider the core 𝒞𝑇𝑆ሺ𝐼 െ 𝑃ሻ as defined in proposition 3.1 where 𝑃 is a projection on the closure of ሾ𝑇, 𝑆ሿℍ. 
For 𝑦 ∈ ℍ, we have 𝑥 ൌ 𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ∈ 𝒞. 
Since ℍ is a seperable Hilbert space, we have a represention of ℍ as 

ℍ ൌໄℍ௜

௜∈ℕ

          

The fact that our operators are Self-adjoint, the subspaces ℍ௜ is almost one dimensional. 
Let ℍ௜ be a non-zero subspace of ℍ such that there are eigenvalues 𝜆ா௜ ∈ 𝜎ሺ𝐸ሻ|ℍ೔  and 𝜆ி௜ ∈ 𝜎ሺ𝐹ሻ|ℍ೔  for which 
𝑃ሺ𝜆ா௜ሻ and 𝑃ሺ𝜆ி௜ሻ are spectral measures on ℍ௜. Since 𝐸 ൌ 𝐴 ൅ 𝛼 and 𝐹 ൌ 𝐵 ൅ 𝛼 are unbounded positive Self-
adjoint operators, we have unique spectral measures 𝑃ሺ𝜆ா௜ሻ and 𝑃ሺ𝜆ி௜ሻ where 

𝐴 ൅ 𝛼 ൌ නሺ𝜆ா௜ ൅ 𝛼ሻ𝑑𝑃ሺ𝜆ா௜ሻ
ℐ

     

𝐵 ൅ 𝛼 ൌ න ሺ𝜆ி௜
∗ ൅ 𝛼ሻ𝑑𝑃ሺ𝜆ி௜

∗ ሻ
ℐ∗

     

Using the functional calculus for unbounded Self-adjoint operator, we have  

 ሺ𝐴 ൅ 𝛼ሻሺ𝐵 ൅ 𝛼ሻ ൌ න ሺ𝜆ா௜ ൅ 𝛼ሻሺ𝜆ி௜
∗ ൅ 𝛼ሻ𝑑𝑃ሺ𝜆ா௜ሻ𝑃ሺ𝜆ி௜

∗ ሻ
ℐ∩ℐ∗ 

     

Let 𝑄 be a projection on ℍ௜ such that for 𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ∈ 𝒞 we have 𝑄𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ∈ ℍ௜ and ‖𝑄𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦‖ ൌ 1; 
then any vector in ℍ௜ will be a linear combination of 𝑄𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦. As such, there exist unique constants 𝑘ଵ and 
𝑘ଶ such that  
                                                    𝑃ሺ𝜆ா௜ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ൌ 𝑘ଵ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦                                                                  ሺ3.1ሻ  
                                                    𝑃ሺ𝜆ி௜

∗ ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ൌ 𝑘ଶ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦                                                                  ሺ3.2ሻ 
This implies that 𝑃ሺ𝜆ி௜

∗  ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 and 𝑃ሺ𝜆ா௜ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 are scalar multiples of one another. 
Define the minimum vector 

𝑣௠௜௡  ൌ  𝑘𝑄𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ൌ minሼ𝑘ଵ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦, 𝑘ଶ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦ሽ.  
The product of 𝑃ሺ𝜆ி௜

∗ ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ and 𝑃ሺ𝜆ா௜ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ will therefore be   
                                                         𝑃ሺ𝜆ா௜ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑃ሺ𝜆ா௜ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ൌ 𝑣௠௜௡                                                ሺ3.3ሻ 
                                                         𝑃ሺ𝜆ி௜

∗ ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑃ሺ𝜆ி௜
∗ ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ൌ 𝑣௠௜௡ .                                              ሺ3.4ሻ 

The vector 𝑦  was arbitrary, so is 𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑦 ∈ 𝒞 , and the relations in equation 3.3 and 3.4  applies for all 
elements in 𝒞. Since the spectral measures are bounded operators, we have the equality 
                                       𝑃ሺ𝜆ா௜

∗ ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑃ሺ𝜆ி௜ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ ൌ 𝑃ሺ𝜆ி௜
∗ ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ𝑃ሺ𝜆ா௜ሻ𝑇𝑆ሺ𝐼 െ 𝑃ሻ.            ሺ3.5ሻ  

Equation 3.5 implies that the spectral measures of the operators 𝐸 and 𝐹 commute on a common core 𝒞 implying 
that the two operators commute strongly. 
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