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Abstract 

The Fractional Calculus is the theory of integrals and derivatives of arbitrary order which 

unifies and generalizes the concepts of integer-order differentiation and n-fold integration. 

Time fractional partial differential equation is one of the topics in the analysis of fractional 

calculus theory which can be obtained from the standard partial differential equations by 

replacing the integer order time derivative by a fractional derivative. 

 In this study a recent and reliable method, namely the reduced differential transform method 

which is introduced recently by Keskin and Oturanc (Keskin Y. and Oturan G. 2009, 

2010)was applied to find analytical solutions of one dimensional time-fractional Airy’s and 

Airy’s type partial differential equations subjected to initial condition. The fractional 

derivative involved here is in the sense of Caputo definition, for its advantage that the initial 

conditions for fractional differential equations take the traditional form as for integer-order 

differential equations. 

In order to show the reliability of the solutions examples are constructed and 3D figures for 

some of the solutions are also depicted. 

Keywords: One dimensional; Time-fractional  

 

1. INTRODUCTION 

Fractional Calculus is the field of mathematical analysis which deals with the investigation 

and application of integrals and derivatives of arbitrary order. It is the theory of integrals and 

derivatives of arbitrary order which unifies and generalizes the concepts of integer-order 

differentiation and n-fold integration as in [29].Today the theory of fractional differential has 

gained much more attention as the fractional order system response ultimately converges to 

the integer order equations. Even though the beginning of the fractional calculus is considered 

to be the Leibniz's letter which raised a question: "Can the meaning of derivatives with integer 

order be generalized to derivatives with non-integer orders?" to L'Hopital in 1695,no 

analytical solution method was available for such type of equations before the nineteenth 

century as explained in[2]. 

In recent past, the glorious developments have been envisaged in the field of fractional 

calculus and fractional differential equations. Differential equations involving fractional order 

derivatives are used to model a variety of systems of real world physical problem, of which 
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the important applications lie in field of viscoelasticity, electrode-electrolyte polarization, heat 

conduction, electromagnetic waves, diffusion equation and so on [5]. And also several real 

phenomena emerging in engineering and science fields can be demonstrated successfully by 

developing model using the fractional calculus theory. 

Time fractional partial differential equation (TFPDE) is one of the topics in the analysis of 

fractional calculus theory. And they are differential equations which can be obtained from the 

standard partial differential equations by replacing the integer order time derivative by a 

fractional derivative [2]. Some of these are time fractional heat equations, time fractional heat-

like equations, time fractional wave equations time fractional telegraphic equation and so on. 

Which are represented by linear and nonlinear PDEs and solving such fractional differential 

equations is very important. The Airy’s partial differential equation is one of the linear partial 

differential equation used in many real world physical applications and, as in [25] Airy’s 

equation is one the first model of water waves: a small wave exist-traveling “wave trains” in 

deep water. As in [17] in the early day of mathematical modeling of water waves, it was 

assumed that the wave height was small compared to the water depth which leads to linear 

dispersive equations a representative model of which is Airy’s partial differential equation. 

Such equations are somewhat satisfying in this regard because they have solutions that 

resemble wave traveling along with constant speed and fixed profile along the water surface, 

just like one sees in nature [17, 25].  

Fractional calculus involves different definitions of the fractional integral and derivatives such 

as the Riemann–Liouville fractional derivatives, Caputo fractional derivatives, Riesz 

fractional derivatives and Grunwald–Letnikov fractional derivative [22]. Among this the first 

to give definition is due to Riemann–Liouville. But, in this study we considered the Caputo’s 

definition of fractional derivatives for its certain advantages when trying to model real world 

phenomena with traditional differential equations. That is, as in [5, 6] the alternative 

definition given by Caputo over the Riemann–Liouville for fractional derivatives thus 

incorporates the initial values of the functions and fractional derivatives for a constant is still 

zero. 

In particular,𝐷∗
𝛼1 ≡ 0, 𝛼 > 0 

A mathematical model is a simplified description of physical reality expressed in 

mathematical terms. Thus, the investigation of the exact or approximation solution helps us to 

understand the means of these mathematical models. Many authors applied numerical and 

analytic methods to solve linear and non-linear fractional differential equations. A few of 

these methods are the Differential Transform Method (DTM) [30], the A domian 

Decomposition Method (ADM) [28], the Variational Iteration Method (VIM) [18], and the 

Homotopy Perturbation Method (HPM) [18].Recently, Keskin Y. and Oturanc G. [14, 15, 16] 

developed the reduced differential transform method (RDTM) for the fractional differential 

equations and showed that RDTM is the easily useable semi analytical method and gives the 

exact solution for both the linear and nonlinear differential equations. Using Reduced 

Differential Transform Method (RDTM), it is possible to find exact solution or closed 

approximate solution of a differential equation, as in [26] .It is an iterative procedure for 

obtaining Taylor series solution of differential equations, as in [27]. 

In the last several years other authors [1, 7, 13, and 19]have discussed about the analysis of 

the solution of Airy’s and Airy’s type equationusing the reduced differential method (DTM), 

particle method, and variational iteration method (VIM).And Jonathan G. and Walter C. [13] 
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shown the existence, uniqueness and regularity result of the solution to the Airy’s and Airy’s 

type equation based on the energy estimates using weighted Sobolev norms.     

The new Fractional Reduced Differential Transform method (FRDTM) introduced recently 

by, Keskin and Oturanc in [14, 15, 16] is used to solve fractional partial differential equations. 

RDTM successfully applied to solve time-fractional heat equations, time-fractional wave 

equation, time fractional telegraphic equations and so on. But, nothing was discussed about 

time fractional Airy’s and Airy’s type equations by applying the RDTM in the existing 

literature. However the Mathematical result of this study was in part applied the RDTM to 

find the analytical solution for the time fractional Airy’s and Airy’s type equations defined as:  

1) 
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
= 𝛽

𝜕3𝑢(𝑥,𝑡)

𝜕𝑥3
, 𝑥𝜖ℝ, 𝑡 > 0, 0 < 𝛼 ≤ 1, where𝛽 = ±1 

subjected to initial condition:  𝑢(𝑥, 𝑡) = 𝜙(𝑥). 

2) 
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 =
𝑢(𝑥,𝑡)𝜕3𝑢(𝑥,𝑡)

𝜕𝑥3 , 𝑥𝜖ℝ, 𝑡 > 0, 0 < 𝛼 ≤ 1,  

      subjected to initial condition:   𝑢(𝑥, 𝑡) = 𝜑(𝑥, 𝑡).  

2. LITERATURE REVIEW 

Fractional Calculus is a tool of Mathematical Analysis applied to the study of integrals and 

derivatives of arbitrary order, not only fractional but also real. Commonly this fractional 

integrals and derivatives are not known for many scientists and up to recent years have been 

used only in a pure mathematical context. But during the last decade this integrals and 

derivatives have been applied in many contexts of sciences. 

Before the nineteenth century, no analytical method was available for fractional order 

differential equations. In 1998 the first analytical method the variation iteration method 

(VIM), was proposed by Noorani M.S.  et al [18] to solve fractional differential equations 

(seepage flow with fractional derivatives in porous media) and then after it also used to solve 

more complex fractional differential equations such as linear and nonlinear viscoelastic 

models with fractional derivatives, nonlinear differential equations of fractional order, linear 

fractional partial differential equations arising in fluid mechanics and the fractional heat and 

wave-like equations with variable coefficients.  

The classical Taylor series method has been one of the earlier methods for solving the 

differential equations. With an advent of high-speed computers there has been an increasing 

trend towards exploring new ideas out of traditional techniques for the last couple of decades. 

In 1986 an updated version of Taylor series method, called the differential transform method 

(DTM) was introduced by Zhou Jk [30], and then applied DTM in order to solve electric 

circuit.  

In 2009 another improved approach for solving initial-value problem for partial differential 

equation, known as the reduced differential transform (RDT) method, has recently been used 

by the Turkish mathematician Keskin Y. and Otura G. [14].And they developed the reduced 

differential transform method (RDTM) for the fractional differential equations and showed 

that RDTM is the easily useable semi analytical method and gives the exact solution for both 

the linear and nonlinear differential equations. 

In 2007, the Homotopy Perturbation Method (HPM) was applied to both non-linear and linear 

fractional differential equations and it was showed that HPM is an alternative analytical 
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method for fractional differential equations. HPM also used to solve the fractional heat- and 

wave-like equations with variable coefficients, in Noorani M. S. M, et al [18].  

To solve the third-order dispersive equations in 1991 Djidjeli k. and Twizell EH [9] develop a 

family of numerical method in a single space-variable with time-dependent boundary 

conditions.  

In addition to the work of Djidjeli k. and Twizell EH [9] in 2003 Wazwaz [28] demonstrated 

how exact solutions to third-order dispersive partial differential equations are derived through 

the A domian decomposition method in an analytic study of the third-order dispersive partial 

differential equations. And also in 2009 Batiha B. [3] found an approximate solution of the 

dispersive equations by variational iteration method.  

In the last several years authors have discussed about solution of Aiy’s equation. For example 

in 2001 Alina C. and Doron L. [1] were discussed about Airy’s equation in using Particle 

Methods for approximating solutions of linear and nonlinear dispersive equation. The Airy’s 

is one of the linear partial differential equation used in many real world physical applications 

and, As Russel J. S [25, 17] in 1884 in his report on wave shown that Airy’s equation is one 

the first model of water waves: a small waves in a deep water and wave-like solutions exist-

traveling “wave trains”  

In 2013 Naseem T. and Tahir M. [19] use RDT method for solving dispersive partial 

differential equations and applied RDTM on One-dimensional linear third-order dispersive 

partial differential equation and shown the reliability and efficiency of the methods. 

The new Fractional Reduced Differential Transform method (FRDTM) introduced recently 

by, Keskin and Oturanc in [14, 15, 16] used to solve fractional partial differential equations. 

RDTM successfully applied to solve time-fractional heat equations, time-fractional wave 

equation and time fractional telegraphic equations and so on. But, nothing has been discussed 

about time fractional Airy’s and Airy’s type equations by applying RDTM in the existing 

literature. However the Mathematical result of this study was in part applied the RDTM to 

find analytical solution for the time fractional Airy’s equations. 

 

 

3. RELIMINARY RESULT AND DISCUSSION 

3.1 The Gamma Function 

Definition 3.1.1  Γ(Ζ)  represents the Gamma function which is an extension of the fractional 

function to complex and real number arguments as in Hanna Ray J. and Rowland John H., 

(1990) defined by: 

Γ(z) =  ∫ 𝑒−𝑡𝑡𝑧−1∞

0
𝑑𝑡, ℛ𝑒(𝑧) > 0  (1) 

For all   𝑧 > 0   with    ℛ𝑒(𝑧) > 0   and∀𝑛𝜖ℕ  then,  the following holds: 

i. Γ(z + 1)=𝑧Γ(z) 

ii. Γ(n) = (n − 1)! 
iii. Γ(1) = 1, 𝑛 = 1 

3.2 Fractional Calculus Theorems 

The Riemann-Liouville and fractional derivative, the Caputo derivative and the modification 

versions plays important roles in many areas of science, engineering, and mathematics. Some 

definitions of fractional derivatives and their properties are given as follows. 

Definition 3.2.1 As in Diethelm. K and Luchko. Y, (2004), Podiubny I. (1999), Rida S. Z, 

(2010) a real function  𝑓(𝑥), 𝑥 > 𝑜  is said to be in the space 𝐶𝜇, 𝜇𝜖ℝ  if there exists a real 

number  (𝑝 > 𝜇)  such that  𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥)  where  𝑓1(𝑥)𝜖[0, ∞)  and it is said to be in the 

space   𝐶𝜇
𝑚  if   𝑓𝑚𝜖𝐶𝜇, 𝑚𝜖ℕ. 
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Definition 3.2.3 The Riemann-Liouville fractional integral operator of order  𝛼 ≥ 0of a 

function𝑓𝜖𝐶𝜇, 𝜇 ≥ −1  as in Boss B. and Millar KS. (1993) Podiubny I. (1999), Rida S. Z, 

(2010) is defined by: 

{ 𝐽𝛼𝑓(𝑥) =
1

Γ(𝛼)
∫ (𝑥 − 𝑎)𝛼−1𝑥

0
𝑓(𝑡)𝑑𝑡, 𝛼 > 0, 𝐽0𝑓(𝑥) = 𝑓(𝑥)}  (2) 

Properties of the operator 𝐽𝛼can be found in Diethelm. K and Luchko. Y, (2004), Podiubny I. 

(1999), Rida S. Z, (2010) are the following: 

For  𝑓𝜖𝐶𝜇 ,𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0   and   𝛼 > 0; 

1. 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛼+𝛽𝑓(𝑥)  (3) 

2. 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛽𝐽𝛼𝑓(𝑥)  (4) 

3. 𝐽𝛼𝑥𝛾 =
Γ(𝛾+1)

Γ(𝛼+𝛾+1)
𝑥𝛼+𝛾  (5) 

The Riemann-Liouville derivative has certain disadvantages when trying to model real-world 

phenomena with fractional differential equations. Therefore, we shall introduce a modified 

fractional differential operator 𝐷𝛼  proposed by M.Caputo in his work of the theory of 

viscoelasticity which allows the utilization of initial and boundary conditions integer order 

derivatives, which have clear physical interpretations. 

Definition 3.2.4 The fractional derivative of𝑓(𝑥)in the Caputo sense as in(1967, 1871) and 

Podiubny I. (1999) is defined as: 

𝐷∗
𝛼𝑓(𝑥) = {

𝐽𝑚−𝛼𝐷𝑚𝑓(𝑥)
1

Γ(𝑚−𝛼)
∫ (𝑥 − 𝑡)𝑚−𝛼−1𝑓(𝑡)𝑑𝑡𝑓𝑜𝑟𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚𝜖ℕ, 𝑥 > 0, 𝑓𝜖𝐶−1

𝑚𝑥

0

 (6) 

The unknown function 𝑓 = 𝑓(𝑥, 𝑡)   is assumed to be a casual function derivative (i. e 

vanishing for  𝛼 < 0 ) in Caputo sense as follows. 

Definition 3.2.5 For 𝑚 as the smallest integer that exceeds 𝛼  the Caputo time fractional 

derivative operator of order 𝛼 > 0is defined as: 

𝐷𝛼𝑓(𝑥, 𝑡) =
𝜕𝛼𝑓(𝑥,𝑡)

𝜕𝑡𝛼 = {

1

Γ(𝑚−𝛼)
∫ (𝑡 − 𝜏)𝑚−𝛼−1 𝜕𝑚𝑓(𝑥,𝜏)

𝜕𝜏𝑚 𝑑𝜏, 𝑚 − 1 < 𝛼 < 𝑚
𝑡

0

𝜕𝑚𝑓(𝑥,𝑡)

𝜕𝑡𝑚
, 𝛼 = 𝑚

         (7) 

The fundamental basic properties of the Caputo fractional derivative as in Ishteva M, et al. 

(2003) and Podiubny I. (1999) are given as: 

Lemma: If   𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚𝜖ℕ  and   𝑓(𝑥)𝜖𝐶𝜇
𝑚 , 𝜇 ≥ −1 . Then 

1. 𝐷𝛼𝐽𝛼𝑓(𝑥) = 𝑓(𝑥), 𝑥 > 0.                                          (8) 

2. 𝐷𝛼𝐽𝛼𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓(𝑘)(0+)𝑚
𝑘=0

𝑋𝑘

𝑘!
, 𝑥 > 0 .          (9) 

3. (𝐽𝑎
𝛼𝐷𝛼𝑓)(𝑥) = (𝐽𝑎

𝛼𝐷𝑎
𝑚𝑓)(𝑥) = 𝑓(𝑥) − ∑ 𝑓(𝑎)

(𝑘)𝑚−1
𝑘=0

(𝑥−𝑎)𝑘

𝑘!
, 𝑥 > 𝑎.     (10) 

3.3 Reduced Differential Transform Method (RDTM) 

The reduced deferential transform method was first proposed by the Turkish mathematician 

Keskin and Oturance in 2009. It has received much attention since it has applied to solve a 

wide verity of problems by many authors. 
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In this section the basic definitions of the reduced deferential transform method (RDTM) and 

differential inverse transform in Keskin Y. and Oturan G. (2009, 2010) were discussed as 

follows: 

Consider a function of two variables𝑢(𝑥, 𝑡)  and suppose that it can be represented as a 

product of two single-variable functions, i.e.𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡). Based on the properties of 

one-dimensional differential transform, the function𝑢(𝑥, 𝑡)can be represented as: 

𝑢(𝑥, 𝑡) = (∑ 𝐹(𝑖)𝜒𝑖∞
𝑖=0 )(∑ 𝐺(𝑗)𝑡𝑗∞

𝑗=0 ) = ∑ 𝑈𝑘
∞
𝑘=0 (𝑥)𝑡𝑘   (11) 

where 𝑈𝑘(𝑥) is called t-dimensional spectrum function of 𝑢(𝑥, 𝑡) . 

The basic definition of fractional RDTM as introduced by Batiha B. (2993) Srivasttava VK, et 

al(2014) and Sohail M. and Mohyud-Din S. T(2012) is given bellow: 

Definition 3.3.1 If𝑢(𝑥, 𝑡)is analytic and continuously differentiable with respect to space 

variable 𝑥  and time variable𝑡  in the domain of interest, then the t-dimensional spectrum 

function.     

𝑅𝐷[𝑢(𝑥, 𝑡)] = 𝑈𝑘(𝑥) =
1

Γ(𝑘𝛼+1)
[

𝜕𝑘𝛼

𝜕𝑡𝑘𝛼 𝑢(𝑥, 𝑡)]
𝑡=𝑡0

  (12) 

is the reduced transformed function; where𝛼is a parameter which describes the order of time-

fractional derivative in a Caputo sense and 𝑈𝑘(𝑥)is the transformed function of 𝑢(𝑥, 𝑡) . 

Definition 3.3.2. the differential inverse transforms of 𝑈𝑘(𝑥)is defined as: 

𝑅𝐷−1[𝑈𝑘(𝑥)] = 𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘
∞
𝑘=0 (𝑥)𝑡𝑘𝛼   (13) 

Combining (12) and (13), we find that 

𝑢(𝑥, 𝑡) = ∑
1

Γ(𝑘𝛼+1)
∞
𝑘=0 [

𝜕𝑘𝛼

𝜕𝑡𝑘𝛼 𝑢(𝑥, 𝑡)]
𝑡=𝑡0

𝑡𝑘𝛼   (14) 

Notation: 𝑹𝑫  Denoted the reduced differential transformed operator and 𝑹𝑫−𝟏  denoted the 

inverse reduced differential transform operator. 

Some basic theorems of the reduced differential transform method explained in Keskin Y. and 

Oturan G. (2009, 2010) were given bellow.  

Theorem 3.3.1 If   𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)  then   𝑊𝑘(𝑥) = 𝑈𝑘(𝑥). 

Theorem 3.3.2 If(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) ± 𝑣(𝑥, 𝑡)  then    𝑊𝑘(𝑥) = 𝑈𝑘(𝑥) ± 𝑉𝑘(𝑥). 

Theorem 3.3.3 If   𝑤(𝑥, 𝑡) = 𝛼𝑢(𝑥, 𝑡)   then   𝑊𝑘(𝑥) = 𝛼𝑈𝑘(𝑥). 

Theorem 3.3.4 If   𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡)  then  

𝑊𝑘(𝑥) = ∑ 𝑈𝑛(𝑥)

𝑘

𝑛=0

𝑉𝑘−𝑛(𝑥) = ∑ 𝑉𝑛(𝑥)𝑈𝑘−𝑛

𝑘

𝑛=0

(𝑥). 

Theorem 3.3.5 If   𝑤(𝑥, 𝑡) =
𝜕𝑛

𝜕𝑡𝑛 𝑢(𝑥, 𝑡)  then  
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𝑊𝑘(𝑥) = (𝑘 + 1)(𝑘 + 2) … … . . (𝑘 + 𝑛)𝑈𝑘+𝑛(𝑥). 

Theorem 3.3.6  If𝑤(𝑥, 𝑡) =
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡)   then  𝑊𝑘(𝑥) =

𝜕

𝜕𝑥
𝑈𝑘(𝑥). 

Theorem 3.3.7 If 𝑤(𝑥, 𝑡) =
𝜕𝑛

𝜕𝑥𝑛 𝑢(𝑥, 𝑡)  then  𝑊𝑘(𝑥) =
𝜕𝑛

𝜕𝑥𝑛 𝑈𝑘(𝑥)𝑘 = 0, 1, 2, … 

Theorem 3.3.8 If 𝑤(𝑥, 𝑡) =
𝜕𝑁𝛼

𝜕𝑡𝑁𝛼 𝑢(𝑥, 𝑡)  then 𝑘 = 0, 1, 2, …and  𝑁𝜖ℕ . 

3.4 Main Results 

The new fractional Reduced Differential Transform method (FRDTM) introduced recently by 

Keskin and Oturanc (2009, 2010) is used to solve fractional partial differential equations. 

RDTM successfully applied to solve time-fractional heat and heat-like equations, time-

fractional wave and wave-like equation and time fractional telegraphic equations and so on. 

But, nothing was discussed about time fractional Airy’s and Airy’s type equations by applying 

the RDTM in the existing literature. Therefore, this study presents the solution of time 

fractional Ariy’s and Ariy’s type equation by using RDTM.  

 

Theorem 3.4.1  If 𝑤(𝑥, 𝑡) = 𝑣(𝑥, 𝑡)
𝜕𝑛

𝜕𝑥𝑛 𝑢(𝑥, 𝑡)   then 

∑ 𝑉𝑟(𝑥)
𝜕𝑛

𝜕𝑥𝑛
𝑈𝑘−𝓇

𝑘

𝓇=0

(𝑥) = ∑ 𝑉𝑘−𝓇(𝑥)
𝜕𝑛

𝜕𝑥𝑛

𝑘

𝓇=0

𝑈𝑟(𝑥)  

Proof:  

Let  𝑤(𝑥, 𝑡), 𝑢(𝑥, 𝑡)  and  𝑣(𝑥, 𝑡) be analytic and continuously differentiable functions with 

respect to the variable𝑥   and time  𝑡in the domain of interest and   𝑡 > 0such that; 

𝑤(𝑥, 𝑡) = 𝑣(𝑥, 𝑡)
𝜕𝑛

𝜕𝑥𝑛 𝑢(𝑥, 𝑡) , where   𝑛 = 0,1,2, … 

and let   𝑊𝑘(𝑥), 𝑈𝑘(𝑥) and  𝑉𝑘be t-dimensional spectrum function of   𝑤(𝑥, 𝑡), 𝑢(𝑥, 𝑡)and  

𝑣(𝑥, 𝑡) respectively. 

Appling definition 3.3.1  

𝑅𝐷[𝑤(𝑥, 𝑡)] = 𝑊𝑘(𝑥) =
1

Γ(𝑘𝛼+1)
[

𝜕𝑘𝛼

𝜕𝑡𝑘𝛼 𝑤(𝑥, 𝑡)]
𝑡=𝑡0

=
1

Γ(𝑘𝛼+1)
[

𝜕𝑘𝛼

𝜕𝑘𝛼 (𝑣(𝑥, 𝑡)
𝜕𝑛

𝜕𝑥𝑛 𝑢(𝑥, 𝑡))]
𝑡=𝑡0

 , 

since  𝑤(𝑥, 𝑡) = 𝑣(𝑥, 𝑡)
𝜕𝑛

𝜕𝑥𝑛
𝑢(𝑥, 𝑡) 

Now let  𝑟(𝑥, 𝑡)  be analytic and continuously differentiable functions with respect to variable 

𝑥  and time   𝑡in the domain of interest and assume that   𝑟(𝑥, 𝑡) =
𝜕𝑛𝑢(𝑥,𝑡)

𝜕𝑥𝑛 , 𝑛 = 0, 1, 2, … 

and let   𝑅(𝑥, 𝑡)  be t-dimensional spectrum function of   𝑟(𝑥, 𝑡),  then   𝑅𝑘(𝑥, 𝑡) =
𝜕𝑛𝑈𝑘(𝑥)

𝜕𝑥𝑛    

by theorem 3.3.7 

Then   𝑊𝑘(𝑥) = (
1

Γ(𝑘𝛼+1)
[

𝜕𝑘𝛼

𝜕𝑡𝑘𝛼
(𝑣(𝑥, 𝑡)𝑟(𝑥, 𝑡))]

𝑡=𝑡0

) , since 𝑟(𝑥, 𝑡) =
𝜕𝑛𝑢(𝑥,𝑡)

𝜕𝑥𝑛  

 But, from theorem 3.3.7 we can obtain that 

𝑊𝑘 =
1

Γ(𝑘𝛼 + 1)
[

𝜕𝑘𝛼

𝜕𝑡𝑘𝛼
(𝑣(𝑥, 𝑡). 𝑟(𝑥, 𝑡))]

𝑡=𝑡0

= ∑ 𝑉𝓇

𝑘

𝓇=0

(𝑥)𝑅𝑘−𝓇(𝑥) = ∑ 𝑉𝑘−𝑟(𝑥)𝑅𝓇

𝑘

𝓇=0

(𝑥) 
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𝑊𝑘(𝑥) = ∑ 𝑉𝓇

𝑘

𝓇=0

(𝑥)
𝜕𝑛𝑈𝑘−𝑟(𝑥)

𝜕𝑥𝑛
= ∑ 𝑉𝑘−𝑟(𝑥)

𝜕𝑛𝑈𝑟(𝑥)

𝜕𝑥𝑛

𝑘

𝓇=0

 

Therefore,  

If   𝑤(𝑥, 𝑡) = 𝑣(𝑥, 𝑡)
𝜕𝑛

𝜕𝑥𝑛 𝑢(𝑥, 𝑡)  then 

∑ 𝑉𝑟(𝑥)
𝜕𝑛

𝜕𝑥𝑛
𝑈𝑘−𝓇

𝑘

𝓇=0

(𝑥) = ∑ 𝑉𝑘−𝓇(𝑥)

𝑘

𝓇=0

𝜕𝑛

𝜕𝑥𝑛
𝑈𝑟(𝑥) 

Corollary 3.4.2 If𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)
𝜕𝑛

𝜕𝑥𝑛 𝑢(𝑥, 𝑡)then 

𝑊𝑘(𝑥) = ∑ 𝑈𝑟(𝑥)
𝜕𝑛

𝜕𝑥𝑛
𝑈𝑘−𝓇

𝑘

𝓇=0

(𝑥) = ∑ 𝑈𝑘−𝓇(𝑥)

𝑘

𝓇=0

𝜕𝑛

𝜕𝑥𝑛
𝑈𝑟(𝑥), n = 0, 1, 2 … 

And by using theorem 3.3.8, 

𝑊𝑘(𝑥) = 𝑈𝑘+𝑁(𝑥) =
Γ(𝑘𝛼 + 1)

Γ(𝑘𝛼 + 𝑁𝛼 + 1)
[∑ 𝑈𝑟(𝑥)

𝜕𝑛

𝜕𝑥𝑛
𝑈𝑘−𝓇

𝑘

𝓇=0

(𝑥)] 

Then, for N=1 and n=0, 1, 2…we get the following iterative relation 

                          𝑈𝑘+1(𝑥) =
Γ(𝑘𝛼+1)

Γ(𝑘𝛼+𝛼+1)
[∑ 𝑈𝑟(𝑥)

𝜕𝑛

𝜕𝑥𝑛 𝑈𝑘−𝓇
𝑘
𝓇=0 (𝑥)] 

3.4.1 Reduced Differential Transform Method for Solving One Dimensional Time 

Fractional Airy’s and Airy’s Type Partial Differential Equations 

I. TIME FRACTIONAL AIRY’S EQUATION: 

Consider one-dimensional time-fractional Airy’s equation Alina C. and Doron L. (2001) 

Chandradeepa D. and Dhaigude D.B. (2012) in Caputo sense  
𝜕𝛼

𝜕𝑡𝛼 𝑢(𝑥, 𝑡) = 𝛽
𝜕3

𝜕𝑥3 𝑢(𝑥, 𝑡), 𝑥𝜖ℝ, 𝑡 > 0, 0 < 𝛼 ≤ 1     (15) 

where𝛽 = ±1  and  

Subjected to the initial condition  

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥𝜖ℝ    (16) 

Step-1) Applying RDTM to both side of equation (15) and (16)  

i.e,      𝑅𝐷 [
𝜕𝛼

𝜕𝑡𝛼 𝑢(𝑥, 𝑡)] = 𝑅𝐷 [𝛽
𝜕3

𝜕𝑥3 𝑢(𝑥, 𝑡)]        (17) 

and,  

   𝑅𝐷[𝑢(𝑥, 0)] = 𝑅𝐷[𝜙(𝑥)]   (18) 

We get respectively the following iterative relations, 

𝑈𝑘+1(𝑥) = 𝛽
Γ(𝑘𝛼+1)

Γ((𝑘+1)𝛼+1)
[

𝜕3

𝜕𝑥3
𝑈𝑘(𝑥)] , 𝑥𝜖ℝ  and 𝑘 = 0, 1, 2, …   (19)                                            

where we have used theorem 3.3.8, on the left hand side of (17) for   𝑁 = 1theorem 3.3.7on 

the right hand side of (17) for 𝑛 = 3and from (18)  we have    

   𝑈0(𝑥) = 𝜙(𝑥), 𝑥𝜖ℝ    (20) 

Step-2) Substituting (20) in to (19), yields the following iterated values. 

That is, 

For k=0, 𝑈1(𝑥) =
𝛽

Γ(𝛼+1)
[

𝜕3

𝜕𝑥3 𝑈𝑜(𝑥)] =
𝛽

Γ(𝛼+1)
[

𝜕3

𝜕𝑥3 𝜙(𝑥)] 
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For k=1, 𝑈2(𝑥) = 𝛽
Γ(𝛼+1)

Γ(2𝛼+1)
[𝛽

𝜕3

𝜕𝑥3 𝑈1(𝑥)] =
𝛽2

Γ(2𝛼+1)
[

𝜕6

𝜕𝑥6 𝜙(𝑥)] 

Fork=2,  𝑈3(𝑥) = 𝛽
Γ(2𝛼+1)

Γ(3𝛼+1)
[𝛽2 𝜕3

𝜕𝑥3 𝑈2(𝑥)] =
𝛽3

Γ(3𝛼+1)
[

𝜕9

𝜕𝑥9 𝜙(𝑥)] , … 

Step-3) Using definition 3.3.2, the differential inverse transforms of   𝑈𝑘(𝑥)  gives  

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘𝛼

∞

𝑘=0

, 𝑡 > 0 

  

II. TIME FRACTIONAL AIRY’S TYPE EQUATION: 

Consider one-dimensional time-fractional Airy’s type equation [13] described in Caputo 

sense. 
𝜕𝛼

𝜕𝑡𝛼 𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)
𝜕3

𝜕𝑥3 𝑢(𝑥, 𝑡), 𝑥𝜖ℝ, 𝑡 > 0, 0 < 𝛼 ≤ 1  (21) 

 Subjected to the initial condition  

𝑢(𝑥, 0) = 𝜑(𝑥), 𝑥𝜖ℝ,    (22) 

Step-1) Applying RDTM to both side of equation (21) and (22),  

 i.e,  

𝑅𝐷 [
𝜕𝛼

𝜕𝑡𝛼 𝑢(𝑥, 𝑡)] = 𝑅𝐷 [𝑢(𝑥, 𝑡)
𝜕3

𝜕𝑥3 𝑢(𝑥, 𝑡)]   (23) 

and 

𝑅𝐷[𝑢(𝑥, 0)] = [𝜑(𝑥)],    (24)           

we get respectively the following iterative relations  

𝑈𝑘+1(𝑥) =
Γ(𝑘𝛼+1)

Γ((𝑘+1)𝛼+1)
[∑ 𝑈𝓇(𝑥)𝑘

𝓇=0
𝜕3

𝜕𝑥3 𝑈𝑘−𝓇(𝑥)],        (25) 

and 

𝑈0(𝑥) = 𝜑(𝑥), 𝑥𝜖ℝ    (26) 

where, we have used theorem 3.3.8 on the left hand side of (23) and theorem 3.3.1, corollary 

3.4.2 for 𝑛 = 3 on the right hand side of (23).  

Setp-2) Substituting (24) in to (23), we get the following iterative values  

For k=0,  𝑈1(𝑥) =
1

Γ(𝛼+1)
[𝑈0(𝑥)

𝜕3

𝜕𝑥3 𝑈0(𝑥)], 

For k=1,    𝑈2(𝑥) =
Γ(𝛼+1)

Γ(2𝛼+1)
[𝑈0(𝑥)

𝜕3

𝜕𝑥3 𝑈1(𝑥) + 𝑈1(𝑥)
𝜕3

𝜕𝑥3 𝑈0(𝑥)] 

For k=2, 𝑈3(𝑥) =
Γ(2𝛼+1)

Γ(3𝛼+1)
[𝑈0(𝑥)

𝜕3

𝜕𝑥3 𝑈2(𝑥) + 𝑈1(𝑥)
𝜕3

𝜕𝑥3 𝑈1(𝑥) + 𝑈2(𝑥)
𝜕3

𝜕𝑥3 𝑈0(𝑥)], .  . . 

Step-3) Using definition 4.1.3.2 the differential inverses transform of   𝑈𝑘(𝑥)  gives us: 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘

∞

𝑘=0

(𝑥)𝑡𝑘𝛼 , 𝑡 > 0 

3.5 Application 

In this section, we describe the application of the method explained in section 3.3 and section 

3.4.1 by considering test examples of Airy’s and Airy’s type partial differential equation to 

show the efficiency and accuracy of the fractional reduced differential transform method. 

Example 3.5.1 Consider one-dimensional time-fractional Airy’s partial differential equation 

for 

 𝛽 = 1.  
𝜕𝛼𝑢

𝜕𝑡𝛼 =
𝜕3𝑢

𝜕𝑥3 , 𝑥𝜖ℝ, 𝑡 > 0, 0 < 𝛼 ≤ 1,   (27) 

subjected to initial condition:   𝑢(𝑥, 0) = cos 𝜋𝑥 + 𝑒𝜋𝑥  (28)            

Solution: 

Appling the RDTM to both side of equation (27), we obtain the following iteration relation 
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𝑈𝑘+1(𝑥) =
Γ(𝑘𝛼+1)

Γ(𝑘𝛼+𝛼+1)
[(

𝜕3

𝜕𝑥3
𝑈𝑘(𝑥))]  , 𝑘 = 0,1,2 …  (29)  

Using the RDTM to the initial conditions (28), we obtain  

𝑢(𝑥, 0) = 𝑈0(𝑥) = cos 𝜋𝑥 + 𝑒𝜋𝑥  (30) 

Using iteration equation (29) and (30), we obtain the following𝑈𝑘(𝑥)values successively.  

𝑈1(𝑥) =
𝜋3(sin 𝜋𝑥 + 𝑒𝜋𝑥)

Γ(𝛼 + 1)
, 𝑈2(𝑥) =

−𝜋6(cos 𝜋𝑥 − 𝑒𝜋𝑥)

Γ(2𝛼 + 1)
, 𝑈3(𝑥) =

−𝜋9(sin 𝜋𝑥 − 𝑒𝜋𝑥)

Γ(3𝛼 + 1)
, … 

Thus, the fractional differential inverse transform of  𝑈𝑘(𝑥)  gives, 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘𝛼

∞

𝑘=0

= 𝑈0(𝑥) + 𝑈1(𝑥)𝑡𝛼 + 𝑈2(𝑥)𝑡2𝛼 + 𝑈3(𝑥)𝑡3𝛼 +  … 

𝑢(𝑥, 𝑡) = (cos 𝜋𝑥 + 𝑒𝜋𝑥) +
𝜋3(sin 𝜋𝑥 + 𝑒𝜋𝑥)𝑡𝛼

Γ(𝛼 + 1)
−

𝜋6(cos 𝜋𝑥 − 𝑒𝜋𝑥)𝑡2𝛼

Γ(2𝛼 + 1)

−
𝜋9(sin 𝜋𝑥 + 𝑒𝜋𝑥)𝑡3𝛼

Γ(3𝛼 + 1)
+  … 

Specially, for   α = 1, 𝑢(𝑥, 𝑡)  becomes 

𝑢(𝑥, 𝑡) = (cos 𝜋𝑥 + 𝑒𝜋𝑥) +
𝜋3(sin 𝜋𝑥 + 𝑒𝜋𝑥)𝑡

1!
−

𝜋6(cos 𝜋𝑥 − 𝑒𝜋𝑥)𝑡2

2!

−
𝜋9(sin 𝜋𝑥 + 𝑒𝜋𝑥)𝑡3

3!
+ … 

The 3D plot of the solution of example 3.5.1in the domain 𝑥𝜖ℝ for 𝑈𝑘, 𝑘 = 0, 1, 2. 3 

𝛼 = 0.25, 𝛼 = 0.5, 𝛼 = 75, and 𝛼 = 1are shown in fig.1. 

  

For 𝛼 = 0.25 For 𝛼 = 0.5 
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For 𝛼 = 0.75 For 𝛼 = 1 

Fig. 1: 3D plot of the solution of one dimensional time fractional Ariy’s equation (example 

3.5.1) 

Example 3.5.2 Consider one-dimensional time-fractional Airy’s type equation. 

   
𝜕𝛼

𝜕𝑡𝛼 𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)
𝜕3

𝜕𝑥3 𝑢(𝑥, 𝑡), 𝑥𝜖ℝ, 𝑡 > 0, 0 < 𝛼 ≤ 1  (31) 

subjected to the initial condition  𝑢(𝑥, 0) = (𝜔 − 2𝛿𝑥)
1

2⁄ , 𝑥𝜖ℝ   (32) 

where𝜔  and   𝛿 are constants 

Solution: 

Applying (RDTM)to both side of equation (31), we get the iterative relation. 

𝑈𝑘+1(𝑥) =
Γ(𝑘𝛼+1)

Γ(𝑘𝛼+𝛼+1)
[∑ 𝑢𝓇(𝑥)𝑘

𝓇=0
𝜕3

𝜕𝑥3 𝑈𝑘−𝓇(𝑥)]  (33) 

and from the initial condition (32), we have   

𝑈0(𝑥) = 𝑢(𝑥, 0) = (𝜔 − 2𝛿𝑥)
1

2⁄ , 𝑥𝜖ℝ,                                 (34) 

where, the t-dimensional spectrum function   𝑈𝑘(𝑥)   is the transform function.  

Using iteration equation (33) and (34), we obtain the following values of  𝑈𝑘(𝑥)  

successively. 

𝑈1(𝑥) =
−(3𝛿3)

Γ(𝛼 + 1)(𝜔 − 2𝛿𝑥)2
,  𝑈2(𝑥) =

−(3𝛿3)2(63)

Γ(2𝛼 + 1)(𝜔 − 2𝛿𝑥)
9

2⁄
, 𝑈3(𝑥)

=
−(3𝛿3)3[26964Γ2(𝛼 + 1) − 64Γ(2𝛼 + 1)]

Γ2(𝛼 + 1)Γ(3𝛼 + 1)(𝜔 − 2𝛿𝑥)7
, … 

Thus, the fractional differential inverse transform of  𝑈𝑘(𝑥)  gives,  

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘𝛼

∞

𝑘=0

= 𝑈0(𝑥) + 𝑈1(𝑥)𝑡𝛼 + 𝑈2(𝑥)𝑡2𝛼 + 𝑈3(𝑥)𝑡3𝛼 +  … 

𝑢(𝑥, 𝑡) = (𝜔 − 2𝑎𝑥)
1

2⁄ +
−(3𝛿3)𝑡𝛼

Γ(𝛼 + 1)(𝜔 − 2𝛿𝑥)2
+

−(3𝛿3)2(63)𝑡2𝛼

Γ(2𝛼 + 1)(𝜔 − 2𝛿𝑥)
9

2⁄

+                   
−(3𝛿3)3[26964Γ2(𝛼 + 1) − 64Γ(2𝛼 + 1)]𝑡3𝛼

Γ2(𝛼 + 1)Γ(3𝛼 + 1)(𝜔 − 2𝛿𝑥)7
+, … 

Specially, for   α = 1, 𝑢(𝑥, 𝑡)  becomes 

𝑢(𝑥, 𝑡) = (𝜔 − 2𝛿𝑥)
1

2⁄ −
3𝛿3𝑡

1!
(

1

(𝜔 − 2𝛿𝑥)2
) −

(3𝛿3)2𝑡2

2!
(

63

(𝜔 − 2𝛿𝑥)
9

2⁄
)

−
(3𝛿3)3𝑡3

3!
(

26836

(𝜔 − 2𝛿𝑥)7
) −, … 

Example 3.5.3 Consider example 4.3.2 above, if the constant𝜔 = 1and   𝛿 = 1
2⁄  

    
𝜕𝛼𝑢

𝜕𝑡𝛼 = 𝑢
𝜕3𝑢

𝜕𝑥3 , 𝑥𝜖ℝ, 𝑡 > 0, 0 < 𝛼 ≤ 1  (35) 

then the initial condition: 𝑢(𝑥, 0) = (1 − 𝑥)
1

2⁄ ,   (36) 

Solution: We obtain the following values of  𝑈𝑘(𝑥)  successively. 
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𝑈1(𝑥) =
−3

8⁄

Γ(𝛼 + 1)(1 − 𝑥)2
,

𝑈2(𝑥) =
−(3

8⁄ )
2

(63)

Γ(2α + 1)(1 − 𝑥)
9

2⁄
,  𝑈3(𝑥)

=
−(3

8⁄ )
3

[26964Γ2(𝛼 + 1) − 64Γ(2α + 1)]

Γ2(𝛼 + 1)Γ(3α + 1)(1 − 𝑥)7
, … 

Thus, the fractional differential inverse transform of  𝑈𝑘(𝑥)  gives, 

𝑢(𝑥, 𝑡) = (1 − 𝑥)
1

2⁄ + (
−3

8⁄ 𝑡𝛼

Γ(𝛼 + 1)
) (

1

(1 − 𝑥)2
) + (

−(3
8⁄ )

2
𝑡2𝛼

Γ(2α + 1)
) (

63

(1 − 𝑥)
9

2⁄
) 

                   + (
−(3

8⁄ )
3

𝑡3𝛼

Γ(3α + 1)
) (

26964Γ2(𝛼 + 1) − 64Γ(2α + 1)

Γ2(𝛼 + 1)(1 − 𝑥)7
) + ⋯ 

Specially for α = 1, 𝑢(𝑥, 𝑡)  be comes; 

𝑢(𝑥, 𝑡) = (1 − 𝑥)
1

2⁄ + (
−3

8⁄

1!
𝑡) (

1

(1 − 𝑥)2
) + (

−(3
8⁄ )

2
𝑡2

2!
) (

63

(1 − 𝑥)
9

2⁄
)

+ (
−(3

8⁄ )
3

𝑡3

3!
) (

26836

(1 − 𝑥)7
) +. .. 

Example 3.5.4  Consider the one dimensional time-fractional Airy’s equation of 𝛽 = −1. 

   
𝜕𝛼𝑢

𝜕𝑡𝛼 = −
𝜕3𝑢

𝜕𝑥3 , 𝑥𝜖ℝ, 𝑡 > 0, 0 < 𝛼 ≤ 1  (37) 

subjected to initial condition:  𝑢(𝑥, 0) = 4 − 𝑒−𝑥   (38) 

Solution:  

 Appling the RDTM to both side of equation (37), we obtain  

𝑈𝑘+1(𝑥) = −
Γ(𝑘𝛼+1)

Γ(𝑘𝛼+𝛼+1)
[(

𝜕3(𝑘+1)

𝜕𝑥3(𝑘+1)
𝑈𝑘(𝑥))]  (39) 

and using the RDTM to the initial conditions (38), we obtain  

𝑢(𝑥, 0) = 𝑈0(𝑥) = 4 − 𝑒−𝑥   (40) 

Where, the t-dimensional spectrum function   𝑈𝑘(𝑥)  is the transform function.  

Using iteration equation (39) and (40), we obtain the following values of 𝑈𝑘(𝑥)   

successively. 

𝑈1(𝑥) =
−𝑒−𝑥

Γ(𝛼 + 1)
, 𝑈2(𝑥) =

−𝑒−𝑥

Γ(2𝛼 + 1)
, 𝑈3(𝑥) =

−𝑒−𝑥

Γ(3𝛼 + 1)
, …  

Thus, the fractional differential inverse transform of  𝑈𝑘(𝑥)  gives,   

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘𝛼

∞

𝑘=0

= 𝑢0(𝑥) + 𝑢1(𝑥)𝑡𝛼 + 𝑈2(𝑥)𝑡2𝛼 + 𝑢3(𝑥)𝑡3𝛼 +  … 

𝑢(𝑥, 𝑡) = 4 − 𝑒−𝑥 −
𝑒−𝑥

Γ(𝛼 + 1)
𝑡𝛼 −

𝑒−𝑥

Γ(2𝛼 + 1)
𝑡2𝛼 −

𝑒−𝑥

Γ(3𝛼 + 1)
𝑡3𝛼 −  … 

Specially for𝛼 = 1, 𝑢(𝑥, 𝑡)  be comes 
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𝑢(𝑥, 𝑡) = 4 − 𝑒−𝑥 [1 +
𝑡

1!
+

𝑡2

2!
+

𝑡3

3!
+  … ] 

Example 3.5.5 Consider time-fractional Airy’s type equation 

    
𝜕𝛼𝑢

𝜕𝑡𝛼 = 𝑢(𝑥, 𝑡)
𝜕3𝑢

𝜕𝑥3 , 𝑥𝜖ℝ, 𝑡 > 0, 0 < 𝛼 ≤ 1   (41) 

Subjected to initial condition:  𝑢(𝑥, 0) = 𝑒
−𝑥

3⁄   (42) 

Solution:  

Appling RDTM on both side of equation (41), we obtain the iterative relation. 

𝑈𝑘+1(𝑥) =
Γ(kα+1)

Γ(kα+α+1)
[∑ 𝑈𝓇

𝑘
𝓇=0 (𝑥)

𝜕3

𝜕𝑥3 𝑈𝑘−𝓇(𝑥)]  (43) 

and using RDTM on initial condition (42), we obtain 

𝑢(𝑥, 𝑡) = 𝑈0(𝑥) = 𝑒
−𝑥

3⁄   (44) 

where, the t-dimensional spectrum function  𝑈𝑘(𝑥)  is the transform function. 

Using iteration equation (43) and (44), we obtain the following values of  𝑈𝑘(𝑥)  successively 

𝑈1(𝑥) = −
𝑒

−2𝑥
3⁄

27Γ(𝛼 + 1)
, 𝑈2(𝑥) =

𝑒−𝑥

81Γ(2𝛼 + 1)
, 𝑈3(𝑥)

=
−𝑒

−4𝑥
3⁄

19683

[252Γ2(𝛼 + 1) + 8Γ(2𝛼 + 1)]

Γ2(𝛼 + 1)Γ(3𝛼 + 1)
, … 

Thus, the inverse transform of  𝑈𝑘(𝑥)  gives   

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑘(𝑥)𝑡𝑘𝛼

∞

𝑘=0

= 𝑢0(𝑥) + 𝑢1(𝑥)𝑡𝛼 + 𝑈2(𝑥)𝑡2𝛼 + 𝑢3(𝑥)𝑡3𝛼 +  … 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥) + 𝑢1(𝑥)𝑡𝛼 + 𝑈2(𝑥)𝑡2𝛼 + 𝑢3(𝑥)𝑡3𝛼 +  … 

𝑢(𝑥, 𝑡) =
1

𝑒
𝑥

3⁄
−

1
27⁄ 𝑡𝛼

Γ(𝛼 + 1)𝑒
2𝑥

3⁄
+

1
81⁄ 𝑡2𝛼

Γ(2α + 1)𝑒𝑥

−
1

19683⁄ 𝑡3𝛼[252Γ2(𝛼 + 1) + 8Γ(2𝛼 + 1)]

Γ2(𝛼 + 1)Γ(3𝛼 + 1)𝑒
4𝑥

3⁄
+ ⋯ 

Specially, for α = 1 

𝑢(𝑥, 𝑡) =
1

𝑒
𝑥

3⁄
−

1
27⁄ 𝑡

1! 𝑒
2𝑥

3⁄
+

1
81⁄ 𝑡2

2! 𝑒𝑥
−

1
19683⁄ 𝑡3[268]

3! 𝑒
4𝑥

3⁄
+ ⋯ 

The 3D plot of solution of example 3.5.5 in the domain𝑥𝜖ℝfor𝑈𝑘, 𝑘 = 0, 1, 2, 3when 

𝛼 = 0.25, 𝛼 = 0.5, 𝛼 = 75, and  𝛼 = 1are shown in fig.2. 

  

For 𝛼 = 0.25 For 𝛼 = 0.5 
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For 𝛼 = 0.75 For 𝛼 = 1 

Fig. 2: 3D plot of the solution of one dimensional time fractional Ariy’s type equation 

(Example 3.5.5) 

4. CONCLUSION 

In this study we have carried out the reduced differential transform method to find the 

solution of one dimensional time fractional Airy’s and Airy’s type partial differential equation 

based on the basic Caputo’s definition of fractional derivatives. A Theorem is constructed, 

and its reliability is justified by constructing and presenting sufficient examples.  The results 

show that the RDTM technique is highly accurate, elegant and easy to implement. 

The techniques used in this work can also be applied to solve linear and non-linear time 

fractional partial differential equation and multi-dimensional physical problems emerging in 

various fields of engineering and applied sciences. 

 

 

  

 

 

 

 

 

 

 Appendix 
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In the Appendix we present the proof of generalized Taylor’s formula that involves Caputo 

fractional derivatives. This generalization is presented in Odibat Z. M and Shawagteh N. 

T.(2007). We begin by introducing the generalized mean value theorem. 

Theorem A.1 (Generalized Mean Value Theorem) Suppose that 𝑓(𝑥)𝜖[𝑎, 𝑏] and 

𝐷𝑎
𝛼𝑓(𝑥)𝜖(𝑎, 𝑏] , for   0 < 𝛼 ≤ 1, then we have in Caputo, M. (1967) 

𝑓(𝑥) = 𝑓(𝑎) +
1

Γ(𝛼)
(𝐷𝑎

𝛼𝑓)(𝜏)(𝑥 − 𝑎)𝛼  (1) 

With  𝑎 < 𝜏 ≤ 𝑥, ∀𝑥𝜖(𝑎, 𝑏]  and  𝐷𝛼  is the Caputo fractional derivative of order   𝛼 > 0.  

In case of α=1, the generalized mean value theorem reduces to the classical mean value 

theorem. Before we present the generalized Taylor's formula in the Caputo sense, we need the 

following relation: 

Theorem A.2 Suppose that  (𝐷𝑎
𝛼)𝑛𝑓(𝑥). (𝐷𝑎

𝛼 )𝑛+1𝑓(𝑥)𝜖𝐶(𝑎, 𝑏] 𝑓𝑜𝑟 0 < 𝛼 ≤ 1   then as in 

Caputo, M. (1967) 

we have. 

(𝐽𝑎
𝑛𝛼(𝐷𝑎

𝛼 )𝑛𝑓)(𝑥) − (𝐽𝑎
(𝑛+1)𝛼

(𝐷𝑎  
𝛼 )𝑛+1𝑓)(𝑥) =

(𝑥−𝑎)𝑛𝛼

Γ(𝑛𝛼+1)
((𝐷𝑎

𝛼 )𝑛 𝑓)(𝑎) (2)  

where(𝐷𝑎
𝛼)𝑛 = 𝐷𝑎

𝛼. 𝐷𝑎
𝛼 … 𝐷𝑎

𝛼(n-times). 

Proof: Using (8) of section 3.2 we have, 

(𝐽𝑎
𝑛𝛼(𝐷𝑎

𝛼)𝑛𝑓)(𝑥) − (𝐽𝑎
(𝑛+1)𝛼(𝐷𝑎

𝛼)𝑛+1𝑓)(𝑥) = 𝐽𝑎
𝑛𝛼(((𝐷𝑎

𝛼)𝑛𝑓)(𝑥) − (𝐽𝑎
𝛼(𝐷𝑎

𝛼)𝑛+1𝑓)(𝑥)) 

 = 𝐽𝑎
𝑛𝛼(((𝐷𝑎

𝛼)𝑛𝑓)(𝑥) − (𝐽𝑎
𝛼𝐷𝑎

𝛼(𝐷𝑎
𝛼)𝑛𝑓)(𝑥)) = 𝐽𝑎

𝑛𝛼(((𝐷𝑎
𝛼)𝑛𝑓)(𝑥) − (𝐽𝑎

𝛼𝐷𝑎
𝛼)((𝐷𝑎

𝛼)𝑛𝑓)(𝑥)) 

 = 𝐽𝑎
𝑛𝛼(((𝐷𝑎

𝛼)𝑛𝑓)(𝑎)), 𝑢𝑠𝑖𝑛𝑔          (10) 

=
(𝑥−𝑎)

(𝑛𝛼+1)
(((𝐷𝑎

𝛼)𝑛𝑓)(𝑎)), 𝑢𝑠𝑖𝑛𝑔 (9) 

Hence, 

(𝐽𝑎
𝑛𝛼(𝐷𝑎

𝛼)𝑛𝑓)(𝑥) − (𝐽𝑎
(𝑛+1)𝛼(𝐷𝑎

𝛼)𝑛+1𝑓)(𝑥) =
(𝑥 − 𝑎)

(𝑛𝛼 + 1)
(((𝐷𝑎

𝛼)𝑛𝑓)(𝑎)) 

Theorem A.3 (Generalized Taylor Formula) Suppose that 

𝐷𝑘𝛼 𝑓(𝑥)𝜖𝐶(𝑎, 𝑏] 𝑓𝑜𝑟 𝑘 = 0,1,2, … … … … … . . 𝑛 + 1 𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 ≤ 1. Then as in Odibat Z. 

M and Shawagteh N. T. (2007) we have; 

𝑓(𝑥) = ∑
(𝑥 − 𝑎)

Γ(𝑖𝛼 + 1)

𝑖𝛼𝑛

𝑖=0

[𝐷𝑎
𝑘𝛼𝑓(𝑎)] +

𝐷𝑎
(𝑛+1)𝛼𝑓(𝜏)

Γ((𝑛 + 1)𝛼 + 1)
(𝑥 − 𝑎)(𝑛+1)𝛼 

𝑎 ≤ 𝜏 ≤ 𝑥, ∀𝑥𝜖(𝑎, 𝑏] 𝑤ℎ𝑒𝑟𝑒 𝐷𝑘𝛼 = 𝐷𝑎.  
𝛼 𝐷𝑎

𝛼 … 𝐷𝑎
𝛼(𝑘 − 𝑡𝑖𝑚𝑒𝑠)  (3) 

Proof: From (12), we have  

∑ (𝐽𝑎
𝑖𝛼   𝑛

𝑖=0 ((𝐷𝑎
𝛼)𝑖𝑓)(𝑥) − 𝐽𝑎

(𝑖+1)𝛼((𝐷𝑎
𝛼)𝑖+1𝑓)(𝑥) = ∑

(𝑥−𝑎)𝑖𝛼

Γ(iα+1)
𝑛
𝑖=1 ((𝐷𝑎

𝛼)𝑖𝑓)(𝑎)  (4) 

 That is; 

         𝑓(𝑥) − (𝐽𝑎
(𝑛+1)𝛼((𝐷𝑎

𝛼)𝑛+1)𝑓)(𝑥) = ∑
(𝑥−𝑎)𝑖𝛼

Γ(𝑖𝛼+1)
𝑛
𝑖=0 ((𝐷𝑎

𝛼)𝑖𝑓)(𝑎)   (5) 

Applying integral mean value theorem yields 
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 (𝐽𝑎
(𝑛+1)𝛼(𝐷𝑎

𝛼)𝑛+1𝑓)(𝑥) =
1

Γ((𝑛 + 1)𝛼 + 1)
∫ (𝑥 − 𝑡)(𝑛+1)𝛼

𝑥

𝑎

((𝐷𝑎
𝛼)𝑛+1𝑓)(𝑡)𝑑𝑡  

                                              =
((𝐷𝑎

𝛼)𝑛+1𝑓)(𝜏)

((𝑛+1)𝛼+1)
(𝑥 − 𝑎)(𝑛+1)𝛼(6) 

From (5) and (6), the generalized Taylor’s formula is obtained. 

                That is, 

         𝑓(𝑥) = (𝐽𝑎
(𝑛+1)𝛼((𝐷𝑎

𝛼)𝑛+1)𝑓)(𝑥) + ∑
(𝑥 − 𝑎)𝑖𝛼

Γ(𝑖𝛼 + 1)

𝑛

𝑖=0

((𝐷𝑎
𝛼)𝑖𝑓)(𝑎) 

In case of 𝛼 = 1, the Caputo generalized Taylor's formula (3) reduces to the classical Taylor's 

formula.  

                   𝑓(𝑥) = ∑
(𝑥 − 𝑎)𝑖

𝑖!

𝑛

𝑖=𝑖

𝑓(𝑖)(𝑎) +
𝑓(𝑛+1)(𝜏)

(𝑛 + 1)!
(𝑥 − 𝑎)𝑛+1 

The radius of convergence, R for the generalized Taylor series 

∑
(𝑥−𝑎)𝑖𝛼

Γ(𝑖𝛼+1)
∞
𝑖=1 ((𝐷𝑎

𝛼)𝑖𝑓)(𝑎)   (7) 

depends on 𝑓(𝑥) and 𝑎 and is given by:  

𝑅 = ⃓𝑥 − 𝑎⃓𝛼 lim
𝑛→∞

⃒
Γ(𝑛𝛼+1)

Γ((𝑛+1)𝛼+1)

((𝐷𝑎
𝛼)𝑛+1𝑓)(𝑎)

((𝐷𝑎
𝛼)𝑛𝑓)(𝑎)

⃒                   (8) 

Theorem A.4  Odibat Z. M and Shawagteh N. T. (2007) Suppose 

  ((𝐷𝑎
𝛼)𝑘𝑓)(𝑥)𝜖𝐶(𝑎, 𝑏], 𝑓𝑜𝑟 𝑘 = 0,1,2,3, … … , 𝑛 + 1 𝑤ℎ𝑒𝑟𝑒  

0 < 𝛼 ≤ 1  If  𝑥𝜖[𝑎, 𝑏]  then 

                        𝑓(𝑥) ≅ 𝑃𝑁
𝛼(𝑥) = ∑

((𝐷𝑎
𝛼)𝑖𝛼𝑓)(𝑎)

Γ(𝑖𝛼+1)
𝑁
𝑖=1 (𝑥 − 𝑎)𝑖𝛼  (9) 

In addition, there is a value 𝜏 with    𝑎 ≤ 𝜏 ≤ 𝑥 , So that the error term  

𝑅𝑁
𝛼(𝑥) =

((𝐷𝑎
𝛼)𝑁+1𝑓)(𝜏)

Γ((𝑁+1)𝛼+1)
(𝑥 − 𝑎)(𝑁+1)𝛼   (10) 

The accuracy of  𝑃𝑁
𝛼(𝑥) increases when we choose large N and it decreases as the value of 𝑥 

moves away from 𝑎. Hence we must choose N large enough so that the error does not exceed 

a specified abound. In the following theorem, we find precise condition under which the 

exponents hold for arbitrary fractional operators. This result is very useful on our approach for 

solving differential equations of fractional order.  

Theorem A.5 Suppose that 𝑓(𝑥) = 𝑥𝜆𝑔(𝑥)𝑤ℎ𝑒𝑟𝑒 𝜆 > −1 𝑎𝑛𝑑 𝑔(𝑥)  has the generalized 

Taylor’s series 𝑔(𝑥) = ∑ 𝑎𝑛
∞
𝑛=0 (𝑥 − 𝑎)𝑛𝛼  with radius of convergence, R>0, 0<α≤1. Then as 

in Odibat Z. M and Shawagteh N. T. (2007) 

𝐷𝑎
𝛾

𝐷𝑎
𝛽

𝑓(𝑥) = 𝐷𝑎
𝛾+𝛽

𝑓(𝑥) 𝑓𝑜𝑟 𝑥𝜖(0, 𝑅)   (11) 

if 

i. 𝛽 < 𝜆 + 1 𝑎𝑛𝑑 𝛼 is arbitrary or 

ii. 𝛽 > 𝜆 + 1 𝑎𝑛𝑑 𝛾 , is arbitrary and    𝑎𝑘 for k = 0, 1, 2, 3 …  𝑚 − 1 < 𝛽 ≤ 𝑚. 

Proof: In case for  𝛽 < 𝜆 + 1 , the definition of Caputo fractional differential operator (3) and 

(10) of section 4.1.2, we have 

𝐷𝑎
𝛽

𝑓(𝑥) = ∑ 𝑎𝑛𝐷𝑎
𝛽(𝑥 − 𝑥0)𝑛𝛼+𝜆∞

𝑛=0 = ∑ 𝑎𝑛
Γ(𝑛𝛼+𝜆+1)

Γ(𝑛𝛼+𝜆−𝛽+1)
(𝑥 − 𝑎)(𝑛𝛼+𝜆−𝛽)∞

𝑛=0     (12) 

, since  𝜆 − 𝛽 > −1   and 
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𝐷𝑎
𝛾

𝐷𝑎
𝛽

𝑓(𝑥) = ∑ 𝑎𝑛

∞

𝑛=0

Γ(𝑛𝛼 + 𝜆 + 1)

Γ(𝑛𝛼 + 𝜆 − 𝛽 + 1)
𝐷𝑎

𝛾(𝑥 − 𝑎)(𝑛𝛼+𝜆−𝛽)

= ∑ 𝑎𝑛

Γ(𝑛𝛼 + 𝜆 + 1)

Γ(𝑛𝛼 + 𝜆 − 𝛽 + 1)

Γ(𝑛𝛼 + 𝜆 − 𝛽 + 1)

Γ(𝑛𝛼 + 𝜆 − 𝛽 − 𝛾 + 1)
𝐷𝑎

𝛾(𝑥 − 𝑎)(𝑛𝛼+𝜆−𝛽−𝛾)

∞

𝑛=0

 

= ∑ 𝑎𝑛

Γ(𝑛𝛼 + 𝜆 + 1)

Γ(𝑛𝛼 + 𝜆 − 𝛽 − 𝛾 + 1)
𝐷𝑎

𝛾(𝑥 − 𝑎)(𝑛𝛼+𝜆−𝛽−𝛾)

∞

𝑛=0

 

which is precisely 𝐷𝑎
𝛽+𝛾

𝑓(𝑥)  for the anther case (ii)  𝛽 > 𝜆 + 1 , in a similar way we can 

prove. 
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