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ABSTRACT

In this article, we proposed a new distribution known as the Exponentiated Inverse Power Pranav distribution for
modeling lifetime data sets with monotone and non-monotone shapes in their hazard rates. Along with some of
the basic properties, we however, studied the maximum likelihood estimation of the parameters of the proposed
distribution. The model was subjected to life application with a dataset and compared to other sub-models. The
new distribution was found to have a best fit more than the competing sub-models.

Keywords: Pranav distribution, Inverse Power Pranav distribution, Exponentiated distributions, Maximum
Likelihood estimation, Exponentiated Inverse Power Pranav distribution

1 Introduction

In statistics, specifically survival analysis, many parametric models have been developed for modeling survival
data. Notable among these models are the famous and widely employed Exponential, Weibull, Lindley and
Gamma distributions. These models have their area of applications ranging from biological sciences,
engineering, insurance, finance, epidemiology, demography amongst others. The inevitable and inherent
instability and failure of systems and the need to measure the expected duration of time until events occur as well
as system reliability gave birth to formulation of models. Data from these fields are regarded as lifetime data and
can take bathtub or upside down bathtub shapes for their hazard rates. Since events naturally can have monotone
or non-monotone shape, it is pertinent to formulate a flexible model that can assist to describe and predict such
events. Numerous literatures exist on this, but none has been able to get exactly a model flexible enough to
characterize the behavior of these events, specifically, events with non-monotone behavior in hazard rates. Few
among the numerous literatures are the articles recently written by Dimitrakopoulou et al (2007), Vikas et al
(2014), Vikas et al (2015), Eliwa et al (2018), Rameesa et al (2018), Amal et al (2019), Onyekwere et al (2020),
Enogwe et al (2020) amongst others. Shukla (2018) followed the arguments of some literatures as stated in
Lindley (1958), Shanker (2015) and Ghitany et al (2008), hence claim that he could develop a new life time
distribution which may be better than Lindley, Exponential, Ishita, Shanker, Sujatha and Akash distribution. To
buttress his claim, he proposed a new lifetime distribution known as Pranav distribution that can be apply to
biological data.

The random variable Y is said to have Pranav distribution (PD) with scale and shape parameter (a,4) if its
probability density function (pdf) and cumulative density function (cdf) are defined by

4

a -ay.
f(y,a):a4+6(a+y3)e oy >0,a>0 (1)
2y +3ay+6
F(y,a):l— 1+ay(a y4 6ay ) e, y>0,a>0 2)
a’+

As stated earlier, in practical situation, classical distributions do not always offer sufficient fits to lifetime
datasets, thus giving rise to the need for more supple models. One of the limitations of Pranav distribution is its
inability to model effectively datasets that have monotone or non-monotone shape in their hazard rate. In order to


http://www.iiste.org/
mailto:chrisogonusjohnson@gmail.com

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) ol
Vol.11, No.2, 2021 I E

take care of this problem, the foremost goal of the author in this article is to propose a new distribution flexible
enough to model adequately datasets with such characteristics. Authors have written several articles on Pranav
distribution. See Uwaeme et al (2018), Umeh et al (2019), Odom et al (2019), Wani et al (2020) and so on.
These extensions of Pranav distribution were developed to model specific situations thus may not fit well a
dataset that has bathtub curve or upside down bathtub curve.

The rest of the paper is organized as follows: section 2 introduces the Inverse Power Pranav distribution, section
3 introduce also the Exponentiated Inverse Power Pranav distribution, section 4 presents the mathematical and
statistical characteristics of Exponentiated Inverse Power pranav distribution, section 5 presents the maximum
likelihood estimation, section 6 contains the applications to datasets and in section 7, we conclude the article.

2 Inverse Power Pranav distributions
Definition 2.1: A random variable X is said to have an Inverse Power Pranav distribution if the p.d.f. and c.d.f.
are respectively given as
Pa ) 38\ - (5+1) y—ax?
f,P(x,a,ﬂ):4—(a+x )x e :x>0,a,>0 3)
a” +6
ax™” (azx_zﬁ +3ax” +6)

a’+6

Fe (X a f)=11+ e ;x>0,a, >0 (@)

Proof: Given the random variable Y from a one parameter Pranav distribution defined in (1). Assume that
_1
another random variable X is related to Y by an inverse power function X =g (Y) =Y 7. Suppose the observed

value of X is denoted by x = y_% ,then x# =y then y=x* and g_y =—pf x ) Putting y = x“ into
X

(1) we obtain

4

f(g’l(x))z 4a+6(a+x’3ﬂ)e’“xfﬂ;x>O,a,,b’>0 (5)
o

As specified in Hogg et al. (2019), the probability density function of a continuous random variable X could be
obtained using the relation

f(x)=f (g’l(x))

dy
dx

(6)
Thus, the probability density function f (X) of the Inverse Power Pranav distribution can be obtained by

substituting (5) and (j_y =—fX (F+1) into (6). Thus, we obtain
X

4

f ﬂOC4 =38\ ~(B+) g-ax’ .
(x,e, )= +6(cx+x )x e x> 0,a,8>0
(04

Similarly, the cumulative density function (cdf) of the inverse power Pranav distribution (IPP) is derived as
follows

F(xaf)=P[X <x]= [ f (xa.A)ix 0
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_ pa j(a+ x ) N %
a'+6 5
X
6 j (p)grax dx+jx (4h+)g-ex” gy
0( +
0 (8)
By transformation technique, we let y =x# . When x =0,y =cand when x=x,y=x"*
Applying this in (8), we obtain
F(x,a,ﬂ): j e Vdy + J yle “Ydy 9)
o
Using the integration by parts method, (9) can be written as
4 3f —ax” 2B 4—ax P —Ba—ax’ —ax?
—ax? X Te 3X"e 6Xx e 6e
F(xa pB)= e+ + —+ — (10)
a'+6 a a a a

Consequently, the cumulative distribution function of the inverse power Pranav distribution is

ax”? (azx’zﬂ +3ax”’ +6)

—ax?
F(xa p)= - e ;x>0,a,>0
a +6
o o
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Fig la:pdf plot of IPP

Fig 1b:cdf plot of EIPP
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Figures 1a and1b show the plot of the pdf and cdf of the Inverse power Pranav distribution for varying values of
the parameters « and §.

3 Exponentiated Inverse Power Pranav Distribution

Definition 3.1: Let X be a ranom variable with pdf and cdf defined in (3) and (4) above, then, the cdf and pdf of
the Exponentiated Inverse Power Pranav distribution are respectively given by

A
ax™”’ (azxfzﬂ +3ax”’ +6) L
G,(x,4)=1|1+ R e ™"t ;x>0,a,,4>0 (11)
Apa ax™”’ (azx‘zﬂ +3ax”’ +6) . - .
gp(x,/‘t):ﬂ(a+x‘3ﬂ)x’(ﬁ”) 1+ e g e x,a,8,4>0012)
at+ at+

Proof: A random variable X is said to follow an Exponentiated distribution if the cumulative density function
cdf and probability density function pdf are given by

G, (x,2)=[F(x24)] ;0 e® 220 (13)

A-1
9,(xA)=A[F(x,4)]" f(x.4), 7 eR 120 (14)
Consequently, the cdf and the pdf of the new Exponentiated Inverse Power Pranav distribution (EIPP) are
obtained using equations (13) and (14) above. Thus

p2

ax” (azxfzﬂ +3ax” +6) L
e ;x>0,a,8,4>0

a*+6

G,(x,4)=1|1+

A-1
ax™”’ (azxfzﬂ +3ax”’ +6) y y
e e xa,B,4>0

4

4
g,(x,4)= —iﬂfG (a+x*)x "4 1+

a’+6

Figures 2a, 2b, 2c and 2d show the plot of the pdf and cdf of the Exponentiated Inverse power Pranav
distribution for varying values of the parameters «, fand 4 .
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4 Mathematical and Statistical Characteristics of Exponentiated Inverse Power Pranav distribution
4.1 Moments

Definition 4.1: Suppose X is a random variable which has the cdf and pdf defined in equations (11) and (12)
above, then the rth moment about the origin, E(X r) is given by

) F(3i—j—k—r/ﬂ+l) F(3i—j—k—r/ﬁ+4)
E(X")=6x 3iz j—k—r/p+1 ik 3imjKk—r/f+4
( ) i, ((Z(i-l'l))( i—k-r/p+1) Ty ((Z(i+1))( /B+4)

(15)

Where

C0 4 o () ol e 22

i J (a4 +6)i+l
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Proof: The rth moment of a random variable X is given by

(a4 +

o0

Ix’gp(x,a,e,i)dx

0

E(X)

o0

&Ik

0

ax? (azx_zﬂ +3ax7” +6)

a’+6

A-1
Y
]e ax dx

A-1
ax”’ (a®x* +3ax” + G)J wr |
e X

a'+6

( ~(p41) | (4ﬁ+1))e—ax’ﬁ [1 n

a’Ap ax™”? (azx"zﬁ +3ax7” +6)

.[X—,B+r—le—ax’/3 [1+

4
a +61

a’+6

5/1,3

a+6

J' —4ﬂ+r—1e—ax’ﬁ [1+

By employing the series expansions

2
(17) becomes

=R
(R

If welet y= x7. By transformation techniques, we obtain the following

1+z

3i-j-k+5njnk x
APa 732 r+ B+ pk—p-3ip-1
i+1 X €

(a +6) 0

a(l+|)

E(X)

(Ot4 +6)I+1 0

o A-1\d i i J ﬂasi_j_k+53j2k ° 3i—j—k—r/p y—a(1+i)y
. - - VN e d
ZI—O( i jjz_;( ijz_;(kj (a4 +6)|+1 ) y y
E(Xr)Z (A= (i j /10(3' i k+43]2k°° s ik //33 (14i)y
e - - i—j—k—r/p+3—a(l+i) d
R y
Recall that
jx e ¥dx = F(n:l)
a"

3i-j-k+4 k «
APa 312 r+jf+pk—4p-3if-1,-a(l+i)x’

]eaxﬁ

dx

dx

(16)

(17)

(18)

(19)


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) i iy
Vol.11, No.2, 2021 I E

thus, we have
o (A-1\GK(1)d AP 170312 T'(3i— j—k—r/B+1)
Zi_o( i jj (J]Z[j (0{ +6) (a(i_i_l))(ai—j—kfr/ml)
Jg Sinikedgioh T(3i— j—k—r/f+4)
(a +6) (a(i+1))(3i_j_k_r/ﬂ+4)

E(X")=

e (A D (i (1) aaT e3¢
Let & _Zi_o( i ]Zj_o[ijk_o(kJW

" ﬂ_l i i i j ia3i—j—k+43j2k
and ¥ ; :Zi—o( i JZj—o[ ']Zk—o(k]—'

i+1
J (a4 + 6)
Consequently, the rth moment of Exponentiated Inverse Power Pranav distribution becomes

: L(3i—j—k-r/B+1) L(3i-j—k-r/B+4)
E(X7)=5i 3i—j—k-r/f+1 iik ] 3i_jk_r/pid
(X)=4. (a(i+2)" " i (a(i+)* "

4.2 Moment generating function of EIPP distribution

Definition 4.2: Given a random variable X, such that X ~ EIPPD(a,ﬂ,/i), the moment generating function
is given by

o t L(3i-j—k-r/B+1) L(3i-j—k-r/B+4)
Mx (t) - Zmﬁ{é ik (a(i +l))(3ifj*k—r/ﬂ+l) TViik (a(i +1))(3i—j—k—r/ﬂ+4) (20)
Proof: The moment generating function of a random variable X , is given by
Mx(t):E(e‘x):fetxfp(x,a,ﬂ,ﬂ)dx 1)

0

Using Taylor’s series, we obtain the following

2

Mx(t)_I(1+tx+%+m} f,(x,a,pB,2)dx

Where E(X : ) = E(X ') . Thus, the mgf of EIPP distribution becomes

7
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M, (1) =" tl{ iyj'kF(Bi—j—k—r/ﬁ+1) F(Bi—j—k—r/ﬁ+4)}

I al T afieT

4.3 Distribution of order statistics

Definition 4.3: Suppose X, X,,--- X, are a random sample of size n drawn from exponentiated inverse power
Pranav distribution. Also, if we let Xa) <X2) < <Xn) denote, the corresponding order statistics. The pdf and

the cdf of the pth order statistics, say Y = X(p) are given by

. T i S
X X)_ (] o (K giirkagiol N (22)
XZk_O[ij'_O(JWX
U el Al U0 ot ol B
Fy (X) = sz [mj oM g NTn— (23)
N\ (054+6)I

Proof: The probability density function (pdf) of the kth order statistic are given by

o ()= o m gyl PO TR T 10

p-1)i(n—p

S CELce 2 e ST 2

(p—1)!(n—p)! i

ABanl(a+x ¥ )xV Hgrax”

= (25)

A(p+i)-1
ax”’ (azxfzﬂ +3ax”’ +6) y
x| 1+ e

a’+6

Using series expansion,

A(p+i)-1
{[ ax™?’ (azx’zﬂ +3ax” +6)} ,f} i
1+ g~

a+6
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ZJ 0( : Zk:o k ZI:O | (0[4 +6)j X e (26)

Substituting (26) into (25), we obtain the pdf of the pth order statistics for EIPP distribution. Thus,

AN !(ocj:rl x—3ﬁ)efa(1+j)x*ﬁ Zin_op[n - pj(—l)i Z:’O—O[l( p+ i) —1]

(a*+6)  (p-1)!(n—p)! ' j

(i o (K glittagrol
leizo(kalzo(ljmx B(3j-k-1)

Similarly, the cdf of the pth order statistics is given by

fx (X):

Fo, (0=, 0l 1 ()" -
J

0 (NN K ax’(a*x? +3ax’ +6)| A
- j=p('j2k=0( k j(_]‘) 1+ 2 e—ax

] o’ +6

=Z?p(r}j2fé[n; jj(—l)k F™(x) (28)

(29)
Where

l(j+k)

ax™”’ (azx‘zﬁ +3ax” +6) >

1+ Z e
a’ +6

| m 3l-m-r qmor ~ o -
=2 [ o ]Zm ( )Zf_oma S A @)

m 7 (a4+6)

Putting equation (30) into (29), we obtain the cdf of the EIPP distribution. Thus,

i o6 Ll S RG] VI
B0 gy
51 P,

o (a4 +6)I

T
4.4 Quantile function of EIPP distribution

Definition 4.4: Let X be a random variable with cdf defined in (11). Then, the pth quantile function of the
random variable X, denoted by x, =Q(p)= F~1(p), can be obtained by inverting (11). Thus,
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A
ax’ (azxfzﬁ +3ax”’ +6) o
Q(p)=1|1+ 7 e
a” +6
Q(/J;y) ax? (azx’zﬂ +3ax7”? +6)
— =1+ Z
p X a’ +6
i ax? (a?x? +3ax”? +6
Q(yg)e‘ZX " =14 ( . )
a +6
o1 ax”’ (azx‘zﬁ +3ax” +6)
e’ = 7 + 7
Q) Q(p)(“ +6)
1 ax’” (azx‘zﬁ +3ax” +6)
ax? =In 5+ yara
Q) Q) (a* +6)
1 1 ax”’ (azxfzﬂ +3ax”” +6) K
Xx=4—In 7t 7
a Q) Q" +6)

(31)

(32)

The quantile function derived in (32) is beneficial for generating random numbers from the EIPP distribution.

4.5 Renyi entropy of EIPP distribution

Entropy is used to measure the unpredictability of systems and it is extensively employed in fields like physics,
molecular imaging of tumours, sparse kernel density estimation, high-resolution scalar quantization, estimation
of the number of components of a multi-component non-stationary signal , identification of cardiac autonomic
neuropathy in diabetes and signal segmentation in time-frequency plane . A large value of entropy implies that
there is greater uncertainty in the data. The Rényi, Shannon and Tsallis entropy, among others, are some

different forms of entropy.

Definition 4.5: Given that X is a random that follows Exponentiated Inverse Power Pranav distribution defined

in (12), the Rényi entropy is given by

. 1
U 3j+dnp—k-1+71-~
1 (‘ s j

B

R, (77) =——log ¢|,j,k,l 3jrdn—k—l+1 -1
1-7 (05(77+ J))( 55
Where
B w (7 - 77(2 _1) i _l K k ﬂnﬂq_la4n+3j_k_l 3k 2I
¢hjvk,| _Zi_o[iij_o( j jZk_O(kJZI_O(|j (a4+6)”+j

Proof: The Rényi entropy is defined for a continuous random variable X as

10

(33)
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R, (7)=1—log [ 7 (x)dx},n>0andn =0 (34)
— 77 "

n

dx

A-1
2 4 ax’ (a’x* +3ax”’ +6 . §

=—log I *ha (a+x*)x D1+ ( . ) e’ L e’
5 6 o +6

n(A-1)

"Ba* % ax?(a’x?’ +3ax’ +6 ) )

_ 1 |Og A ﬂ (04 I(Q+X_3ﬂ )’7X777(,6+1) 1+ ( - ) o ox B o ﬂdX
1-n (a4+6)no a +6

RN A%
Al - I a’ (l+ ax? )ﬂx"’(” )
1 (0{4 + 6) 0
=——log n(A-1) (35)
1-n ax”’ (a’x* +3ax’ +6)) .,
x<| 1+ 7 e e " dx
a +6
Using series expansion as indicated in section of this article, (35) becomes
Zoo n Zw 77(1_1) ZJ J Zk k ﬂ,nﬂﬂamﬁ“_k_l 3k2I
i=0| j j=0 ; k=0{ k 1=0{ | 4 n+]
1 J (a +6)
Re(ﬂ)=1—|09 (36)
-n

0
x J‘ X+ A=3-anp-ng-a(n+ i)’ gy
0

Letting y = x# and applying appropriate transformations, equation (37) becomes

Z O e e

J (a4 +6)”+j

o0
3j+an—k-1+Z-1-1 _ i
XJ'y J+4n 7 e a(77+J)ydy
0

Recall that

I'(n+1)

n+1
a

jx”e‘axdx =
0

Consequently, we obtain the Rényi entropy of EIPP distribution as

11
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. F(3j+4n—k—l+2—;j
R =——| ,
(1) 1-7 0914 ki (a(77+ j))(3j+4r]—k—l+%—%)

37)

Where

o (Mo (1(A-D)) i [1)k (K)A7p7 g 313
ik :Zi—o[']Zj—o( . Zk:o k Z|:o | 4 7+
! J (a +6)
4.6 Reliability analysis of EIPP distribution

In this section, we present the survival function, hazard rate and odds functions of the EIPP distribution, which
are very significant in reliability analysis.

4.6.1 Survival function of EIPP distribution

Survival function S, (x) is the probability that the survival time is greater than or equal to x .It is also known as

reliability function and refers to the probability of surviving an age xor becoming older than x. We use
survival function in reliability analysis to determine the survival time of items. Let X be a continuous random
variable with CDF, F (x) , the survival function of X is

S,(x)=1-G,(x) (38)

Therefore, the survival function of EIPP distribution is

A
ax? (azxfzﬂ +3ax7” +6)

a*+6

—ax P

e (39)

Sp(x):l— 1+

4.6.2 Hazard function

Hazard function is the probability that an individual dies at time x given that the individual has lived to that time
x . It is extensively used to show the hazard of an incident for instance, death happening at certain time t.

Given a random variable X from a continuous distribution, the hazard rate h(x) is given by

g, ()

h (x)=_2P\")
ABa’ ax‘ﬁ(azx‘zﬂ +3ax”’ +6) . = L
it (a+x*)x D4 1+ o el e
h, (X) - 7 (41)
ax’ (a’x? +3ax’ +6)|

1-<11+

a+6

The graphs in figures 3a, 3b, 3c and 3d show some possible shapes of the survival function and hazard rate for
different values of «,f and A

12
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4.6.3 Odds function
The odds function of the EIPP distribution is given by
F, (%)
g (X) -
(p) S (X)
P (42)
A
(X% +3ax”+6) |
1+ X
4
a +6
43
O(p} 25 5 A ( )
(e’ +3ax"+6)|
1+ Z e
a +6
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5 Maximum Likelihood Estimators

Let X;, X,,..., X,, denote a random sample of size n from the EIPP distribution having parameters « , £ and
A . To estimate the parameters «, £ and A using the maximum likelihood method, we state the likelihood
function of the random sample from the EIPP distribution as

A-1
ax? (azx‘zﬂ +3ax7” +6) i
g’ e

—axF

=L(a, B.4|x)= ﬁ /1’480[4 (a+ x’”)x‘(ﬂ“) 1+

i a +6 a'+6

-1

B 2x2P 4 "
aXx (ax +3ax +6) e_ax_ﬂ e,aziﬂx—ﬁ

4 n
S FE R | O YR VRIS

a*+6 a*+6

Taking the natural logarithm, the likelihood function is obtained. Thus,

nln/1+nlnﬂ+4nlna—nln(a4+6)+zinzlln(a+Xisﬁ)—(ﬁ”)lnz:ﬂx

In L = [ ax—ﬂ (a2x—2ﬂ +3ax_ﬂ —|—6)
) —ax? n -B
+(/1_1)Zi:lln l+ (a4+6) e _QZMX
4n - 2na o [ 1+xY
—(4-1

o a +6+Zi:1 a+X3ﬂJ (i )
o I
da n (asxfﬁ+300(4X7'8+a5X74ﬂ+40£6X73ﬁ+12055X72ﬂ+606)(74ﬂ) n -

_ -p
XZi:l oyl 1 ax™” (azx’zﬁ +3ax” +6) -
(a* +6) | 1+ e

LN (3X '”Xj 0T xeaX K nx+(2-1)

a+X

x? Inx+12a®x 7’ Inx+ &°x** In x
+3a®x 7 Inx+6a'x 2’ Inx+36a°x " In x
+6a°X ™ In x +18a*X ¥ In x +36°x % In x
aL +3a’ X Inx-6a°x* Inx—6a°x” In X

— = =0 45
op —18a°x* In x—36a°x* In x—36ax” In x )

ax™” (azx‘zﬁ +3ax’ + 6)
(a4 + 6)

(a“ + 6)2 1+
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ax”? (azx‘z'f" +3ax”? +6)

—ax? | _
(a 0 6) e =0 (46)

oL n n
—=—+> In||1+
aﬂ“ 2’ lel

It is usually more convenient to use nonlinear optimization algorithms such as quasi-Newton algorithm to
numerically maximize the log-likelihood function. The R package provides nonlinear optimization for solving
such problems.

6 Numerical applications

To enable us demonstrate the applicability of Exponentiated Inverse Power Pranav distribution (EIPP), the data
set given below represents the active repair times (hours) for an airborne communication transceiver. The data
has been used extensively in many research works by numerous authors. Initially it was used by Jorgensen(1982)
and reported by Rameesa et al (2018b).

0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80,1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50,1.50, 1.50, 2.00, 2.00,
2.20, 2.50, 2.70, 3.00,3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 5.00, 5.40,5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00,
24.50

Some criteria such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC) are used
to discriminate the aforementioned distributions so as to ascertain which of them gives the best fit. The formulae
for (AIC) and (BIC) are respectively given by

AIC =2k - 21 7)

BIC =kIn(n)-2I 48)

wherel denotes the log-likelihood function evaluated at the maximum likelihood estimates, k is the number of
model parameters, n is the sample size. For calculation of the analytical measures, R software is used to produce
the required solution from the nonlinear equations since one cannot easily obtain a close form solutions (44),
(45) and (46). Also, the Kolmogorov-Smirnov goodness of fit test was carried out at 5% level of significance to
find out if the data used in this study follows Exponentiated Inverse Power Pranav distribution. The test statistic
is given by

Fo (X) = F, (%)) (49)

Where F, (x)denotes the cumulative distribution function of the hypothesized distribution and F; (x) denotes

the empirical distribution function of the observed data. A distribution is said to provide the best fit to the data if
among all the distributions under consideration, it corresponds to minimum values of AIC, BIC and the log-
likelihood respectively.
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Table 1: MLE’s LL, AIC, BIC, K.S and P values of the fitted distributions of the data set

Model Parameters S.E LL AlC BIC KS p
o« = 1.1720 0.4464
EIPP B = 1.2729 0.1982 -87.9937 181.9873 187.054 0.08499 0.9112
A=6.9144 9.5748
IPP o« = 2.3341 0.1934
-89.0177 182.0353 185.4131 0.098065 0.8009
B =1.3472 0.1592
PD a=0.9435 0.0646 -118.76 239.5201 241.209 0.17435 0.1558
a=1.1717 0.2088
EIPL pB=3.7378 18.219 -89.4736 184.9472 190.0138 0.095991 0.8207
6= 0.4950  2.7785

CDF

X

Figure 4: Graphs of the estimated cdfs based on the research data

The maximum likelihood estimates with the standard error of the fitted models, the corresponding AIC, BIC, K.S
and the corresponding p values for the data set are presented in Tables 1 above. Based on the results presented, it
is evident that the EIPP distribution has the least AIC, BIC and largest negative log-likelihood values among all
competing models, and so it could be considered as the best model among all the distributions which have been
fitted to the a real data set.

7 Conclusions

In distribution theory, concerted efforts have always been made to generalize distributions. Numerous methods
exist that can help one to achieve this. Interest has always been centred on the quality of empirical results which
lies on how well the proposed distribution fits the data sets under consideration. In this article, a new distribution
has been introduced and the properties have been studied. Here, we derived moments and moment generating
function, the quantile function, an expression for distribution of order statistics and Rényi entropy were derived.
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Reliability measures such as survival function, hazard function and odds function were also derived. The
distribution were subjected to life data to display its applicability, it was compared to other sub-models. Based on
the selection criteria, the proposed model, that is, Exponentiated Inverse Power Pranav distribution was found to
perform better that the other sub-models.
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