
Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.11, No.3, 2021 

 

1 

An Exploratory Study of the Three Phases Analysis of Factor 
 

Chinedu K. O1      George A. Osuji2      Chrisogonus K. Onyekwere3      Chukwuemeka B. Iwe2 

1.Department of Statistics, Nnamdi Azikiwe University Awka, Nigeria 
2.Meryland W.DC 

 
Abstract 
In this study, we examine factor analysis as a multivariate statistical tool, starting from the origin of factor analysis 
with regards to Spearman’s approach of 1904 to the three phases of factor analysis. This is done with a view of 
determining the similarities and individual contributions of each of the three phases of factor analysis. This was 
achieved by examining the algorithms used in parameter estimations of the three phases of factor analysis. By 
inputting data into the algorithms and examining their outcomes and proffering recommendations based on the 
respective findings.   
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1 Introduction 
Factor analysis is a statistical technique used to describe the inconsistency among observed, correlated variables 
in relation to lower number of unobserved variables called factors. It quests for combined variations in reaction to 
unobserved latent variables. Onyeagu (2003) describes factor analysis as a multivariate statistical technique which 
aims to describe, if possible, the covariance relationship among variables in terms of a few underlying but 
unobservable random quantities called factors. In other words it can be described as a multivariate statistical 
method which expresses “p” observed variables “z” in terms of “q” latent variables “f”. Spearman (1904) published 
a capital idea. His celebrated article was titled “General Intelligence, Objectivity, Determined and Measured.” This 
marked the beginning of the quantitative investigation of latent variables. He thought originally that all inter 
correlation among mental tests could be explained by assuming one general factor, along with a unique factor in 
each test. This he called the theory of two factors. Later this was modified to include group factors Spearman 
(1927). Spearman’s theory was the conceptualization of the nature of a common factor – the element in common 
to two or more indicators (preferably three or more). Again, the theory highlighted the presence of two classes of 
factors; General (with one member) and Specific (with a potentially infinite number). It also stressed on the 
evaluation of empirical evidence on the tetrad difference criterion (i.e. on patterns in correlations among manifest 
variables) with no consideration of diagonal elements.   

𝑟௜௝.ீ ൌ
௥೔ೕି௥೔ಸ௥ೕಸ

ට൫ଵି௥೔ಸ
మ ൯ሺଵି௥ೕಸ

మ ሻ
                                                        (1) 

where “G” is the general factor and “i” and “j” are the specific variables. 
This theory was later developed extensively by Thurstone (1935, 1947). This is the most familiar multivariate 
procedure used in the behavioural sciences. This field of study was initially hampered by lack of adequate 
statistical Malenie (2004) defined factor analysis as a statistical model which expresses p observed variables z in 
terms of q unobservable latent variables f, where 𝑞 ൏ 𝑝 . As time went on, another statistical model was developed 
for factor analysis. This time in the form of a linear model given in (Onyeagu 2003) as 

𝑋௜ െ 𝜇௜ ൌ 𝐿௜௝𝐹௝ …൅ 𝐿௜௞𝐹௞ ൅∈௜                (2) 
 where 𝑖 ൌ 1,2, … .𝑝  and 𝑗 ൌ 1,2, … , 𝑘  where  𝑘 ൏ 𝑝               
where the p is a set  observable random variables , 𝑋ଵ,𝑋ଶ, … ,𝑋௣ with means 𝜇ଵ,𝜇ଶ, … , 𝜇௣, and some unknown 
constants 𝐿௜௝   with k unobserved random variables 𝐹௝ where the ∈௜ ′𝑠 are independently distributed error terms with 
zero mean and infinite variance which may not be the same for all 𝑖,thus we let 
    𝑣𝑎𝑟ሺ∈௜ሻ ൌ 𝛹,𝑎𝑛𝑑 𝐸ሺ∈௜ሻ ൌ 0                (3) 
In matrix terms, we have 

 𝑋ሺ௣௫ଵሻ െ 𝑈 ൌ 𝐿ሺ௣௫௞ሻ𝐹ሺ௞௫ଵሻ ൅∈ሺ௣௫ଵሻ               (4) 
If we have n observations, then we will have the dimensions 𝑋௣ൈ௡, 𝐿௣ൈ௞and 𝐹௞ൈ௡.  Each column of X and F denote 
the values for one particular observations, and matrix L does not vary across observations. Also we note the 
following assumptions on F 

I. F and ∈ are independent 
II. 𝐸ሺ𝐹ሻ ൌ 0 

III. 𝑐𝑜𝑣ሺ𝐹ሻ ൌ 𝐸ሺ𝐹𝐹ᇱሻ ൌ 𝐼   (to make sure that factors are uncorrelated) 
Any solution of the chosen set of equations following the constraints for F is defined as the factor, and L as the 
loading matrix. 
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Factor analysis was later to be developed through the theory of latent structure analysis as proposed by 
Lazarfeld (1963) which gave the model as 𝑝ሺ𝑡ሻ  ൌ  𝑝ሺ𝑡|𝑥ሻ𝑝ሺ𝑥ሻ𝑑𝑥.  This was described by Bishop(2009) as one׬
of the simplest forms  of latent variable models and is based on the mapping 𝑦ሺ𝑥;𝑤ሻ, so that 𝑡 ൌ 𝑊𝑥 ൅ µ ൅ 𝑢, in 
which W and µ are adaptive parameters . The distribution p(x) is chosen to be a zero-mean unit covariance 
Gaussian distribution N(0,I), while the error model for u is also a zero mean Gaussian with a covariance matrix Ψ 
which is the  diagonal element of the matrix.  Silvia Bianconcini (2012) studied the nature of curiosity by analysing 
the agreements of junior high school students with large battery of statements ‘’I  like to figure out how machinery 
works ‘’,or ‘’I like to try  new kinds of food‘.’ A factor analysis identified seven factors, three measuring enjoyment 
of problem –solving, learning and reading and computational technology. Rahn (2019) in his view stated that 
factor analysis is a useful tool for investigating variable relationships for complex concepts such as socio-economic 
status dietary patterns, or psychological scales. He enthused that it allows researchers to investigate concepts that 
are not easily measured directly by collapsing a large number of variables into a few interpretable underlying 
factors.  Here the key concept of factor analysis is that multiple observed variables have similar patterns of 
responses because they are all associated with a latent variable. 

In the study of factor analysis, it is a common knowledge that the correlation model has been of prominent 
use as well as the co-variance structure used in the linear model; all these were before the advent of the latent 
variable model discovered by Lazarsfeld (1968) which formed the crux of the General Linear Latent Variable 
Model (GLLVM) developed by Bartholomew and Knott (1999). All these make up the three phases of factor 
analysis and they all try to answer the questions posed by factor analysis which is data reduction, hypothesis testing, 
generating factor scores etc. The three models use different approaches to answer the basic problem posed by 
factor analysis. 

However, there is a need to study these phases in order to ascertain the most suitable and convenient model 
fit for any type of data generated from sample survey used in factor analysis. Hence, the main purpose of the 
research is to determine the similarities and differences that exist in the three phases of factor analysis with a view 
to discovering a more comprehensive approach to the questions that factor analysis tends to answer. The research 
also examined the algorithms involved in the development of factor analysis as a multivariate statistical technique. 
This paper is organised as follows. Section 2 deals with the challenges of factor analysis, Section 3 discussed the 
methodology, section 4 deals with data analysis and results, and finally, section 5 contains summary and 
conclusions. 
 
2 Challenges of Factor Analysis 
The interpretation of factor analysis is based on empirical approach which is a solution that is convenient even if 
not completely true. More than one interpretation can be made of the same data factored the same way, and factor 
analysis cannot identify causality. Factor analysis is not without cost, however. It is mathematically complicated 
and entails diverse and numerous considerations in their formal training, and the sum is the major cost of factor 
analysis: most laymen, social scientists, and policy-makers find the nature and significance of the results 
incomprehensible for their work application. Its technical vocabulary includes strange terms such as eigenvalues, 
rotate, sample structure, orthogonal, loadings, and communality. Its results usually absorb a dozen or so pages in 
a given report, leaving little room for a methodological introduction or explanation of terms. 

Philippe (2013) while working on (estimation of generalized linear latent models) stated that the general linear 
latent variable model (GLLVM) which is a statistical analysis presents a difficulty, since the latent variables are 
not observed , they must be integrated out from the likelihood function .and the calculations involved in this 
method is highly enormous. Add to this the fact that students do not ordinarily learn factor analysis as a course 
while in school.  

 
3 The Three Phases of Factor Analysis   
3.1 First phase of factor analysis                                                  
According to Yule (1927) the essence of what Spearman needed is contained in the formula for the partial 
correlation between two variables ,i and j say, given a third variable which Spearman calls G. This he gave as 

𝑟௜௝.ீ  ൌ  
௥ ௜  ௝ – ௥ ௜ீ௥  ௝ீ

√ሺଵି௥మ௜ீሻሺଵି௥మ௝ீሻ
 ,  (i ,j = 1,2,...p)               (5) 

where 𝑟௜௝.ீ is the partial correlation between i and j  
This is called the Spearman’s approach. The study employed the principle of partial correlation given by Onyeagu 
(2003). Here partial correlation between 𝑋ଵ and 𝑋ଶ  given by the matrix  ∑ଵଵ െ ∑ଵଶ∑ଶଶ

ିଵ∑ଶଵ   which is also known 
as the matrix of partial variances and co variances.  This can be demonstrated by letting 𝛿௜௝…..௤ିଵ…௣ denote the 𝑖𝑗௧௛ 
element in ∑ଵଵ.ଶ, the matrix defined by the elements 

  𝜌௜௝…௤ାଵ…௣ ൌ
ఋ೔ೕ…೜శభ…೛

ටఋ೔೔…೜శభ…೛ටఋೕೕ…೜శభ…೛

                  (6) 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.11, No.3, 2021 

 

3 

 is the matrix of partial correlations where   𝜌௜௝…௤ାଵ.௤ାଶ…௣  is the partial correlation between   𝑋௜ and 𝑋௝ in the first 
set  of  𝑋ଵ, holding variables in the second set 𝑋ଶ  constant .The partial correlation coefficient allows us to measure 
the linear dependence of any two variables in the set  by removing the linear association  of the variables in the 
second set with the variables in the first set. This can be shown in the example below: 

Suppose     𝑋ଵ ൌ ቀଡ଼భଡ଼మቁ  and 𝑋ଶ ൌ 𝑋ଷ    where  𝑋 ൌ අ
𝑋ଵ
𝑋ଶ
𝑋ଷ
ඉ   

 The partial correlation between 𝑋ଵ and 𝑋ଶ  can be written as  
 𝜌ଵଶ.ଷ ൌ

ఘభమିఘభయఘమయ

ටଵିఘభయ
మ ටଵିఘమయ

మ
                  (7) 

Thus, working in a recursive manner any desired partial correlation can be obtained using Anderson (1958) formula 
𝜌௜௝.௤ାଵ,௤ାଶ…௣ ൌ

ఘ೔ೕ.೜శభ…೛ିఘ೔೛.೜శభ…೛షభఘೕ೛.೜శభ…೛షభ

ටଵିఘ೔೛.೜శభ…೛షభ
మ ටଵିఘೕ೛.೜శభ…೛షభ

మ
              (8) 

 
Consequently, we can write          

  𝑟௜௝.ீ ൌ
௥೔ೕି௥೔ಸ௥ೕಸ

ට൫ଵି௥೔ಸ
మ ൯ሺଵି௥ೕಸ

మ ሻ
   (i ,j = 1,2,...p)               (9) 

From this, we derive the correlation between 𝑟 and 𝑗 based on the assumption that their correlation can be totally 
explained by their common dependence on 𝐺 implying that 𝑟௜௝.ீ ൌ 0, thus, the correlation matrix  

𝑅 ൌ ൛𝑟௜௝ൟ ൌ 𝑟௜ீ𝑟௝ீ                (10) 
If there are two or more (independent) underlying factors the correlation matrix would have the form   

 𝑟௜௝ ൌ ∑ 𝜆௜௛𝜆௝௛    ሺ𝑖 ് 𝑗ሻ௤
௛ୀଵ               (11) 

The decision to use product moment correlation therefore, implies assumptions that item test of scores are linearly 
related to any underlying factor. Incidentally this became the central idea in the second phase of factor analysis. 
The major limitation of this phase was that, it’s rudimentary in the sense that it was not capable of treating more 
than one factor at a time. Again it does not go beyond the level of partial correlation; so that all one needs to study 
was the pattern of the correlation matrix in order to get a picture of the nature of relationship between the variables 
involved. This method of dealing with factor analysis at the early stage of the development of factor analysis was 
hampered by the lack of adequate computational techniques and computer packages. 
 
3.2 Second phase of factor analysis 
The second phase of factor analysis which in modern notation according to Lawley and Maxwell (1963) supposed 
that  

 𝑋௜ ൌ 𝜆௜ଵ 𝑦ଵ ൅𝜆௜ଶ𝑦ଶ ൅ ⋯൅ 𝜆௣௤𝑦௤ ൅ 𝑒௜;   for 𝑖 ൌ 1,2 …𝑝            (12) 
which can be represented in terms of a probability distribution as in Bartholomew et al (1999) as  
𝑥௜|𝑦ଵ𝑦ଶ …𝑦௤ ~ 𝑁ሺ𝜇௜ ൅ ∑ 𝜆௜௝𝑦௜,𝛹௜ሻ

௤
௜ୀଵ  given that (𝑖 ൌ 1,2 …𝑝), and 𝑦௜~𝑁ሺ0,1ሻ. The covariance matrix ∑ has the 

form 
   ∑ൌ 𝜆𝜆ᇱ ൅Ψ               (13) 
 Onyeagu  (2003) describes the model this way 

𝑋ଵ െ 𝜇 ൌ 𝐿ଵଵ𝐹ଵ ൅ 𝐿ଵଶ𝐹ଶ ൅ ⋯ .൅𝐿ଵ௠𝐹௠ ൅∈ଵ 
𝑋ଶ െ 𝜇 ൌ 𝐿ଶଵ𝐹ଵ ൅ 𝐿ଶଶ𝐹ଶ ൅ ⋯ .൅𝐿ଶ௠𝐹௠ ൅∈ଶ 

                                   ..        . ..                 ...                                 …                             
𝑋௣ െ 𝜇 ൌ 𝐿௣ଵ𝐹ଵ ൅ 𝐿௣ଶ𝐹ଶ ൅ ⋯ .൅𝐿௣௠𝐹௠ ൅∈௣ 

In matrix form       𝑋ሺ௣ൈଵሻ െ 𝜇 ൌ 𝐿ሺ௣ൈ௠ሻ𝐹ሺ௠ൈଵሻ ൅∈ሺ௣ൈଵሻ 
The coefficient 𝐿௜௝ is called the loading of the 𝑗௧௛ factor .The matrix L is the matrix of  loadings, the 𝑖௧௛ specific 
factor ∈௜ is associated only with the 𝑖௧௛ response 𝑥௜ the  p deviations 𝑥ଵ െ 𝜇ଵ,𝑥ଶ െ 𝜇ଶ are expressed in terms of 
𝑝 ൅𝑚 random variables 𝐹ଵ,𝐹ଶ, … ,𝐹௠,∈ଵ,∈ଶ, … ∈௣ the  assumptions are 

a)  𝐸ሺ𝐹ሻ ൌ 0ሺ௠ൈଵሻ  
b)  𝑐𝑜𝑣ሺ𝐹ሻ ൌ 𝐸ሺ𝐹𝐹ᇱሻ ൌ 𝐼ሺ௠ൈ௠ሻ, Eሺ∈ሻ ൌ 0ሺ௣ൈଵሻ 

 

c)  𝑐𝑜𝑣ሺ∈ሻ ൌ ሺ∈∈ᇱሻ ൌ 𝛹ሺ௣ൈ௣ሻ ൌ ൭
Ψଵ 0 … 0
⋮ ⋮ ⋮
0 … Ψ௣

൱ 

 
And that F and ∈ are independent so that 𝑐𝑜𝑣ሺ∈,𝐹ሻ ൌ 𝐸ሺ∈ 𝐹ᇱሻ ൌ 0ሺ௣ൈ௠ሻ this constitutes the orthogonal factor 
model which has the covariance as ∑ ൌ 𝑐𝑜𝑣ሺ𝑋ሻ ൌ 𝐿𝐿ᇱ ൅ 𝛹 
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The covariance structure is of the form 
 𝑐𝑜𝑣ሺ𝑋ሻ ൌ 𝐿𝐿ᇱ ൅ 𝛹 or 𝑣𝑎𝑟ሺ𝑥ሻ ൌ 𝐿௜ଵ

ଶ ൅ ⋯𝐿௜௠
ଶ ൅ 𝛹 

𝑐𝑜𝑣ሺ𝑥௜ , 𝑥௞ሻ ൌ 𝐿௜ଵ𝐿௞ଵ ൅ ⋯൅ 𝐿ଵ௠𝐿௞௠ 
  𝑐𝑜𝑣ሺ𝑋𝐹ሻ ൌ 𝐿 𝑜𝑟 𝑐𝑜𝑣൫𝑋௜𝐹௝൯ ൌ 𝐿௜௝ 

and 𝑥 െ 𝜇 ൌ 𝐿𝐹൅∈ is linear in the common factors.  Thus   
𝛿 ൌ 𝐿௜ଵ

ଶ ൅ 𝐿௜ଶ
ଶ ൅ ⋯𝐿௜௠

ଶ ൅ 𝛹              (14) 
𝑣𝑎𝑟ሺ𝑋௜ሻ ൌ 𝑐𝑜𝑚𝑚𝑢𝑛𝑢𝑎𝑙𝑖𝑡𝑦 ൅ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒   
         𝛿௜ଵ ൌ ℎ௜

ଶ ൅ 𝛹௜   𝑖 ൌ 1,2 …𝑝             
3.2.1 Estimation of parameters 
In the study the researcher examines ways to establish the covariance relationship given a dataset of say,  
𝑋ଵ,𝑋ଶ, …𝑋௡ observations on p correlated variables ,which tends to address the problem posed by factor analysis 
which is to  determine whether the factor model 𝑋 ൌ 𝑈 ൅ 𝐿𝐹+∈, with its assumptions can adequately provide us 
with estimates of the data. This implies verifying the covariance relationship.  

𝑐𝑜𝑣ሺ𝑋ሻ ൌ 𝐿𝐿ᇱ ൅ 𝛹  And  𝑐𝑜𝑣ሺ𝑋,𝐹ሻ ൌ 𝐿 
Here the population covariance matrix ∑ is estimated by the sample covariance matrix S or Σ෠ . The study used the 
principal component method (principal factor) and the maximum likelihood method to achieve this. 
In the principal factor method, we factor out the covariance matrix using spectral decomposition theorem by 
Onyeagu et al (2003) which states that  

  ∑ൌ 𝜆ଵ𝑒ଵ𝑒ଵᇱ ൅ 𝜆ଶ𝑒ଶ𝑒ଶ
ᇱ ൅ ⋯൅ 𝜆௣𝑒௣𝑒௣ᇱ  

ൌ ሾඥ𝜆ଵ𝑒ଵ ඥ𝜆ଶ𝑒ଶ …ඥ𝜆௣𝑒௣ ሿ   ተ

ඥ𝜆ଵ𝑒ଵᇱ

ඥ𝜆ଶ𝑒ଶ
ᇱ

ඥ𝜆௣𝑒௣ᇱ
ተ            (17) 

where (𝜆௜ , 𝑒௜ሻ is the eigenvalue-eigenvector pair of ∑ and 𝜆ଵ ൒ 𝜆ଶ ൒ ⋯ ൒ 𝜆௣ ൒ 0 
∑௣ൈ௣ ൌ 𝐿௣ൈ௣𝐿௣ൈ௣ᇱ ൅ 0௣ൈ௣ ൌ 𝐿𝐿ᇱ 

The factor analysis representation is exact but not very useful since it does not allow for any variation in the 
specific factors ∈ , to overcome this the contribution of 𝜆௠ାଵ𝑒௠ାଵ𝑒௠ାଵ

ᇱ ൅ ⋯𝜆௣𝑒௣𝑒௣ᇱ     to ∑ in the spectral 
decomposition of ∑  giving rise to   

Σ ൌ   ൫ඥ𝜆ଵ𝑒ଵ,ඥ𝜆ଶ𝑒ଶ …ඥ𝜆௠𝑒௠൯ ተ

ඥ𝜆ଵ𝑒ଵᇱ

ඥ𝜆ଶ𝑒ଶ
ᇱ

ඥ𝜆௠𝑒௠ᇱ
ተ 

ൌ 𝐿௣ൈ௠𝐿௠ൈ௣
ᇱ  

the approximation becomes  
∑ൌ 𝐿𝐿ᇱ ൅ 𝛹                (18) 

∑ൌ ሾඥ𝜆ଵ𝑒ଵ ඥ𝜆ଶ𝑒ଶ …ඥ𝜆௣𝑒௣ ሿ   ተ

ඥ𝜆ଵ𝑒ଵᇱ

ඥ𝜆ଶ𝑒ଶ
ᇱ

ඥ𝜆௣𝑒௣ᇱ
ተ +൥

𝛹ଵ 0⋯ 0
⋮ ⋱ ⋮
0 0⋯ 𝛹௣

൩          (19) 

where 𝛹 ൌ 𝛿 െ ∑ 𝑙௜௝
ଶ௠

௝ୀଵ ,  (𝑖 ൌ 1,2. .𝑝)  
In maximum likelihood method, Bartholomew and Knott (1999) state that if 𝑋~𝑁௣ሺ𝜇,∑ሻ, where the common 
factors 𝐹 and specific factors ∈ are assumed to be normally distributed. The maximum likelihood estimates of the 
factor loadings and specific variances can be obtained.  The likelihood function for observations 𝑋ଵ, … ,𝑋௡ may be  
written as  

𝐿ሺΣሻ ൌ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ൅
௡

ଶ
ሼ𝑙𝑛|Σିଵ| െ 𝑡𝑟𝑎𝑐𝑒ሺΣିଵ𝑆ሻሽ           (20) 

where Sൌ ∑ ሺ𝑥௜ െ
௡
௜ୀଵ 𝜇ሻሺ𝑥௜ െ 𝜇ሻᇱ/𝑛.  

This is first minimized with respect to 𝜇. This is a standard problem and it is readily shown that �̂� ൌ 𝑥෤ . This is 
substituted  into 𝑆, and then  maximized with respect to  ∧ and Ψ, where 
   Σ ൌ∧ ∧ᇱ൅ 𝛹                 (21) 
The ∧  is then properly defined by imposing the uniqueness condition   ∧ᇱ 𝛹ିଵ ∧ൌ ∆, a diagonal matrix. 𝐿෠ and 𝛹෡  
are then obtained by maximizing the likelihood function . 

ൌ ሺ2𝜋ሻ
ି௡௣
ଶ |∑|ି೙ మ⁄ 𝑒ష

భ
మ೟ೝቔ∑

షభቀ∑ ሺ೉ೕష೉
೙
ೕస೔ ሻሺ೉ೕష೉ ሻᇲశ೙൫೉ –ഋ൯൫೉ –ഋ൯ᇲቁቕ   

ൌ ሺ2𝜋ሻ
షሺ೙ష೔ሻ೛

మ |∑|ିሺ௡ିଵሻ ଶ⁄ 𝑒ି
భ
మ೟ೝቂ∑

షభሺ∑ ቀ೉ೕష೉ቁሺ೉ೕష೉ሻᇲ
೙
ೕసభ ቃ ൈ ሺ2𝜋ሻష೛ మ⁄ |∑|ିଵ ଶ⁄ 𝑒ିሺ௡ ଶ⁄ ሻ൫௑ିఓ൯∑షభሺ௑ିఓሻᇱ         (22) 

This is evaluated with the use of the computer program, thus the maximum likelihood estimators 𝐿෠ ,𝛹෡ ,𝑎𝑛𝑑 �̂� ൌ 𝑋 
maximize the likelihood function 𝐿ሺ𝜇,∑ሻ  subject to𝐿෠ᇱ  𝛹෡ᇱ𝐿෠  being a diagonal. ℎ෠௜

ଶ ൌ 𝑙መ௜ଵ
ଶ ൅ 𝑙መ௜ଶ

ଶ ൅ ⋯ 𝑙መ௜௠
ଶ  for 𝑖 ൌ
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1,2, … ,𝑝  which is termed the maximum likelihood estimates of the communalities for the covariance matrix. 

ሼ𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑟 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑗௧௛𝑓𝑎𝑐𝑡𝑜𝑟ሽ ൌ
௟መభೕା௟መమೕା⋯௟መ೛ೕ

మ

ௌభభାௌమమା⋯ௌ೛೛
          (23) 

In the second phase of factor analysis the model provided us with rigorous and detailed answers to questions 
posed by factor analysis as well as makes available to us factor scores, which are used for further research work. 
One major limitation of this phase is that, it assumed that the specific variables were all continuous and thus 
ignoring the fact that data obtained from research work in most behavioural sciences are discrete, nominal or a 
mixture of the two in nature; in this way a lot of useful information is lost as a result of the assumptions.   
 
3.3 Third phase of factor analysis 
In the third phase of factor analysis emphasis is laid most, on latent variables. Latent variable models provide an 
important tool for the analysis of multivariate data. They offer a conceptual framework within which many 
disparate methods can be unified and a base from which new methods can be developed. A statistical model 
specifies the joint distribution of a set of random variables and it becomes a latent variable model when some of 
these variables –the latent variables are unobservable .The model known as general linear latent variable model 
(GLLVM) given in Bartholomew and Knott et al (2011), the model consist of two parts; first the prior distribution 
is given by 
                                     𝑓ሺ𝑥ሻ ൌ ∏ℎሺ𝑦ሻ׬ 𝑔௜ ሺ𝑥௜/𝑦

௣
௜ୀଵ ሻ𝑑𝑦                   (24)                    

It is represented by the density function ℎሺ𝑦ሻ  and the second element in the model is a set of conditional 
distribution of the set of the manifest variables (𝑋௜) given the latent variable 𝑦. These are denoted by 𝑔௜ሺ𝑋௜/𝑦ሻሺ𝑖 ൌ
1.2. .𝑝ሻ where the subscript 𝑖 and 𝑔 reminds one that the form of distribution can vary with. A convenient family 
of distributions which turns out to have many useful properties in other branches of statistics is the one parameter 
exponential family. Suppose that latent variables combine to determine the value of the parameter, then one may 
have  

𝑔ሺ𝑋௜/𝜃௜ሻ ൌ 𝐹௜ሺ𝑥௜ሻ𝐺௜ሺ𝜃௜ሻexp ሺ𝜃௜𝜇௜ሺ𝑥௜ሻሻ      for 𝑖 ൌ 1,2, …𝑝                  (25) 
where 𝜃௜,is some function of 𝑦 , the simplest assumption about the form of this function is to suppose that it is a 
linear function ,in which case we obtain,  

𝜃௜ ൌ 𝛼௜଴ ൅ 𝛼௜ଵ𝑦ଵ ൅ 𝛼௜ଶ𝑦ଶ ൅ ⋯ .𝛼௜௤𝑦௤       ሺ𝑖 ൌ 1,2, …𝑝ሻ.    
This is the general linear latent variable model, the term linear refers to its linearity in the 𝛼௜𝑠 . The difference 

between this model and the generalised linear model commonly used in statistics is that in the general linear latent 
variable model will have a set of 𝑋′𝑠 rather than a single dependent variable and here the 𝑦′𝑠 are unobservable. 
Thus we shall be predicting the 𝑦′𝑠 given the ′𝑠 . 

The exponential family of equations above includes the normal, gamma, and Bernoulli distributions as special 
cases, if 𝑋ത௜and 𝜃 are allowed to be vector valued it will also include the multinomial distribution. 
3.3.1 Maximum likelihood estimation  
The log-likelihood of the latent factor model for the mixture distribution is of the form  

𝐿ሺ𝜋௜ , 𝜇௜ ,∑௜ሻ ൌ ∑ 𝑙𝑛ሼ∑ 𝜋௜𝑓ሺ𝑦/𝑖ሻெ
௜ୀଵ ሽே

௡ୀଵ            (26) 
Maximization of this log likelihood is made complex by the presence of the summation inside the logarithm. A 
technique for performing the optimization is known as the expectation maximization (EM) algorithm can be 
employed according to Michael et al (1999).  

𝑅௡௜ ≡ 𝑓ሺ𝑖/𝑦௡ሻ   ൌ  
గ೔௙ሺ௬೙/௜ሻ

∑ గೕ௙ሺ௬೙/௝ሻೕ
             (27) 

An introductory account of this EM in the content of the factor model is given in the equation 
    𝑓ሺ𝑦, 𝑥ሻ ൌ 𝑓ሺ𝑥ሻ𝑓ሺ𝑦/𝑥ሻ  ൌ 𝑓ሺ𝑥ሻ∏ 𝑓ሺ𝑦௜/𝑥ሻ

௣
௜ୀଵ             (28) 

The EM algorithm is based on the observation that if we have a set of indicator variables 𝑧௡௜ specifying which 
component 𝑖  is responsible for generating in each data point 𝑦௡ , then the log likelihood would take the form 
   𝐿௖௢௠௣ሺሼ𝜋௜ ,𝜇௜ ,∑௜ሽሻ ൌ ∑ ∑ 𝑧௡௜ln ሼ𝜋௜𝑓ሺ𝑦/𝑖ሻሽெ

௜ୀଵ
ே
௡ୀଵ              (29) 

 and it’s optimization would be straight forward, with the result that each component is filled independently 
to the corresponding group of data points. And the mixing coefficients are given by the fractions of the points in 
each group. The ሼ𝑧௡௜} are regarded as ‘missing data ‘and the data set {𝑦௡} is said to be “incomplete”  combining 
{𝑦௡} and  ሼ𝑧௡௜} the corresponding “complete “ data set is obtained with a log likelihood given in eq. (27). Though 
the values of ሼ𝑧௡௜} are unknown, but are determined by their posterior distribution given by 𝑅௡௜ . 

As can be seen from the model, the third phase of factor analysis has laid to rest the issue of the nature of the 
specific variable, by using the conditional distribution of 𝑓ሺ𝑦/𝑥ሻ  and combining it with the mixing (or prior) 
distribution 𝑓ሺ𝑦ሻ. In this way there is need to know the distribution of  𝑦 in order to predict the various specific 
variables. Hence the need to search for a more advanced model which can tell us more about the distribution of 
the specific variables without making use of the prior distribution of 𝑦. 
Taking a step further from the model for the third phase of factor analysis which is of the form 
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 𝑓ሺ𝑥ሻ ൌ ׬ ∏ 𝑓ሺ𝑥௜ ⁄ 𝑦
௣
௜ୀଵ

ஶ
௬

) 𝑓ሺ𝑦ሻ𝑑𝑦  

where 𝑓ሺ𝑦ሻ is the prior (or mixing) distribution and 𝑓ሺ𝑥௜/𝑦ሻ is the conditional distribution of 𝑥 given 𝑦. And using 

the principles of Bayes theorem which states that 𝑃ሺ𝐴/𝐵ሻ ൌ
௉ሺ஺ሻ௉ሺ஻ሻ

௉ሺ஻ሻ
  and applying same to the factor model gives  

𝑓ሺ𝑥ሻ ൌ ׬ ∏ ௙ሺ௫೔ሻ௙ሺ௬ሻ

௙ሺ௬ሻ
௣
௜ୀଵ

ஶ
௬

 𝑓ሺ𝑦ሻ𝑑𝑦              (30) 

Simplifying further gives                         
  𝑓ሺ𝑥ሻ ൌ ׬ ∏ 𝑓ሺ𝑥௜ሻ

௣
௜ୀଵ

ஶ
௬

 𝑓ሺ𝑦ሻ𝑑𝑦               (31) 

and integrating the mixing distribution over the range of 𝑦,  we obtain  𝑓ሺ𝑥ሻ ൌ ∏ 𝑓ሺ𝑥௜ሻ
௣
௜ୀ௜ ൌ 𝑓ሺ𝑋ሻ  . In this way 

the parameter estimates are obtained by fitting distribution on 𝑥௜ and obtaining the distribution of the specific 
variables, using the computer program R-console. 
 
4 Results and Analysis 
In this section the parameter estimates obtained for the three phases of factor analysis were evaluated using 
different sample sizes. The computational analysis of the simulated data for the parameters of the three phases of 
factor analysis were performed starting with the first phase.  
 
4.1 The first phase of factor analysis 
For this phase of factor analysis, with sample size n =379, and x =4, from a Binomial distribution, the partial 
correlation matrices can be obtained manually via eq. (8). The partial correlation estimates give us an insight of 
the contribution of the various variables to the general factor G in the above equation. 

Table 4.1 shows the results obtained using SPSS version 20 for the first phase of factor analysis 
                                                  Table 4.1: Correlation matrix 

 Item 1 factor 2 factor 3 factor 4 
factor 1 1.000 .655 .587 .520 
factor 2 .655 1.000 .686 .609 
factor 3 .587 .686 1.000 .707 
factor 4 .520 .609 .707 1.000 

Here it can be seen from the correlation matrix that items 3 and 4 are highly correlated followed by factors 2 
and 3. Thus all the information about the model is all that can be found in the correlation matrix.  
Table 4.2: Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 2.885 72.114 72.114 2.885 72.114 72.114 

2 .516 12.904 85.019    

3 .328 8.196 93.215    

4 .271 6.785 100.000    

Extraction Method: Principal Component Analysis.    
Table 4.2 shows the total variation explained by each of the components. Component one explained about 

72.1% of the variance, followed by component two (12.9%) and lastly, component 4 which explained 
approximately 6.8% of the variance.  This is also confirmed by the scree plot in fig 1. Only factor one appears 
significant 
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Fig. 1: Scree Plot of the total variance explained 

From the Scree plot diagram it is seen that only one variable is significant, which makes for the selection of 
one component only. The results obtained using the third phase is shown below 
Table 4.3:  Factor-Scores for observed response patterns 

 Fact.1 Fact.2 Fact.3 Fact.4 Obs Exp Z 1 Se.Z1 Z 2 Se.Z2 
1 0 0 0 0 1 0.810 -1.23 0.565 -.331 0.557 
2 0 0 0 0 1 0.810 -.589 0.589 0.656 0.647 
3 0 1 1 0 1 0.338 0.079 0.470 -1.35 0.567 
4 1 0 1 1 1 0.451 0.736 0.625 1.121 0.510 
5 1 1 0 1 1 0.401 1.053 0.453 -.357 0.468 

Table 4.3 shows the individual distribution of factor scores, expected value of X , 
 E X

and the standard 
error S.e of the posterior distribution of the data imputed. The analysis for the second data goes thus starting with 
the first phase of factor analysis which deals with the issue of partial correlation. 
For the first phase of factor analysis these results were obtained. 
Table 4.4 Correlation Matrix 

  Fact.1 Fact. 2 Fact. 3 Fact. 4 Fact. 5 Fact. 6 

Correlation Fact.1 1.000 -.235 .072 -.086 .088 .082 

Fact. 2 -.235 1.000 .018 .101 .125 .020 

Fact. 3 .072 .018 1.000 .232 .348 .238 

Fact. 4 -.086 .101 .232 1.000 .218 .161 

Fact. 5 .088 .125 .348 .218 1.000 .264 

Fact. 6 .082 .020 .238 .161 .264 1.000 

From the result obtained from the correlation matrix, it can be seen that the items are loosely correlated, the 
model does not provide us with much information concerning the number of factors in the model, since it is a one 
factor model thus it assumes that all of the variables (items) are grouped under one factor. But further analysis 
with the other models will prove otherwise. 
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Table 4.5 shows the extracted communalities. From the table, it can be seen that the extracted communalities 
in the first and second factors indicate that most of the information contained in the model is contained in them. 
This is further explained in the table 4.6 below. 
Table 4.6: Component analysis 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 1.767 29.453 29.453 1.767 29.453 29.453 

2 1.278 21.306 50.759 1.278 21.306 50.759 

3 .846 14.095 64.855    

4 .783 13.043 77.897    

5 .712 11.864 89.761    

6 .614 10.239 100.000    

Extraction Method: Principal Component Analysis.    
From table 4.6, the first component has variance 29.45% while the second component has variance 21.31%. 

Fig. 2 shows the scree plot of the communalities.  

 
Fig 2: Scree plot of the Communalities extracted 

Table 4.5: Communalities 

 Initial Extraction 

Fact. 1 1.000 .737 

Fact. 2 1.000 .568 

Fact. 3 1.000 .314 

Fact. 4 1.000 .392 

Fact. 5 1.000 .238 

Fact 6 1.000 .396 
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Table 4.7: Component 
Transformation Matrix 

Compo
nent 1 2 

1 .995 .101 

2 .101 -.995 

Extraction Method: Principal 
Component Analysis.  

 
Fig 3:Scree Plot of the component transformation matrix 
Table 4.8: Factor Matrix 

 Factor 

 1 2 

Item 1 .500 -.560 

Item 2 -.075 .352 

Item 3 .482 .287 

Item 4 .228 .354 

Item 5 .529 .330 

Item 6 .382 .189 

Extraction Method: Maximum 
Likelihood. 

In the factor matrix above we are able to obtain information about the two factors extracted from the model and 
their relationship with the other factors. With this, further analysis such as regression analysis can be carried out 
with the reduced data obtained from this factor analysis model. 
Table 4.9.1: Goodness-of-fit Test 

Chi-Square df Sig. 

10.643 4 .031 
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Table 4.9.2: Factor 
Transformation Matrix 

Factor 1 2 

1 .863 .506 

2 .506 -.863 

  
Table 4.9.3: summary 𝒇ሺ𝑿ሻ     

 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 
Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1st Qu 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Mean 0.3698 0.7962 0.2833 0.2525 0.3569 0.1461 
3r Qu 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 
Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Mean 𝒇ሺ𝑿ሻ ൌ 𝟎.𝟏𝟒𝟔𝟏𝟐𝟑𝟑     
 
5 Summary of findings: 
5.1 First phase of factor analysis 
In the first phase, the model was able to derive the correlation matrices for the two data sets obtained by simulation 
using Minitab 16. Results as shown in table 4.1 and 4.2 led to the conclusion that the first phase of factor analysis 
is peripheral and lacks much content, because it starts and ends with the correlation matrix. 
 
5.2 Second phase of factor analysis 
This phase of factor analysis, which is a model based approach, goes beyond the provision of the correlation matrix 
to give a detailed explanation of the patterns in the matrix by providing an ANOVA table of the factor variances, 
table of communalities (this deals with the uniqueness of the error variances), and the SCREE plot diagram . Also 
the aspect of data reduction and provision of factor scores were adequately treated in this second phase of factor 
analysis. Thus this model approach may be considered most appropriate though it provides us with rigorous 
methods for answering the traditional questions addressed by factor analysis. 
 
5.3 The third phase of factor analysis 
The third phase of factor analysis was able to accommodate and treat adequately the various types of data 
(continuous, discrete and mixed) available. It also handled the issue of data reduction which is the main goal of 
latent variable analysis. In the third phase the posterior distribution is used to give a picture of the specific variables 
by providing estimates of the expectations, the standard error and the standardized values of the factor scores, 
using the logit /normal model. 

In summary, the study explored the three phases of factor analysis by bringing to focus the synergy that exists 
among the three phases as can be seen from their individual correlation matrices. Furthermore, phases two and 
three of factor analysis share so much in common in their model attributes, such as, the uniqueness of the error 
variances, data reduction, and provision of factor scores. Though the factor scores of phase two and three are not 
exactly the same, but they nevertheless pursue the same objective, which is in providing data for further analysis. 
Both models also used eigenvalues to reduce the number of factors involved in the models. Again the research was 
able to show the different algorithms employed by the three phases and how they were put to use to ascertain there 
relevance in the study. 
 
5.4  CONCLUSION 
The three phases of factor analysis have one goal in common, that is to address the questions posed by factor 
analysis. This they all do, which still boils down to the issue of factor scores and its implementation. 

However, based on the computational results from the three phases of factor analysis, it can be said that the 
rigorous approach of the second phase of factor analysis makes room for a better understanding of factor analysis 
and in making data available for further   analysis. Though it does not address adequately the issue of the nature 
of data involved, these it treats as continuous. But the third phase treats this issue with much caution.  Hence the 
edge it has over the second phase of factor analysis model. Thus of the three phases it is the most advanced model 
as it is all encompassing especially in the proper manner it addresses each variable in the model. 
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