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Abstract 
Non-linear time series and linear models were not designed to detect probabilistic process that are depict by 
velocity and drift associated to returns the way Ornstein-Uhlenbeck stochastic process describes diffusion and 
velocity associated to series or waves influenced by Brownian motion or Lévy process.  In this research, Brownian 
motion and Lévy process were conflated as driving force for Ornstein-Uhlenbeck process with its solution applied 
to Naira-Dollar exchange rates from 2009-2019.The drift and diffusion estimates for the Ornstein-Uhlenbeck 
process driven by Brownian motion and Lévy process are realization of AR (1) with 2.991 and 0.1672 respectively. 

The AR(1) realization for the Ornstein-Uhlenbeck process was stationary with estimate 
0.7204

 that lies 
outside the unit circle. The AIC, BIC, RMSE, and MSE for the Ornstein-Uhlenbeck process were estimated to be 
483.7572, 483.4782, 0.00101, and 8.395 respectively, compare to estimates of the same indexes for AR (1) of 
767.5, 634.09, 0.3819, and 23.48. The criterion via the residuals from the Ornstein-Uhlenbeck process was smaller, 

which connotes that the errors approximated in using drift, Brownian motion and 1tx  to estimate tx
 is relatively 

small via the Ornstein-Uhlenbeck process.  
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1. INTRODUCTION 
Dynamical systems have been a vital modeling in the fields of mechanics, engineering, physics, finance, statistics, 
physical and social sciences with two realistic traits that are of great interest; the stochastic that consist of the 
observational outputs that are rackety function of the stimulus such that the forces itself will be galvanized by 
some latent noise processes; and been qualified by finite-dimensional inner state that are indirect discernible but 

synopsize at time " "t  all entropy about the traits of the procedure applicable to prediction (m-step prediction) 
(Muzycha & Vaninsky, 2011; Roweis & Ghahramani, 2010). Most physical processes in real life involves a flow 
of event in time and space, especially those exhibiting high variability, such events in real life are referred to as a 
dynamical system (Olanrewaju, 2018). 

Borovkova et al. (2003) asserted that mathematical modeling of economics and financial processes lead, in 
general, to non-linear deterministic and stochastic dynamical systems in complex structures and surprising 
behaviors. There is now a well-developed model for characterizing all sorts of attractions, and bifurcations as their 
parameters are varied. Systems with strong elements or many interacting variables will require further connections 
to be made between non-linear dynamic proper and statistical mechanics (Kleeman, 2011). There are many 
examples of dynamics phenomena in nature, which can be regarded as stochastic process. For instance, some of 
the hydrodynamic phenomena such as rainfall, stochastic dynamical system models are mathematical model and 
are difficult to identify from data (Ldeo, 1997; Bibbona et al, 2008). However, mathematical model gives 
stochastic dynamical system model an advantage over non-linear time series model in characterizing the 
phenomena, with great analytical tools developed in Markov diffusion theory (Olanrewaju, 2018). Markov process 
is a vital tool for analyzing dependent random Brownian events (Otherwise known as Weiner Process) and Lévy 
process. 

Ornstein-Uhlenbeck (OU) process as described by Ornstein & Uhlenbeck (1930) is a probabilistic process 
that depicts the velocity and diffusion (drift) of a Brownian motion or Weiner process influenced by friction. 
According to Önalan (2009) and Khansari-Zadeh & Billard (2011), the OU process can be conceived as either a 
discrete-time or a continuous-time drift of a phenomenon. In other words, is a mathematical model that provides 
true and accurate representations of a dynamical process of a stationary stochastic process (Donado et al., 2017). 

The OU stochastic process is a resonance and noise-induced transition with three random processes; 
stationary Gauss (Gaussian process), Markov process, and temporal homogeneity of the Brownian or diffusion 
particles (Kyprianou, 2006). The mathematical representation of the stochastic process can also either be a linear 
or non-linear dynamical systems. The Ornstein-Uhlenbeck process adopted the non-linearity dynamical systems 
from the inherited of the non-linearity of the second trait (Markov process) due to its noisy drift, thresholds, 
transitions and space patterns (Mallick & Marcq, 2004). The non-linear dynamical systems absolved and inter-
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correlated with the OU process because of the interplay of noisy non-linearity by the Markov random process 
phenomena in both the theoretical and practical study. The advantage of the non-linear system in the OU process 
renewed and revitalized the Langevin’s description of Brownian motion in fields likes bimolecular study, 
electronic system, mechanical system (random interaction), financial transitions, and spatial analysis (Hernandez-
Machado et al., 1984). The non-linearity dynamical systems in OU process can be defined via Langevin-stochastic 
random process by additive or multiplicative noise of either an Ordinary Differential Equation (ODE) or 
approximation of equations. 

The non-linear dynamic based models are stochastic processes that ranges from discrete-time dynamical 
systems with hidden state, learning stability and variations via Gaussian Mixture models, Kalman Filter; OU and 
Laguerre stochastic processes; Squared Radial Ornstein–Uhlenbeck stochastic diffusion processes; Gaussian 
Process Approximations of Stochastic Differential Equations etc. (Bibbona et al, 2008; Uhlenbeck & Ornstein, 
1930). All but two of the aforementioned processes are ODEs based expect for OU and learning stability and 
variations via Gaussian Mixture models that are processes for low-filtered white-noise models with stochastic error 
(error term subjected to time series models). There is need for non-linear dynamic OU process driven by Lévy 
process embedded in Brownian process coupled with a data driven analysis. 

The problem of modeling disturbance phenomena via systems of equation has been increasing alarming. 
Apart from the fact that continuous paths or stochastic observational series of dynamics of linear systems are 
usually used in place of dynamics of non-linear systems. The stochastic white noises for the processes of driven 
Ornstein–Uhlenbeck model are conventionally the Brownian (Weiner) and Levy processes. Sometimes, Laguerre 
stochastic process is usually adopted. No distinct of the aforementioned processes have been pinpointed to be ideal 
dynamical systems that are non-linear in nature for a better model performance and adequacy.  It is in this light; 
this research work would be employing the Newton–Raphson iterative procedure via the Quasi Maximum 
likelihood (QML) method of parameter estimation to estimate embedded parameters. The Naira-Euro exchange 
rate will be time varying series to be used in validating the aforementioned estimates. 
 
2. METHOD 
Dynamical driven processes (Weiner and Lévy processes) in this study are considered as the forces for arriving at 
a better OU model ideal performance in terms of parameters, adequacy, as well as better prediction using a 
continuous path or time experimental data. To capture the dynamical driven processes of the systems, both the 
driven processes and OU model will adopt the Gaussian probability distribution of stochastic systems. The 
distribution can be approached from the angle of probability measure. This approach will give a better 
understanding of the complexity of the behavior of the non-linear dynamical systems. Given an example of system 
of equations below: 
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The variables given by 1 2( , , , )nX x x x 
 at the right hand sides of equation (1) of each derivative function 

with respect to “t” evolving around with time. All in all, the rate of change depends on the measurement of other 
variables, if otherwise, that is, in a non-linear way, then it will be referred to as non-linear dynamic system 
(Strogatz, 1994; Kleeman; 2011).  
 
2.1 Stochastic Process 

According to Valdivieso et al. (2009), random process 
 ( )X X t

 can be referred to as an OU process if it 
meets the stochastic differential equation  below: 

        0
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                                       (2)           

Where   and    are stringently positive intensity parameters and X  is the independent random variable of the 

standard Brownian motion of B =
 ( )B t

.   
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2.2 Ornstein–Uhlenbeck (OU) Process Determined by Brownian Motion 
A non-dynamical process via Brownian motion for a single dimensional (that is a AR (1) like Markov-Gaussian 
could be set as a solution to the stochastic differential equation in (2) as 

           ( ) ( ) ( )X t X t t B t                                                (3) 
If the rate of interest at time “t” & “k” is a reference point for the rate of interest, then 

           0( ) ( ( ) ) ( ); oX t X t k t B t X x        
                        (4) 

 
2.3 Ornstein–Uhlenbeck (OU) Process Determined by Lévy Process 
From equation (2) 
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Integrating with respect to " "t  
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For " "s of the standard Brownian motion that is a Markov-Gaussian process 

with auto-covariance function  
   ,, s tV s t E X X
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3. PARAMETER ESTIMATION OF THE CONFLATED DRIVEN PROCESSES OF BROWNIAN AND 
LÉVY 

If a Lévy process is such that 0 1 2( ), ( ), ( ), , ( )nX t X t X t X t
 are sample of the stationary process  

0 1 2, , , , nx x x x
 such that their observed values is 1 1t ty x 

. Then the transition density of the OU  
process at one-dimensional (that is, at autoregressive of order one) via Markovian and Gaussian property is  
as:   
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Shirking the parameters in the likelihood function into a parameter space 
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Minimizing the observed the maximum likelihood via log-likelihood function 
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The embedded parameters equation (11) will be estimated by adopting the Newton–Raphson iterative procedure 
for a no close form solution initially. 
 
4. RESULTS AND DATA ANALYSIS 
4.1 Empirical Results 
The dataset used to validate the OU process driven by the blended process of Lévy and Brownian motion is the 
monthly exchange rates of Naira-Dollar from 2009 to 2019. The dataset was extracted from the website of Central 
Bank of Nigeria. The rates are the ones termed as the standard rates for international currency.  

 
Figure 1: The Time plot of the Ten years Exchange Rate of Naira-Dollar 

From the time plot in figure1 above, it is obvious that the rate started with a moderate exchange between 305 
and 315 in the early stage of 2010, then skyrocketed to 336 towards ending of 2010. A continuous slumping in 
exchange rate was experienced between early 2011 to the beginning of 2014, a spurious jump was experienced at 
the first quarter of 2014. However, a continuous constant in the exchange rate commenced from the of second 
quarter of 2014 till second quarter of 2016, before a deteriorating exchange rates were recorded towards ending of 
2016. A notable oscillation (zig-zag trend) with upper limit of 310.00 and lower limit of 303 was experienced from 
the ending of 2017 till 2019.   
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Table 1: Descriptive Statistics for the Monthly Exchange Rate of Naira -Dollar 
Indexes Min. 1st Qu.   Median  Mean 3rd Qu. Max. S.D. 
Estimates 303.8      309.9    316.0    318.6    316.89   336.0 0.004 

From table 1 above, the minimum rate over the ten years is 303 and the maximum is 336.0 over the stipulated 
studied of interest. However, the range is 32.2, while the rates for the ten years were clustered around 318.6. The 
variations among the exchange rates were estimated to be 0.004 (0.4%) which suggested a less dispersed among 
the observations. The value of the median conjoined with the value of the mean. The first and third quarters of the 
rates are 309.9 and 316.89 respectively.  

Table 2: Stationary Test and Skewed Coefficient 
Tests/ Coefficients P-value 
Box-Pierce test < 2.2e-16 
Skewness -0.2614616 
Kurtosis -0.6986375 
Phillips-Perron (PP) Unit Root Test 0.02706 
Augmented Dickey-Fuller (ADF)Test 0.01 
KPSS Test for Level Stationarity 0.02902 

From table 2, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) is one of the fundamental tests for trend 
stationary (stationary around a deterministic trend) of the observable series. The trend is expressed as the sum of 
deterministic trend, random walk and stationary error, however, since the P-value=0.02902 for the KPSS test is 
less than the 5% level of the significant level, the observable series of the exchange rate is stationary.  The ADF 
test, which serves as complement test for KPSS yielded a P-value=0.01 that is less than % level of the significant 
level, with conjoined decision. The Phillips-Perron (PP) unit root test with P-value=0.02706< 0.05 suggested an 
integrated lag of greater than one.   

 
Figure 2: The Auto-Correlation Function 
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Figure 3: The Partial Auto-Correlation Function 

The selection criteria of tentative time series models are normal achieved by matching estimated 
autocorrelations with the theoretical autocorrelation. The Box and Jenkins ARIMA models can be shown to be 
optimal and provides a systematic approach to model selection, utilizing all the information contained in the sample 
autocorrelations (ACF) and partial autocorrelation (PACF) functions. The ACF and PACF are meaningful only 
when applied to stationary series. The matching of the first twenty (20) estimated sample autocorrelations and 
partial autocorrelations of the underlying stochastic processes from the Log exchange rate series suggested that 
the series were stationary, with the ACF and PACF of the resulting series as shown in table 3 belows. The 
correlelogram for the ACF and PACF of the underlying stochastic processes is as shown in figure 2 and figure 3.  

Table 3: Sample ACF, PACF, and AIC for the realization of the Exchange Rates 
Lag/Order ACF PACF AIC 
1 0.9787 0.9723 20.5642 
2 0.3724 -0.0356 18.4563 
3 0.9546 0.9552 15.2988 
4 0.4560 0.0068 25.8840 
5 0.0345 -0.0524 27.4902 
6 0.1890 0.0008 21.8948 
7 0.7056 0.3102 19.6350 
8 0.5039 -0.066 23.6893 
9 0.6590 0.0034 17.088 
10 0.5824 0.0100 18.0452 
11 0.3210 -0.0721 28.9086 

From the sampled ACF and PACF above, it could be deduced that the lag that supposed to decay 
exponentially, but usually difficult to assess the order of an AR process from the sampled ACF alone. For higher 
order process, the ACF maybe a mixture of damped exponential function. However, using the Auto-Correlation 
Function (ACF), Partial Auto-Correlation Function (PACF), and Alkaike Information Criteria (AIC), it was 
deduced that the values of the ACF and PACF at lag three (1) has the highest values with 0.9787 and 0.9723 
respectively. In addition, the AIC at lag one (1) has the least AIC from the pool of AICs from lag one to lag eleven. 

Table 4: The AIC, BIC, RMSE, and MSE for Autoregressive (AR) realization. 
Model AIC BIC RMSE MSE (%) 
AR(1) 941.45 945.89 0.0211 15.4 
AR(2) 985.7 977.1 0.0215 16.6 
AR(3) 959.8 963.56 0.0036 10.57 
AR(4) 984.3 970 0.02094 17.45 
AR(5) 983.4 966.2 0.0208 13.98 
AR(6) 982.8 962.7 0.0207 19.28 
AR(7) 986.4 963.5 0.01979 16.6 
AR(8). 962.1 964.4 0.01979 14.20 
AR(9) 959.9 960.1 0.01975 14.100 
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 10.7204 305.9? 0.043t tX X   �
                                            (12) 

In collaboration with the ideal realization and representation of lag three of the ACF and PACF. The AIC, 
BIC, RMSE, and MSE yielded the fitted model of AR (1) with all the roots lying outside the unit circle, that is the 

coefficients 1 1 
( -0.7204) less than 1. 

Table 5: The OU process driven by Brownian motion and Lévy Process Statistics for X (t) at time t = 10 for the 
AR (1). 

Estimates Coefficients  
Drift 2.9921 Log-Likelihood= 475.7572 
Diffusion 0.1672 AIC= 483.7572 
Median             2.9903 BIC= 483.4782 
Mode               2.9392 RMSE=0.00101 
First quartile     2.6575 MSE=8.395 
Third quartile     3.3364  
Minimum            0.9042 coefficients Estimate Std. Error 
Maximum            4.5287 

 1  
0.6387 1.1875 
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   3  
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3th-order moment  0.0027  
4th-order moment   0.1884  
5th-order moment  0.0144  
6th-order moment   0.2335  

C.I ( 1 ) 
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The drift and diffusion estimates for the OU driven by Brownian motion  and  Lévy process of AR(3) realization 
are; 

2.9921, ( ) 0.1672t B t     respectively. The 1 1 
for the AR(1) realization for the OU process are 

stationary also with
0.7204

 lies outside the unit circle. The AIC, BIC, RMSE, and MSE for the OU process 
are estimated to be 483.7572, 483.4782, 0.00101, and 8.395 respectively, compare to estimates of the same indexes 
for AR (1) of 767.5, 634.09, 0.3819, and 23.48. The criterion via the residuals from the OU process is smaller, 

which connotes that the errors approximated in using drift, Brownian motion and 1tx  to estimate tx
 is relatively 

small via the OU process.  
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Figure 4: The Transition Density for the OU Process. 

From figure 4, the OU process recoded a two switching regimes. It started with the initial state from 0.00 
diffusion and started fading at 0.04 and finally faded at 0.06 before the first regime manifested at 0.061 an elapsed 
0.08. The second and the last regime was embarked at 0.10 and finished at 0.14.    
 
5 CONCLUSION 
The non-linear time series process via the OU process of OU process embedded by AR (1) with two regimes 
switching. It started with the initial state from 0.00 diffusion and started fading at 0.04 and finally faded at 0.06 
before the first regime manifested at 0.061 an elapsed 0.08. The second and the last regime was embarked at 0.10 
and finished at 0.14.   The criterion via the residuals from the OU process is smaller, which connotes that the errors 

approximated in using drift, Brownian motion and 1tx   to estimate tx
 is relatively small via the OU process. 

Justifiably, the OU process, apart from the fact that it was able to reduce the long memory and noisy part of the 
Naira-Dollar exchange rates, it catered, unveiled, cognizance and accommodated the five regimes-switching 
Naira-Dollar exchange rates. The residual of the fitted OU process seemed linear, which is a suggestion of ideal 
realization without of the chosen fitted model.  For it to be ideal, it has satisfied the constant variance assumption 
and the normality assumption.  

Having considered the OU process, it was noted that OU process of AR (3) realization model performed 
better for the financial data with smallest Minimum AIC, BIC, RMSE, MSE with 483.7572, 483.4782, 0.00101, 
and 8.395 respectively, compare to estimates of the same indexes for AR(1) of  767.5, 634.09, 0.3819, and 23.48 
and ability  to capture  drift and diffusion coefficients in the unstable  financial data.   Therefore, OU process, 
given our findings above, is a more adequate and fitting model to a fluctuating financial time series data. 
 
Recommended Further Researchable Area 
In recommendation of this research work, swinging time varying financial data should not always be subjected 
to non-cluster varying models like GARCH, APARCH, GJR-GARCH, SETAR etc. because those models won’t 
be able to capture to drift and diffusion. 

Further research to be dealt are in the following areas: Moving Average realization of OU process; Subsets 
of Auto-Regressive realization of OU process; Generalized Auto-Regressive Conditional Heteroscedasticity 
realization of OU process; Violating the white noise assumption of normality which might lead to either using 
Generalized Error Distribution (GED) or student-t- distribution for the realization of OU process as an alternative 
for Gaussian distribution. 
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