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ABSTRACT 

The best classification rule is the one that leads to the smallest probability of misclassification which is called the 

error rate. This work focused on three classification rules for mixture of discrete and continuous variables with 

the aim to evaluate the performance of these rules to in classification of individuals into several categories. 

Applications were done using simulated data and real life data. The result obtained revealed that the location 

model achieved better result than the other two rules in minimizing the average error rate in both datasets. 
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1 Introduction   

Discriminant analysis is a statistical method that enable one in understanding the differences of objects between 

two or more groups with respect to several variables simultaneously Hamid (2010). We use discriminant analysis 

when we have a categorical outcome. The assumption of normality must be satisfied for one to use this statistical 

technique. When the assumption fails, we resort to logistic regression, which is assumption free. In discriminant 

analysis, researchers are often faced with misclassification problems when assigning an unknown observation to 

a group with low error rate, therefore in order to avoid misclassification problem which could lead to losses 

incurred by the estimation procedure when converting discrete to continuous or continuous to discrete, 

Krzanowski (1975a) developed the location model which can handle mixed variables on classification 

simultaneously. He showed that, the model yielded a better result than the linear discriminant function did. Based 

on his findings, this paper will centre on determining the average error rate for the Location Model (LM), Linear 

Discrimination Function (LDF) and Quadratic Discrimination Function (QDF). One of the significant of this 

research is that it will help to determine the strength and weakness of the models in terms of the losses in the 

estimation procedures. 

In this paper we will also look at the problem of discriminant analysis when an individual is to be allocated to 

one or the other when the data comprises a mixture of discrete and continuous variables without incurring many 

losses in the estimation procedure when converting variables from discrete to continuous or from continuous to 

discrete. According to Krzanowski (1975b), the binary variables (𝑥) expressed as multinomial variable having 

𝑘 = 2𝑞 states and continuous variables (y) has a multivariate normal distribution with mean (𝜇) and common 
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dispersion matrix Σ  in all cells. The optimal decision is to construct a rule that minimizes the average of the two 

probabilities of misclassification that is (𝑃1 + 𝑃2) 2⁄  is minimized, where 𝑃1(𝑃2) represents the probability that 

an observation from 𝜋1(𝜋2) is classified into𝜋2(𝜋1) . 

2 Methodology 

The data used for this research work was based on the simulated and real data. In the simulated data, a data set 

was generated using R-Programming language and the average error rate were computed for 2 < q < 10 and 0.1 < 

P1 P2 < 0.9 for two situations, that is situation (a) a case with no interaction between discrete and continuous and 

situation (b) a case involving interactions between discrete and continuous variables, also q, are the components 

of the discrete variables x and p are the components of the continuous variable, y. The real data came from 

primary and secondary source. 

The primary data consist of 12 variables obtained from project implementation which involved ten continuous 

variables and (2) two were discrete. The secondary data consist of 15 variables obtain from UNDP report on 

Human Development Index. Thirteen variables are continuous and two are discrete. 

2.1 Location model 

The location model was introduced by Krzanowski (1975c) provided a method for discriminating between two 

groups and allocating individuals to one or the other, when the available data consists of both binary and 

continuous variables 

This model is a predictive discriminant rule that can be used to assign new observations into one of the two 

predefined groups Mahat  et al (2009). 

In the development of this model Krzanowski made use of both continuous and categorical variables. 

Let 𝑥, denote the vector of discrete variable with q, components and y, represent the vector of the continuous 

variables with P, components. If the discrete variables have been allocated to an individual cell j, the continuous 

variables, y, have a multivariate normal distribution with mean 𝜇 (i) and dispersion matrix Σ, in population 𝜋i. 

𝜋i(i = i, 2, j = 1.2). Then the conditional probability density of j is 

1

(2𝜋)𝑐 2⁄ |𝛴|
1

2⁄
𝑒𝑥𝑝 {−

1

2
(𝑦 − 𝜇𝑖

(𝑗)
) ′𝛴−1(𝑦 − 𝜇𝑖

(𝑗)
)} in 𝜋𝑖 , (𝑖 =  1,2).      (1) 

 

Thus, the joint probability density of obtaining the individual in cell j and observing the continuous variable 

value, y, is 

𝑦, is 
𝑝𝑖𝑗

(2𝜋)
𝑐

2⁄ |𝛴|
1

2⁄
𝑒𝑥𝑝 {−

1

2
(𝑦 − 𝜇𝑖

(𝑗)
) ′𝛴−1(𝑦 − 𝜇𝑖

(𝑗)
)} in 𝜋𝑖, (𝑖 =  1,2)     (2) 

 

2.2 Estimation of Error Rates 

If the parameter is known in the location model, the error rates are given in (3) and (4) below 

 𝑝(2 1⁄ ) = ∑ 𝑝1𝑚
𝛷(𝑙𝑜𝑔(𝑃2𝑚

𝑝1𝑚
⁄ ) −1

2⁄ 𝐷𝑚
2 𝐷𝑚⁄ )𝑘

𝑚=1       (3) 
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                            𝑝(1 2⁄ ) = ∑ 𝑝2𝑚
𝛷(𝑙𝑜𝑔(𝑝1𝑚

𝑝2𝑚
⁄ )−1

2⁄ 𝐷𝑚
2 𝐷𝑚⁄ )𝑘

𝑚=1      (4) 

where, 𝛷 is the cumulative standard normal distribution function and 

  𝐷𝑚
2 = (𝜇1

(𝑚)
− 𝜇2

(𝑚)
)∑ (𝜇1

(𝑚)
− 𝜇2

(𝑚)
)−1       (5) 

is the Mahalanobi’s squared distance between 𝜋1 and 𝜋2 in cell 𝑗 of the multinomial table. 

 

2.3 Fisher’s linear discriminant function 

Fisher suggested using a linear combination of the observations and choosing the coefficients so that the ratio of 

the differences of the means of linear combination in the two of groups to its variance is maximized. 

In Fisher’s approach, the linear combination is denoted by 𝑌 = 𝜆Ι𝑥, the mean of 𝑦 is 𝜆Ι𝜇1, in 𝜋1 and 𝜆Ι𝜇2 in 

𝜋2. Its variance  𝜆Ι∑𝜆 in either population and covariance matrices ∑1 = ∑2 = ∑. In practical term the general 

form of linear discriminant function is  

            𝑌 = 𝐿1𝑋1 + 𝐿2𝑋2 + ⋯ + 𝐿𝑝𝑋𝑝       (6) 

The coefficients are estimated by solving the simultaneous equations. 

 𝑌 = 𝐿1𝑆𝑖1 + 𝐿2𝑆𝑖2 + ⋯+ 𝐿𝑝𝑆𝑖𝑝 = 𝑑𝑖        (𝑖 = 1, 2,⋯ , 𝑝)     (7) 

 

Where 𝑆𝑖𝑗  are the elements of the pooled dispersion matrix and 𝑑 = �̅�𝑖2 − �̅�𝑖1 and the equation above can be 

written in matrix form as 

 

[
 
 
 
𝑆11      𝑆12   ⋯  𝑆1𝑝

𝑆21      𝑆22   ⋯  𝑆2𝑝

⋮             ⋮         ⋮
𝑆𝑝1      𝑆𝑝2   ⋯  𝑆𝑝𝑝]

 
 
 

[

𝐿1

𝐿2

⋮
𝐿𝑝

] = [

𝑑1

𝑑2

⋮
𝑑𝑝

] 

 

2.4 Quadratic discriminant analysis 

Quadratic Discriminant Analysis (QDA) is a standard probabilistic classification method in statistics and 

machine learning and it assumes class-conditional distribution to be normal and then classifies given point, by 

the posterior distributions Wenbo (2015). The densities of class conditional probabilities can be written as 

𝑃(𝑋 = 𝑥/𝑌 = 𝐾; 𝜇𝐾𝛴𝐾) =
1

√(2𝜋)𝐷 𝑑𝑒𝑡 𝛴𝑘
ℓ1/2(𝛸−𝜇𝐾)𝑇 ∑ (𝛸 − 𝜇𝐾)−1

𝑘      (8) 

where 𝜇𝑘and 𝛴𝑘are the mean and covariance matrix of the class conditional probability for class 𝑘. 

 

The posterior probabilities can be derived via Bayes theorem. That is, 

𝑃(𝑌 = 𝑘/𝑋 = 𝑋𝑖𝜇1 … 𝜇𝑘,𝛴1 …𝑘 , 𝛱) =
𝛱𝑘𝑃(𝑋/𝐾;𝜇𝐾𝛴𝐾)

∑ 𝛱𝐾 𝑃(𝑋𝐾/𝐾;𝜇𝐾,𝛴𝐾)𝐾
𝐾−1

     (9) 

where ,1... k 𝛴1. . . 𝛴𝑘𝑎𝑛𝑑𝛱 = (𝛱1 𝛱2, . . . , 𝛱𝑘) are unknown parameters. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.11, No.3, 2021 

 

24 

 

In classical QDA, 𝛱′
𝑘
𝑆
, 𝜇′

𝑘
𝑆
 𝑎𝑛𝑑𝛴′

𝑘
𝑆
 are estimated by maximizing the joint likelihood of observations and their 

labels which can be formally written as follows: 

𝑀𝑎𝑥 Π 𝛱𝑦𝑛
𝑘
𝑘−1 − 𝑘𝑃(𝛸 = 𝑥𝑛/𝑌 = 𝑘; 𝛴𝑘; 𝜇𝑘)𝛱𝑘        (10)

 

𝛴𝑘 > 0 𝑘  = 1,  2,⋯ , 𝑘, 

𝛱𝑘  > 0 𝑘  = 1,  2,⋯ , 𝑘; 

s.t. ∑ 𝛱𝑘 = 1𝑘
𝑘=1 . 

 

If 𝛴𝑘 > 0 , the 𝛴𝑘is a positive definite matrix. The estimations can be obtained using the following 

�̂�𝑘 = 
𝑁𝑘

𝑁
         (11) 

            𝜇𝑘
2  =

1

𝑁𝐾
∑ 𝑥𝑛𝑦𝑛=𝑘

 (12) 

 

∑ = 
1

𝜇𝑘

2
𝑘  ∑ (𝛸𝑛 − 𝜇𝑘

2)𝑦𝑛=𝑘 (𝛸𝑛 − 𝜇𝑘
2)𝑇         (13) 

and ∑ = ∑
𝜇𝐾

𝑁

𝑘
𝑘=1  2

0   

 𝑁𝑘 is the number of class k observations in the given training set. 

3 Estimations 

The result of the simulated data is shown in the tables below. The simulated data was generated with R-

Programming Language and average error rates were computed as stated in methodology. 
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Table 3.1: Average Error Rate for 2≤ 𝒒 ≤5 & 0.1 ≤ P1, P2 ≤ 0.9 

   q = 2 q = 3 q = 4 q = 5 

P1 P2 Situation  LM LDF QDF LM LDF QDF LM LDF QDF LM LDF QDF 

 0.1 A 0.2323 0.2453 

 

0.2490 

 

0.2490 

 

0.2608 

 

0.2453 

 

0.2520 

 

0.2435 

 

0.2369 

 

0.2790 

 

0.2580 0.3237 

  B 0.2560 0.2620 

 

0.2533 

 

0.2478 

 

0.2515 

 

0.2563 

 

0.2585 

 

0.2500 

 

0.2356 

 

0.2510 

 

0.2343 0.3225 

 0.3 A 0.2605 0.2708 

 

0.2493 

 

0.2660 

 

0.2503 

 

0.2463 

 

0.2315 

 

0.2423 

 

0.2339 

 

0.2540 

 

0.2538 0.2761 

  B 0.2765 0.2448 

 

0.2515 

 

0.2583 

 

0.2485 

 

0.2588 

 

0.2463 

 

0.2513 

 

0.2280 

 

0.2433 

 

0.2450 0.2783 

0.1 0.5 A 0.2665 0.2575 

 

0.2545 

 

0.2405 

 

0.2400 

 

0.2465 

 

0.2568 

 

0.2420 

 

0.2369 

 

0.2560 

 

0.2515 0.2592 

  B 0.2388 0.2555 

 

0.2418 

 

0.2455 

 

0.2658 

 

0.2413 

 

0.2485 

 

0.2510 

 

0.2796 

 

0.2435 

 

0.2628 0.2630 

 0.7 A 0.2425 0.2503 

 

0.2528 

 

0.2668 

 

0.2465 

 

0.2463 

 

0.2665 

 

0.2468 

 

0.2406 

 

0.2420 

 

0.2613 0.2611 

  B 0.2415 0.2680 

 

0.2368 

 

0.2595 

 

0.2580 

 

0.2455 

 

0.2555 

 

0.2423 

 

0.2187 

 

0.2586 

 

0.2783 0.2640 

 0.9 A 0.2265 0.2420 

 

0.2523 

 

0.2443 

 

0.2343 

 

0.2520 

 

0.2383 

 

0.2543 

 

0.2678 

 

0.2570 

 

0.2345 0.2600 

  B 0.2475 0.2618 

 

0.2525 

 

0.2538 

 

0.2538 

 

0.2515 

 

0.2535 

 

0.2690 

 

0.2538 

 

0.2660 

 

0.2438 0.2640 

 0.3 A 0.2490 0.2530 

 

0.2410 

 

0.2520 

 

0.2450 

 

0.2490 

 

0.2518 

 

0.2350 

 

0.2378 

 

0.2403 0.2428 0.3224 

  B 0.2295 0.2743 

 

0.2410 

 

0.2615 

 

0.2515 

 

0.2480 

 

0.2483 

 

0.2435 

 

0.2650 

 

0.2518 0.2558 0.3186 

0.3 0.5 A 0.2463 0.2540 

 

0.2463 

 

0.2505 

 

0.2628 

 

0.2380 

 

0.2550 

 

0.2608 

 

0.2448 

 

0.2570 0.2475 0.3064 

  B 0.2570 0.2633 

 

0.2520 

 

0.2473 

 

0.2613 

 

0.2585 

 

0.2560 

 

0.2510 

 

0.2630 

 

0.2528 0.2470 0.3032 

 0.7 A 0.2385 0.2478 

 

0.2448 

 

0.2515 

 

0.2783 

 

0.2508 

 

0.2590 

 

0.2450 

 

0.2600 

 

0.2405 0.2463 0.2882 

  B 0.2248 0.2583 

 

0.2488 

 

0.2523 

 

0.2535 

 

0.2445 

 

0.2513 

 

0.2473 

 

0.2378 

 

0.2323 0.2350 0.2875 

 0.9 A 0.2565 0.2328 

 

0.2520 

 

0.2378 

 

0.2438 

 

0.2598 

 

0.2558 

 

0.2448 

 

0.2383 

 

0.2363 0.2488 0.2730 

  B 0.2278 0.2483 

 

0.2463 

 

0.2293 

 

0.2328 

 

0.2345 

 

0.2533 

 

0.2625 

 

0.2625 

 

0.2478 0.2625 0.2800 

 0.5 A 0.2235 0.2748 

 

0.2493 

 

0.2513 

 

0.2558 

 

0.2510 

 

0.2520 

 

0.2440 

 

0.2473 

 

0.2438 0.2803 0.3164 

0.5  B 0.2428 0.2450 

 

0.2455 

 

0.2533 

 

0.2475 

 

0.2488 

 

0.2540 

 

0.2468 

 

0.2600 

 

0.2430 0.2580 0.3222 

 0.7 A 0.2595 0.2475 

 

0.2455 

 

0.2503 

 

0.2470 

 

0.2510 

 

0.2510 

 

0.2485 

 

0.2490 

 

0.2350 0.2580 0.3403 

  B 0.2458 0.2705 

 

0.2523 

 

0.2508 

 

0.2463 

 

0.2470 

 

0.2298 

 

0.2518 

 

0.2605 

 

0.2436 0.2343 0.3391 

 0.9 A 0.2503 0.2330 

 

0.2498 

 

0.2575 

 

0.2350 

 

0.2475 

 

0.2533 

 

0.2540 

 

0.2508 

 

0.2598 0.2538 0.3328 

  B 0.2438 0.2703 

 

0.2450 

 

0.2288 

 

0.2488 

 

0.2468 

 

0.2505 

 

0.2523 

 

0.2500 0.2498 0.2450 0.3297 

 0.7 A 0.2388 0.2410 

 

0.2513 

 

0.2635 

 

0.2625 

 

0.2458 

 

0.2595 

 

0.2680 

 

0.2490 

 

0.2503 0.2515 0.3460 

0.7  B 0.2715 0.2705 

 

0.2448 

 

0.2403 

 

0.2803 

 

0.2510 

 

0.2505 

 

0.2568 

 

0.2523 

 

0.2703 0.2623 0.3492 

 0.9 A 0.2363 0.2383 

 

0.2453 

 

0.2473 

 

0.2580 

 

0.2643 

 

0.2420 

 

0.2538 

 

0.2513 

 

0.2438 0.2580 0.3237 

  B 0.2315 0.2630 

 

0.2390 

 

0.2383 

 

0.2418 

 

0.2535 

 

0.2458 

 

0.2578 

 

0.2488 

 

0.2430 0.2343 0.3225 
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   q=6 q=7 q=8 q=9 

P1 P2 Situation  LM LDF QDF LM LDF QDF LM LDF QDF LM LDF QDF 

 0.1 A 0.2777 0.2582 0.3240 0.2794 0.2564 0.3235 0.2782 0.2529 0.3218 0.2782 0.2563 0.3244 

  B 0.2493 0.2350 0.3221 0.2514 0.2329 0.3225 0.2520 0.2287 0.3204 0.2540 0.2364 0.3209 

 0.3 A 0.2550 0.2524 0.2747 0.2539 0.2521 0.2760 0.2566 0.2576 0.2778 0.2545 0.2484 0.2770 

  B 0.2460 0.2444 0.2790 0.2451 0.2462 0.2763 0.2460 0.2512 0.2756 0.2470 0.2446 0.2747 

0.1 0.5 A 0.2569 0.2516 0.2589 0.2563 0.2479 0.2594 0.2560 0.2413 0.2595 0.2537 0.2469 0.2600 

  B 0.2437 0.2630 0.2634 0.2441 0.2617 0.2630 0.2458 0.2594 0.2641 0.2439 0.2622 0.2613 

 0.7 A 0.2447 0.2609 0.2607 0.2431 0.2595 0.2615 0.2482 0.2544 0.2624 0.2437 0.2609 0.2609 

  B 0.2581 0.2782 0.2638 0.2584 0.2788 0.2640 0.2604 0.2810 0.2644 0.2601 0.2778 0.2638 

 0.9 A 0.2575 0.2536 0.2601 0.2578 0.2522 0.2600 0.2592 0.2513 0.2594 0.2611 0.2511 0.2588 

  B 0.2661 0.2439 0.2637 0.2665 0.2459 0.2644 0.2667 0.2470 0.2633 0.2656 0.2465 0.2661 

 0.3 A 0.2405 0.2428 0.3229 0.2408 0.2454 0.3227 0.2413 0.2491 0.3242 0.2419 0.2471 0.3201 

  B 0.2494 0.2560 0.3188 0.2520 0.2564 0.3175 0.2482 0.2555 0.3194 0.2489 0.2605 0.3163 

0.3 0.5 A 0.2561 0.2472 0.3054 0.2587 0.2466 0.3070 0.2572 0.2460 0.3060 0.2594 0.2432 0.3059 

  B 0.2520 0.2472 0.3037 0.2545 0.2463 0.3050 0.2536 0.2458 0.3026 0.2544 0.2480 0.3026 

 0.7 A 0.2428 0.2469 0.2854 0.2407 0.2483 0.2884 0.2434 0.2454 0.2912 0.2416 0.2529 0.2878 

  B 0.2222 0.2363 0.2875 0.2316 0.2365 0.2889 0.2472 0.2290 0.2898 0.2315 0.2423 0.2871 

 0.9 A 0.2346 0.2484 0.2728 0.2381 0.2498 0.2732 0.2381 0.2547 0.2731 0.2374 0.2506 0.2742 

  B 0.2487 0.2630 0.2800 0.2469 0.2633 0.2816 0.2456 0.2638 0.2840 0.2488 0.2660 0.2787 

 0.5 A 0.2428 0.2803 0.3154 0.2437 0.2798 0.3174 0.2422 0.2758 0.3163 0.2455 0.2826 0.3160 

0.5  B 0.2450 0.2589 0.3218 0.2440 0.2567 0.3229 0.2245 0.2478 0.3203 0.2436 0.2596 0.3259 

 0.7 A 0.2353 0.2582 0.3405 0.2372 0.2564 0.3426 0.2333 0.2529 0.3463 0.2372 0.2563 0.3419 

  B 0.2436 0.2350 0.3391 0.2439 0.2329 0.3392 0.2435 0.2287 0.3390 0.2445 0.2364 0.3423 

 0.9 A 0.2634 0.2523 0.3330 0.2606 0.2521 0.3335 0.2609 0.2576 0.3337 0.2596 0.2484 0.3349 

  B 0.2493 0.2444 0.3302 0.2507 0.2462 0.3268 0.2543 0.2512 0.3270 0.2496 0.2446 0.3264 

 0.7 A 0.2508 0.2516 0.3452 0.2510 0.2479 0.3477 0.2507 0.2413 0.3486 0.2514 0.2469 0.3488 

0.7  B 0.2708 0.2630 0.3498 0.2690 0.2617 0.3461 0.2682 0.2594 0.3472 0.2690 0.2622 0.3417 

 0.9 A 0.2778 0.2582 0.3240 0.2794 0.2564 0.3235 0.2782 0.2529 0.3218 0.2782 0.2563 0.3244 

  B 0.2493 0.2350 0.3221 0.2514 0.2329 0.3225 0.2520 0.2287 0.3204 0.2540 0.2364 0.3209 
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                                            Average Error Rate for 6≤ 𝑞 ≤10 & 0.1 ≤ P1, P2 ≤ 0.9 

  

q=10 

LM LDF QDF 

0.2809 0.2548 0.3236 

0.2532 0.2305 0.3222 

0.2526 0.2505 0.2766 

0.2520 0.2510 0.2755 

0.2604 0.2492 0.2596 

0.2474 0.2629 0.2639 

0.2440 0.2542 0.2623 

0.2629 0.2806 0.2651 

0.2590 0.2534 0.2592 

0.2678 0.2482 0.2637 

0.2376 0.2494 0.3238 

0.2584 0.2536 0.3202 

0.2576 0.2479 0.3065 

0.2578 0.2431 0.3026 

0.2392 0.2492 0.2904 

0.2406 0.2389 0.2871 

0.2394 0.2490 0.2736 

0.2464 0.2638 0.2823 

0.2452 0.2791 0.3161 

0.2428 0.2577 0.3228 

0.2382 0.2548 0.3440 

0.2461 0.2305 0.3403 

0.2648 0.2505 0.3356 

0.2490 0.2510 0.3261 

0.2528 0.2492 0.3486 

0.2716 0.2629 0.3451 

0.2809 0.2548 0.3236 

0.2532 0.2305 0.3222 
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Table 3.2: Summary of the First Position in the Performance 

of the three Classification Rules using Simulated Data 

Classification Rule Situation A No. Situation B No. 

Location Model  𝑞 = 2, 𝑞 = 4, 

𝑞 = 6, 𝑞 = 8 

         𝑞 = 9, 𝑞 =10 

 

6 

𝑞 = 2, 𝑞 = 3, 

𝑞 = 5, 𝑞 = 6 

𝑞 = 7, 𝑞 = 8 

 

6 

LDF 𝑞 = 3, 𝑞 = 5 2 𝑞 = 10 1 

QDF NIL NIL NIL NIL 

 

3.1 Application to real data  

Table 3.3 below shows the result obtained for average error rate using the real data for the three classification 

rules 

                                                Table 3.3 

Data LM LDF QDF 

Primary 0.2400 0.2450 0.2600 

Secondary 0.2694 0.2796 0.2798 

 

4 Findings 

The study evaluated the performance of the Location Model (LM), Linear Discrimination Function (LDP) and 

Quadratic Discriminant Function (QDF) for mixture of discrete and continuous variables. The findings are as 

follows: 

a. The Location Model came first in terms of minimizing the average error rate (lower error rate) in the 

simulated experiment performed under two situations (a) and (b). In situation (a), q = 2, q = 4, q = 6, q = 7, 

q = 8, q = 9 and q = 10, while in situation (b) when q = 2, q = 3, q = 6, q = 7, q = 8 and q = 9. 

b. The Linear Discriminant Function (LDP) came first in situation (a) when q = 3, and q = 5 while in situation 

(b) when q = 10 

c. The Quadratic Discrimination Function came first in situation (b) when q = 4. 

d. The result indicated that, when there is evidence of interaction between discrete variables and populations, 

the average error rate from linear discriminant function and quadratic discriminant function tend to give 

very poor result than the location model. 

e. The result from the Location model and linear discriminant function also showed that proportion of error 

rate which is less than 30% is optimal in minimizing the probability of misclassification. 

f. The result of the application of the real data revealed that the location model came first with lower error 

rate real data analysis. 
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5 Conclusions 

The analysis shows that in classification of objects, losses in estimation procedure can cause disruption in the 

allocation role which may lead to some inflation of the error rate incurred in the experiment. The analysis and 

results obtained from this work indicated that the location model is considered good in terms of minimizing the 

average error rate. It gave better result than the other two classifications rule in the experiment conducted and 

performed better on real data analysis. 
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