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Abstract 

This paper investigates a batch arrival queueing system in which customers arrives at the 

system in a Poisson stream following a compound Poisson process and the system has a single 

server providing three types of general heterogeneous services. At the beginning of each 

service, a customer is allowed to choose any one of the three services and as soon as a service 

of any type gets completed, the server may take a vacation or may continue staying in the 

system. The vacation time is assumed to follow a general (arbitrary) distribution and the 

server vacation is based on Bernoulli schedule under a single vacation policy. During the 

server vacation period, impatient customers are assumed to balk. This paper described the 

model as a bivariate Markov chain and employed the supplementary variable technique to find 

closed-form solutions of the steady state probability generating function of number of 

customers, the steady state probabilities of various states of the system, the average queue 

size, the average system size, and the average waiting time in the queue as well as the average 

waiting time in the system. Further, some interesting special cases of the model are also 

derived. 

Keywords Batch Arrivals. Queueing System. Balking. Heterogeneous types of Service. 

Bernoulli schedule server vacation. Bivariate Markov Processes. 

MSC2020-Mathematics Subject Classification 34B07, 60G05, 62E15  

 

1 Introduction 

On daily basis, customers (human beings or physical entities) that need certain kind of service 

go to a service centre to receive such service (Enogwe, 2021). Usually, the service facility 

contains mechanism(s) called server(s) or service channel(s), which perform the service on 

customers (Enogwe, 2020). If the number of customers exceed the number of service facilities 

or the service facilities do not work efficiently and take more time than prescribed to serve a 

customer, then a queue is formed (Sharma, 2013).  

A queue is a line of customers that are waiting to be served in a particular service centre.  

Queues are seen in many places. For example, customers queue-up in the bank to make 

deposits, customers line-up in a canteen to buy food, vehicles wait in line at a petrol station 

for refuelling, students wait in line to be screened for admission, voters’ queue-up to cast their 

voters, customers wait in line in a supermarket to pay for groceries, patients wait in line in a 

hospital to see a doctor, machines wait in workshops to be repaired, mechanics wait in 

workshop to receive tools, trucks wait in warehouses to be unloaded or offloaded, vehicles 

wait on road for traffic lights, airplanes wait to take-off or land, order waits to be processed, 
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electronic messages wait to be delivered,  a train wait at outer signal for green signal, among 

others (Sharma, 2013; Gupta and Hira, 2013; Murthy, 2007; Hillier and Lieberman, 2001).  

Formation of queue is a common phenomenon whether it is visible (in case of human beings) 

or invisible (in case of inanimate object), but waiting in queue is one of the unpleasant and 

undesirable activities of life. Obviously, waiting is frustrating, demoralizing, agonizing, 

aggravating, annoying, time consuming and incredibly expensive. Great inefficiencies also 

occur because of other kinds of waiting than people standing in line. For example, machines 

waiting to be repaired may result in lost production. Vehicles that need to wait to be unloaded 

may delay subsequent shipments. Airplanes waiting to take off or land may disrupt later travel 

schedules. Delays in telecommunication transmissions due to saturated times may cause data 

glitches. Causing manufacturing jobs to wait to be performed may disrupt subsequent 

production. Delaying service jobs beyond their due dates may result in lost future business 

(Hillier and Lieberman, 2001).  

In order to reduce the length of queue in a service centre, the service capacity has to be 

increased. The method of reducing congestion by the expansion of service capacity may result 

in an increase in idle time of the service station and may become uneconomical for the 

organization. In addition, providing too much service capacity to operate the system involves 

high costs. But not providing enough service capacity results in excessive waiting and all its 

unfortunate consequences.  

Queueing theory is the mathematical study of “queues” or “waiting” lines. It uses queueing 

models to represent the various types of queueing systems that arise in practice. Formulae for 

each queueing model indicate how the corresponding queueing system should perform, 

including the average amount of waiting that will occur under a variety of circumstances. 

Further, queueing theory helps managers to reduce the waiting time of customers and suggests 

to the organization optimal number of service facilities to install, so that customer will be 

happy and the organization can run the business economically. The theory tries to strike a 

balance between the costs associated with waiting and costs of preventing waiting and helps 

analysts to determine the optimal number of service facilities required and optimal arrival rate 

of the customers of the system (Murthy, 2007). 

A classical queueing system is composed of customers or units needing some kind of service 

who arrive at a service facility where such service is provided, join a queue if service is not 

immediately available, and eventually leave after receiving service (Medhi, 2003). 

Two commonly used queueing models are Markovian and non-Markovian queueing models 

(Medhi, 2003). The queueing models in which both the interarrival time and the service time 

distributions are exponential are birth-death Markovian whereas models in which the 

distributions of either the interarrival time or the service time distributions or both are 

Erlangian are non-birth-death but nevertheless can be treated as Markovian. Markovian 

queues are well developed and excellent accounts of Markovian queueing theory can be found 

in Medhi (2003) and Sharma (2013) among many other standard books. Markovian queueing 

models are widely used in many fields because these models can be analysed with 
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considerable ease and they provide fairly good approximations for the interarrival time and 

the service time distributions.  Queueing models having interarrival times and service times 

which are not exponential or Erlangian are called non-Markovian queueing models. A 

particular class of non-Markovian queueing models which has been found useful in many 

fields is the batch arrival single-server queueing model.  

A batch arrival single server queueing system is one in which customers arrive for service in 

groups or in batches and are served individually by one server. Some examples of batch 

arrivals include families that go to a restaurant for lunch in a particular period of the day, 

convoy of a political officer that came to a filling station for refuelling and sets of triplets 

brought to a hospital for medical treatment. Other examples are batch of raw materials 

supplied to an industry for manufacturing, a group of imported items to be unloaded at a 

warehouse and so on. Batch arrival queueing models have found applications in 

telecommunication systems, banks, communication systems and large-scale manufacturing 

industries, to mention a few and have been extensively discussed in queueing theory 

literature. One could check Bailey (1954), Cox (1955), Keilson and Kooharian (1960), 

Borthakur and Medhi (1974), Ross (1980), Cohan (1982), Whitt (1983) for further details.  

Another class of queueing system commonly used in practice is the vacation queueing system. 

A vacation queueing system is one in which a server may become unavailable for random 

period of time from a primary service centre. The time away from the primary service centre 

is called a vacation, and customers who arrive while the server is on vacation will have to wait 

until the server returns from vacation. A vacation can be the result of many factors. In some 

cases, the vacation can be the result of server breakdown, which means that the system must 

be repaired and brought back to service. It can also be a deliberate action taken to utilize the 

server in a secondary service centre when there are no customers present at the primary 

service centre. Thus, server vacations are useful for those systems in which the server’s idle 

time is utilized for other purposes, and this makes the queueing model to be applicable to a 

variety of real-world stochastic service systems (Ibe, 2015). Applications that can be modelled 

by the vacation queueing systems include machine breakdowns and maintenance in 

communication and computer systems, production and manufacturing systems, airline 

scheduling, inventory systems among others.  

In a bid to developing mathematical queueing models, it is often assumed that the server is 

always available for providing service to customers. However, in practice, this assumption is 

not always true because the server may be unavailable for some time due to the fact that it is 

on vacation. During vacation time, the server may be performing supplementary job or it may 

be undergoing maintenance or it may simply take a break. Allowing the server to take 

vacations makes the queueing model more realistic and flexible in studying the real-life 

queueing problems. Vacation queueing models find applications in places like call centres 

with multi-task employees, customized manufacturing, telecommunication, and computer 

networks problems. Apart from the work of Levy and Yechiali (1975), which marks the 

beginning of vacation queueing models, several studies have been subsequently undertaken 

within the context of vacation queueing models by researchers like (Baba (1986); Borthakur 
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and Choudhury (1997); Chao and Zhao (1998); Choi and Park (1990); Choudhury (2000, 

2002); Choudhury and Madhuchanda (2005); Cramer (1989); Doshi (1986); Fuhrman (1981); 

Ibe (2015); Keilson and Servi (1987); Lee et al. (1995); Li and Zhu (1996); Madan and 

Choudhury (2005); Rosenberg and Yechiali (1993); Shanthikumar (1988); Tagaki (1991); 

Zhang and Vickson (1993)), among others.   

Another essential, but limiting, assumption of classical batch arrival queueing models is that 

there is no balking. By “balking,” we mean a situation whereby customers refused to join the 

queue either by seeing the number of customers already in queue (i.e., long length of the 

queue) or by estimating the duration of waiting time for a service to get completed. However, 

balking is, in fact, a usual practice in queueing systems because some customers upon seeing 

the length of the queue decide not to join the waiting line. For example, a customer that wants 

to go by train to his destination goes to railway station and after seeing the long queue in front 

of the ticket counter, may not like to join the queue and seek other type of transport to reach 

his/her destination. We see applications of queues with balking in emergency units in 

hospitals dealing with critical patients, communication systems, banks, production and 

inventory systems and many more.  Queueing models with balking have been discussed by 

(Altman and Yechiali (2006); Barrer (1957); Baruah et al. (2013); Doshi (1991); Hagighi et 

al. (1986); Haight (1957); Kumar and Sharma (2012); Madan (2002)), and many others. 

Moreover, studies by (Choudhury (2002); Choudhury and Mandhuchanda (2005) among 

several others) have a common assumption that the system has a single server who provides 

only one kind of service to the arriving customers. In order to obtain a more realistic model, 

Madan et al. (2005) proposed and studied a batch arrival queue with a single server providing 

two kinds of general heterogeneous service. In a related study, Anabosi and Madan (2003) 

introduced a single server queue with two types of service, optional server vacations based on 

Bernoulli schedule and single vacation policy, where vacation time was assumed to be 

exponentially distributed. Madan et al. (2005) extended the work of Anabosi and Madan 

(2003) to a case where both service and vacation times followed general and arbitrary 

distributions. Ebenesar Anna Bagyam and Udaya Chandrika (2011) developed a single server 

queueing model with impatient customers whereby the server provides two types of service 

and each arriving customer has the option of choosing either type of service. Baruah et al. 

(2012) investigated a batch arrival vacation queue with balking and re-service as well as two 

types of heterogeneous service. Ebenesar Anna Bagyam and Udaya Chandrika (2013) 

analysed a single server batch arrival retrial queueing system with optional extended server 

vacation, where server provides two stages of heterogeneous service in succession and each 

phase has two types of service that could be selected by the customers. Maragathasundari and 

Srinivasan (2012) carried out a transient analysis of single server batch arrival queue with 

Bernoulli feedback and three types of service. Another study by Maragathasundari et al. 

(2013) dealt with a batch arrival non-Markovian queueing model with three types of service 

and the server was assumed to follow multiple vacation policy. Recently, Mahanta and 

Choudhury (2018) introduced a non-Markovian batch arrival multiple vacation queue with 

two types of heterogeneous services with Bernoulli feedback.  
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In the literature relating to queueing theory, we do not find any single server model that 

combines batch arrivals, three types of heterogeneous service, balking and Bernoulli schedule 

server vacation. Motivated by the wide applicability of such a model, we propose a model 

which combines all these characteristics. This model has potential application in a flexible 

manufacturing system, where the parts to be processed arrives to a workstation in batches of 

random size instead of single units. A workstation may be in charge of three types of services 

at once. So, the vacation in our model may correspond to the time duration it is working on 

other secondary jobs such as maintenance work or simply taking rest. During the vacation 

period, several other customers may arrive and create a long queue. If any further customer 

arrives and refuses to enter the system on seeing the long length of the queue which resulted 

because the server is on vacation, then balking is said to have occurred. For this reason, our 

model has incorporated balking in its assumptions. Notably, server vacations, the types of 

services rendered by the server and the balking behaviour of customers have significant 

effects on system performance. The rest of the paper is organized as follows. Sect. 2 deals 

with mathematical description of the proposed queueing model. Definitions, notations and 

equations governing the proposed queueing model are given in Sect. 3. In Sect. 4 the results 

of the proposed queueing model are given. Some special cases of the proposed model are 

given in Sect. 5. The conclusion of this work is given in Sect. 6. 

2 Mathematical description of the proposed queueing model   

Queueing systems are described according to Kendall’s notation for naming queueing 

systems. To this end, the proposed queueing model is denoted by 
  ( ) ( )1 2 3/ /1/ / /

TY

s lkM G G G G BS V B , where ( )1 2 3

T
G G G stands for three types of general 

heterogeneous service (one of which has to be chosen by each customer), ( )G BS  denotes 

general service time under Bernoulli schedules and sV  denotes single vacations and lkB  

denotes “balking” customer behaviour. 

The following assumptions briefly describe the mathematical model being considered in this 

paper: 

(i) Customers arrive at the system in batches of variable size according to a compound 

Poisson process with arrival rate,  . Let the arrival batch size Y  be a random variable with 

probability mass function ( ) , 1, 2,3,...iP Y i c i= = = , then ( )1,2,3,...ic y i  =  denotes the first 

order probability that a batch of i  customers arrives at the system during a short interval of 

time ( ,y y y+  , where 0 1ic  , 
1

1i

i

c


=

= . 

(ii) There is a single server providing three types of general heterogeneous service to 

customers one by one on a first come, first served (FCFS) basis. Before a service starts, each 

customer can choose type 1 service with probability 1  or type 2 service with probability 2  or 

type 3 service with probability 3 , where 1 2 3 1  + + = .  The service times of the three types 

of services are assumed to follow different general (arbitrary) distributions. Let 

( ); 1, 2,3jG y j =  and ( ); 1, 2,3jg y j =  be the distribution function and density function of the 
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three types of heterogeneous services respectively. The conditional probability density of 

completion of the thj type of service during the interval ( ,y y dy+ , given that the elapsed 

service time is y , is given by ( )j y dy , so that 

  ( )
( )

( )
, 1, 2,3

1

j

j

j

g y
μ y j

G y
= =

−
                   (1) 

        ( ) ( )
( )

0 , 1, 2,3

y

j s ds

j jg y y e j



−

 = =                            (2) 

(iii) Once the service of a customer is completed, the server may go on a vacation of random 

length  of time with probability p , where 0 1p   or it may stay in the system to serve the 

next customer, if any, with probability ( )1 p− , otherwise, it may remain idle in the system if 

there is no customer requiring service. The vacation times are assumed to follow a general 

(arbitrary) distribution with distribution function ( )W y and probability density function 

( )w y , respectively.
 
Let ( )y dy  be the conditional probability of density of completion of a 

vacation period during the interval ( ,y y y+ , given that the elapsed vacation time is y , so 

that 

   

( )
( )

( )1

w y
y

W y
 =

−
                      (3) 

         
( ) ( )

( )
0

y

j v dv

w y w y e
−

 =                         (4) 

(iv) An arriving batch of customers balks during the period when the server is busy (available 

on the system) with probability ( ) ( )1 11 , 0 1 −   , so that 1  denotes the probability that 

an arriving batch of customers joins the system at the time when the server is busy. Also, it is 

assumed that an arriving batch of customers balks during the period when the server is on 

vacation with probability ( ) ( )2 21 , 0 1 −   , so that 2  denotes the probability that an 

arriving batch of customers of joins the system during the server vacation period.   

(v) The interarrival times of customers, the service times of each type of service, the vacation 

time of the server as well as all stochastic processes involved in the queuing system are 

independent of each other. 

3 Definitions, notations and equations governing the proposed queueing model 

3.1 Definitions and Notations  

Let ( )qN t denote the queue size (excluding one in service) at time t , ( )0V t  be the elapsed 

vacation time of the server, and ( )0

jG t  be the elapsed service time of the customer for the 

thj type of service at time t , with 1,2,3j = , denoting First Type Service (FTS), Second Type 
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Service (STS), and Third Type Service (TTS), respectively. Now, we introduce the variable 

( )Y t  as follows: 

 ( )

0 if  the server is idle at time 

1 if  the server is busy with first type service at time 

2 if  the server is busy with second type service at time 

3 if  the server is busy with third type service at ti

t

t

Y t t=

me 

4 if  the server is on vacation at time 

t

t









         (5) 

Next, we introduce the supplementary variable as 

 ( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

1

0

2

0

3

0

0 if  0

if  1

if  2

if  3

if  4

Y t

G t Y t

X t G t Y t

G t Y t

V t Y t

 =


=


= =


=
 =

              (6) 

Notice from (5) and (6) that we have treated the elapsed service time of customers for the 

three types of service and elapsed vacation time as supplementary variables. As stated in 

Kashyap and Chaudhry (1988), the supplementary variables are introduced to obtain a 

bivariate Markov process ( ) ( ) ,qN t X t , which enables us to write the governing equations of 

the queueing model. 

Let us assume that the system is in steady state condition. By steady state condition, we mean 

the normal condition that a queueing system is in after operating for some time with a fixed 

utilization factor less than one (Sharma, 2013). We then let ( ),n jP y denote the steady state 

probability that the server is active providing type ( )1, 2,3j j = service and there are ( )1n n   

customers in the queue excluding the one receiving type ( )1, 2,3j j = service and the elapsed 

serviced time of this customer is y . Accordingly, ( ), ,

0

n j n jP P y dy



=  denotes the corresponding 

steady state probability that there are ( )1n n   customers in the queue excluding the one 

receiving type ( )1, 2,3j j = service irrespective of the elapsed service time y of this customer;

( )nV y  denotes steady state probability that the server is on vacation with elapsed vacation 

time y , and  there are ( )0n n  customers in the queue. Accordingly, ( )
0

n nV V y dy



=   denotes 

the corresponding steady state probability that there are ( )0n n   customers in the queue and 

the server is on vacation irrespective of the elapsed vacation time y of the server; and Q  

denotes steady state probability that there are no customers in the system and the server is idle 

but available in the system. 

Next, we define the probability generating functions (PGFs) used in this paper as follows: 
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( ) ( ) ( )

( ) ( ) ( )

( )

, ,

1 1

1 1

1

, ; , 1, 2,3

, ;

n n

j n j j n j

n n

n n

n n

n n

i

i

i

P x z z P y P z z P j

V x z z V y V z z V

C z z c

 

= =

 

= =



=


= = = 




= = 



= 


 

 



                (7) 

which are convergent inside the circle given by 1z  . Also, to be defined in this paper is the 

Laplace-Stieltjes transform of a function ( )F t : 

  ( ) ( )*

0

stF s e dF t



−=                (8) 

According to Medhi (2003), the probability generating functions and the Laplace-Stieltjes 

transforms are useful in finding solution to the set of differential difference equations 

governing the queuing system. In particular, they are used for finding closed form expressions 

of the probabilities of the states of the server. 

3.2 Governing equations of the proposed queueing model 

To derive the governing equations based on the assumptions stated in Section 2, we recognize 

that the following three events (possibilities) may occur in the system during a short interval 

of time ( ,y y y+  : 

(i) There are n  customers in the queue excluding one customer in type ( )1,2,3j j =

service and elapsed service time is y , no arrivals and no service completion during 

the interval ( ,y y y+  . The joint probability for this event is given by 

( ) ( )( ) ( ),1 1 j n jy y y P y −  −  . 

(ii) There are n  customers in the queue excluding one customer in service since the 

elapsed service time is y and an arriving batch of customers balks with probability

( )11 − . The joint probability for this event is given by ( ) ( )1 ,1 n jyP y −  . 

(iii) There are ( )n i− customers in the queue excluding the one in type ( )1,2,3j j =

service since the elapsed service time is y , a batch of size i  customers arrive and 

join the queue with probability 1 . The joint probability for this event is given by  

( )1 ,

1

n

i n i j

i

y c P y  −

=

  . 

Based on the three events stated above, we first find an expression for , ( )n jP y y+  , 

known as the probability of n  customers in the queue excluding one customer receiving 

type ( )1,2,3j j =  service and the elapsed service time of the customer is ( ,y y y+  . To 

find the expression for 
, ( )n jP y y+  , we sum the probabilities of the three mutually 

exclusive events enumerated in (i), (ii) and (iii) above. Consequently, 
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( ) ( )( ) ( )( ) ( )( )( )

( )( )

, , , 1

1

1

1

1 1 1

; 1,2,3; 1

n j n j j n j

n

i n i

i

P y y P y y y y P y y

c P x y j n

   

 
−

−

=

+ = −  −  + − 

+  = 
       (9) 

For 0n = , (9) reduces to  

 
( ) ( )  ( ) ( )   ( )0, 0, 0, 11 1 1 1 , 1,2,3j j j j jP y y P y y y y P y y y j     +  = −  −  + − −  =              (10) 

Following the logic for obtaining (9) and (10), we get  

            

( ) ( )  ( ) ( )  

( )

2

1

2

1

1 1 1

, 1

n n n

n

i n i

i

V y y V y y y V y y

y cV y n

   

 
−

−

=

 +  = −  − + −  

+  
            (11) 

      

    

 

( ) ( )  ( ) ( )  

( )

0 0 2

1

2

1

1 1 1n

n

i n i

i

V y y V y y y V y y

y cV y

   

 
−

−

=

 +  = −  − + −  

+  
            (12) 

Similarly, we follow the logic used for obtaining (9) to get 

 

( ) ( )( )

( ) ( ) ( ) ( ) ( )

2

3

0, 0
1

0 0

1 1

1 j j
j

Q Q y Q y

p P y y dy V y y dy

  

 
 

=

= −  + − 

+ − +  
             (13) 

By manipulating (9)-(13) as 0y → , we obtain the steady state equations governing the 

proposed queuing model as
 
follows: 

 ( ) ( )( ) ( ) ( ) ( ) ( ),1 1 ,1 1 ,1 1

1

1 , 1
n

n n n i n i

i

d
P y y P y P y c P y n

dy
      −

=

+ + = − +        (14) 

 ( ) ( )( ) ( ) ( ) ( )0,1 1 0,1 1 0,11
d

P y y P y P y
dy

   + + = −          (15) 

 ( ) ( )( ) ( ) ( ) ( ) ( ),2 2 ,2 1 ,2 1

1

1 , 1
n

n n n i n i

i

d
P y y P y P y c P y n

dy
      −

=

+ + = − +                 (16) 

 ( ) ( )( ) ( ) ( ) ( )0,2 2 0,2 1 0,21
d

P y y P y P y
dy

   + + = −                 (17) 

 ( ) ( )( ) ( ) ( ) ( ) ( ),3 3 ,3 1 ,3 1

1

1 , 1
n

n n n i n i

i

d
P y y P y P y c P y n

dy
      −

=

+ + = − +                 (18) 

 ( ) ( )( ) ( ) ( ) ( )0,3 3 0,3 1 0,31
d

P y y P y P y
dy

   + + = −                 (19) 

( ) ( )( ) ( ) ( ) ( ) ( )2 2

1

1 , 1
n

n n n i n i

i

d
V y y V y V y c P y n

dy
      −

=

+ + = − +                  (20) 

 ( ) ( )( ) ( ) ( ) ( ) ( )0 0 2 2

1

1
n

n i n i

i

d
V y y V y V y cV y

dy
      −

=

+ + = − +                 (21) 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
0,1 1 0,2 2

0 0

2 0

0

0,3 3

0

1 1 1

P y y dy P y y dy

Q Q Q Q p V y y dy

P y y dy

 

   



 





 
+ 

 = − + − + − +
 
 +
  

 




              (22)  

 

Notably, Equations (13)-(22) are to be solved subject to the following boundary conditions: 

   ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )
1,1 1 1,2 2

0 0

,1 1 1 1 1 1 1

0

1,3 3

0

0 1 , 0

n n

n n n

n

P y y dy P y y dy

P p V y dy c Q n

P y y dy

 

    



 

+ + 

+ +

+

 
+ 

 = − + + 
 
 +
  

 




 (23)

     

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )
1,1 1 1,2 2

0 0

,2 2 2 1 1 2 1

0

1,3 3

0

0 1 , 0

n n

n n n

n

P y y dy P y y dy

P p V y dy c Q n

P y y dy

 

    



 

+ + 

+ +

+

 
+ 

 = − + + 
 
 +
  

 




  (24)

  

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )
1,1 1 1,2 2

0 0

,3 3 3 1 1 3 1

0

1,3 3

0

0 1 , 0

n n

n n n

n

P y y dy P y y dy

P p V y dy c Q n

P y y dy

 

    



 

+ + 

+ +

+

 
+ 

 = − + + 
 
 +
  

 




            (25) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1,1 1 1,2 2 1,3 3

0 0 0

0 , 0n n n nV p P y y dy P y y dy P y y dy n  
  

+ + +

 
= + +  

 
  

                    (26) 

and the normalizing condition 

 ( ) ( )
3

,

1 0 00 0

1n j n

j n n

Q P y dy V y dy

  

= = =

+ + =                         (27) 

4 Results of the proposed queueing model  

4.1 Queue size distribution at random epoch for the proposed
 
queueing model 

Theorem 1 Under the stability condition 1  , the queueing model

  ( ) ( )1 2 3/ /1/ / /
TY

s lkM G G G G BS V B , has the following marginal probability generating 

functions for the server’s state queue size: 

  ( )
( )

( )

*

1 1

1

1 G m Q
P z

B z

  − =             (28) 

  ( )
( )

( )

*

2 2

2

1 G m Q
P z

B z

  − =             (29) 
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  ( )
( )

( )

*

3 3

3

1 G m Q
P z

B z

  − =             (30) 

 ( )
( ) ( ) ( ) ( )

( )

* * * *1
1 1 2 2 3 3

2

1p W n G m G m G m Q

V z
B z


  


   − + +   

=         (31) 

where 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * *

1 1 1 2 2 2 3 3 31 0, 0, 0,B z z p pW n P z G m P z G m P z G m     = − − + + +   
      (32) 

Proof  In order to derive Theorem 1, we multiply (14) by nz , take the sum of both sides over 

n  from 1 to  ,  add the resulting equation to (15) and utilize (7) to obtain 

( ) ( )( ) ( )  ( )1 1 1 1, , 0
d

P y z C z y P y z
dy

   + − + =                                (33) 

Multiplying (16) by nz and summing over n  from 1 to  , adding the result to (17) and 

making use of (7), we have 

                                (34) 

Multiplying (18) by nz and summing over n  from 1 to  , adding the result to (19) and using 

(7), we have 

( ) ( )( ) ( )  ( )3 1 3 3, , 0
d

P y z C z y P y z
dy

   + − + =                                 (35) 

Multiplying (20) by nz and summing over n  from 1 to  , adding the result to (21) and 

utilizing (7), we have   

( ) ( )( ) ( )  ( )2, , 0
d

V y z C z y V y z
dy

   + − + =                                 (36) 

 

Notice that (33)-(36) constitutes first order differential equations and can be solved by 

integration using separation of variables technique. Hence, integrating (33)-(36) between the 

limits 0 to y , we obtain  

 
( ) ( )

( )( ) ( )1 1

0

1 1, 0,

y

C z y t dt

P y z P z e
   − − −

=                       (37) 

 ( ) ( )
( )( ) ( )1 2

0

2 2, 0,

y

C z y t dt

P y z P z e
   − − −

=                       (38) 

 ( ) ( )
( )( ) ( )1 3

0

3 3, 0,

y

C z y t dt

P y z P z e
   − − −

=                       (39) 

 ( ) ( )
( )( ) ( )2

0, 0,

y

C z y t dt

V y z V z e
   − − −

=                       (40) 

In order to obtain closed-form expressions of (37)-(40), we integrate (37)-(40) by parts with 

respect to y  between the limits 0  and  . Thus, we get  

( ) ( )( ) ( )  ( )2 1 2 2, , 0
d

P y z C z y P y z
dy

   + − + =
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  ( ) ( )
( )( ) 

( )( )

*

1 1

1 1

1

1
0,

G C z
P z P z

C z

  

  

 − − 
=

−
                     (41) 

 ( ) ( )
( )( ) 

( )( )

*

2 1

2 2

1

1
0,

G C z
P z P z

C z

  

  

 − − 
=

−
                     (42) 

 ( ) ( )
( )( ) 

( )( )

*

3 1

3 3

1

1
0,

G C z
P z P z

C z

  

  

 − − 
=

−
                     (43) 

 ( ) ( )
( )( ) 

( )( )

*

2

2

1
0,

W C z
V z V z

C z

  

  

 − − 
=

−
                     (44) 

where  

 ( )( ) ( )( ) ( )1*

1 1 1

0

C z y
G C z e dG y

  
  


− − − =              (45) 

 ( )( ) ( )( ) ( )1*

2 1 2

0

C z y
G C z e dG y

  
  


− − − =              (46) 

( )( ) ( )( ) ( )1*

3 1 3

0

C z y
G C z e dG y

  
  


− − − =              (47) 

 ( )( ) ( )( ) ( )2*

2

0

C z y
W C z e dW y

  
  


− − − =             (48) 

are the Laplace-Stieltjes transforms of type ( )1, 2,3j j =  services and vacation time 

respectively. 

 

A clear look at (37)-(40) shows that there is need to find the unknown values
 
of ( )1 0,P z , 

( )2 0,P z , ( )3 0,P z , ( )0,V z , and ( )0,R z , respectively.  So, we begin by multiplying (23) by

1nz +
, summing both sides over n  from 0 to  , and utilizing the probability generating 

functions defined in (7) together with (22) to obtain  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

1 1 1 1 2 2 3 3

0 0 0

1 1 1

0

0, 1 , , ,

, 1

zP z p P y z y dy P y z y dy P y z y dy

V y z y dy C z Q

   

    

  



 
= − + + 

 

+ + −

  



                 (49) 

Again, multiplying (24) by
1nz +
, summing both sides over n  from 0 to  , and using the 

probability generating functions defined in (7) together with (22), we obtain  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

2 2 1 1 2 2 3 3

0 0 0

2 1 2

0

0, 1 , , ,

, 1

zP z p P y z y dy P y z y dy P y z y dy

V y z y dy C z Q

   

    

  



 
= − + + 

 

+ + −

  



               (50) 

Also, multiplying (25) by
1nz +
, summing both sides over n  from 0 to  , and using the 

probability generating functions defined in (22) together with (7), we obtain  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

3 3 1 1 2 2 3 3

0 0 0

3 1 3

0

0, 1 , , ,

, 1

zP z p P y z y dy P y z y dy P y z y dy

V y z y dy C z Q

   

    

  



 
= − + + 

 

+ + −

  



      (51) 

Multiplying (26) by
1nz +
, summing both sides over n  from 0 to  , and using the probability 

generating functions defined in (22) together with (7), we obtain  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3

0 0 0

0, , , ,V z p P y z y dy P y z y dy P y z y dy  
   

= + + 
 
                     (52) 

To further simplify (49)-(50), we first multiply the right hand side of (37) by ( )1 y ; (38) by

( )2 y ; (39) by ( )3 y  and (40) by ( )y , respectively and integrating them with respect to y  

between the limits 0 to   gives 

 ( ) ( ) ( ) ( )( )*

1 1 1 1 1

0

, 0,P y z y dy P z G C z   


 = −                      (53) 

 ( ) ( ) ( ) ( )( )*

2 2 2 2 1

0

, 0,P y z y dy P z G C z   


 = −                      (54) 

 ( ) ( ) ( ) ( )( )*

3 3 3 3 1

0

, 0,P y z y dy P z G C z   


 = −                      (55) 

 ( ) ( ) ( ) ( )( )*

2

0

, 0,V y z y dy V z W C z   


 = −                      (56) 

Next, we substitute (53)-(56) into (49)-(52) noting that ( )( )1 C z m  − =  and 

( )( )2 C z n  − =
 
to obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

* * *

1 1 1 1 2 2 3 3

*

1 1 1

0, 1 0, 0, 0,

0, 1

zP z p P z G m P z G m P z G m

V z W n C z Q



   

 = − + + 

+ + −
                  (57) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

* * *

2 2 1 1 2 2 3 3

*

2 1 2

0, 1 0, 0, 0,

0,

zP z p P z G m P z G m P z G m

V z W n C z Q



    

 = − + + 

+ + −
                  (58) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

* * *

3 3 1 1 2 2 3 3

*

3 1 3

0, 1 0, 0, 0,

0,

zP z p P z G m P z G m P z G m

V z W n C z Q



    

 = − + + 

+ + −
                  (59) 

( ) ( ) ( ) ( ) ( ) ( ) ( )* * *

1 1 2 2 3 30, 0, 0, 0,V z p P z G m P z G m P z G m = + +                     (60)

  

Plugging (60) into (57)-(59), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )

* * *

1 1 1 1 2 2 3 3

* * * *

1 1 1 2 2 3 3

1 1

0, 1 0, 0, 0,

0, 0, 0,

zP z p P z G m P z G m P z G m

p P z G m P z G m P z G m W n

C z Q





   

 = − + + 

 + + + 

+ −

      (61) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.11, No.5, 2021 

 

53 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )

* * *

2 2 1 1 2 2 3 3

* * * *

2 1 1 2 2 3 3

1 2

0, 1 0, 0, 0,

0, 0, 0,

zP z p P z G m P z G m P z G m

p P z G m P z G m P z G m W n

C z Q





   

 = − + + 

 + + + 

+ −

                 (62) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )

* * *

3 3 1 1 2 2 3 3

* * * *

3 1 1 2 2 3 3

1 3

0, 1 0, 0, 0,

0, 0, 0,

zP z p P z G m P z G m P z G m

p P z G m P z G m P z G m W n

C z Q





   

 = − + + 

 + + + 

+ −

                 (63)  

Solving (61), (62) and (63) simultaneously, we have 

     

 

 ( )
( )( )
( )

1 1

1 0,
C z Q

P z
B z

   −
=                      (64) 

 ( )
( )( )
( )

1 2

2 0,
C z Q

P z
B z

   −
=                       (65) 

 ( )
( )( )
( )

1 3

3 0,
C z Q

P z
B z

   −
=                      (66) 

( )
( )( ) ( ) ( ) ( )

( )

* * *

1 1 1 2 2 3 3
0,

p C z G m G m G m Q
V z

B z

      − + + =                   (67) 

where  

          
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * * *

1 1 1 2 2 2 3 3 31 0, 0, 0,B z z p pW n P z G m P z G m P z G m     = − − + + +                     

 

Substituting (64) into (41); (65) into (42); (66) into (43); (67) into (44), we obtain the results 

shown in (28)-(31). This completes the proof of Theorem 1. 

Corollary 1 For the queueing model
  ( ) ( )1 2 3/ /1/ / /

TY

s lkM G G G G BS V B , the steady-state 

probabilities that the server is busy providing type 1, 2 and 3 services, and the steady state 

probability that the server is on vacation are respectively given as follows 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) 
1 1 1

1

2 1 1 1 2 2 3 3

1
1

E I E S Q
P

E I pE V E S E S E S

  

     
=

 − + + + 

        (68) 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) 
2 1 2

2

2 1 1 1 2 2 3 3

1
1

E I E S Q
P

E I pE V E S E S E S

  

     
=

 − + + + 

        (69) 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) 
3 1 3

3

2 1 1 1 2 2 3 3

1
1

E I E S Q
P

E I pE V E S E S E S

  

     
=

 − + + + 

        (70) 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) 
1

2 1 1 1 2 2 3 3

1
1

p E I E V Q
V

E I pE V E S E S E S

 

     
=

 − + + +    

                 (71) 
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where ( )E I is the mean size of batch of arriving customers;
 

( )E V  is the mean of vacation 

time; ( )1E S , ( )2E S and ( )3E S  are the mean service times of type 1, type 2, and type 3 

services, respectively. 

 

Proof  The proof of Corollary 1 follows directly from Theorem 1 by substituting 1z = . 

However, a substitution of 1z =  in Theorem 1 shows that ( )1P z , ( )2P z , ( )3P z  and ( )V z , 

respectively, are indeterminate of the 0 0  form.  To resolve this indeterminacy problem, we 

apply L’Hopital’s rule on (28)-(31) respectively. In doing this, we let ( )( )1m C z  = −  and 

( )( )2n C z   = −
, 

, and so ( )1

dm
C z

dz
  = − , ( )2

dn
C z

dz
  = − , 

( ) ( )
( ) ( )( )

* *

*

1.
j j

j

dG m dG m dm
G m C z

dz dm dz
  = = −  and  

( ) ( )
( ) ( )( )

* *

*

2.
dW n dW n dn

W n C z
dz dn dz

 
 

 = = − . We then obtain the first derivatives of the 

numerators of (28)-(31) as follows: 

   ( ) ( ) ( ) ( ) ( )* *

1 1 1 1 1 1 11
d d

T z T z G m Q G m C z
dz dz

      = = − =          (72) 

    ( ) ( ) ( ) ( ) ( )* *

2 2 2 2 2 1 21
d d

T z T z G m Q G m C z
dz dz

      = = − =          (73) 

   ( ) ( ) ( ) ( ) ( )* *

3 3 3 3 3 1 31
d d

T z T z G m Q G m C z
dz dz

      = = − =          (74) 

   ( ) ( ) ( ) ( ) ( ) ( )* * * *1
4 4 1 1 2 2 3 3

2

1
d d

T z T z p W n G m G m G m Q
dz dz


  



 
    = = − + +    

 
      (75) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

* * *

1 1 1 2 2 1 3 3 1

* * * *1
1 1 1 2 2 1 3 3 1

2

* * * *

1 1 2 2 3 3 2

G m C z G m C z G m C z

Qp
W n G m C z G m C z G m C z

G m G m G m W n C z

        


        



    

     − + − + −
 
      = − − + − + −  
 
   + + + −    

  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * * *

1 1 1 2 2 3 3
1

* * * *2
2 1 1 2 2 3 3

1C z W n G m G m G mQp

C z G m G m G m W n

    


    

      − + +   =  
   − + +  

        (76) 

 

Similarly, the first derivative of (32), which serves as the denominator of (28)-(32) is as given 

below: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) * * * *

1 1 2 2 3 31
d d

B z B z z p pW n G m G m G m
dz dz

      = = − − + + +     
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( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

* * *

1 1 1 2 2 1 3 3 1

* * * *

1 1 1 2 2 1 3 3 1

* * * *

1 1 2 2 3 3 2

1

1

p G m C z G m C z G m C z

pW n G m C z G m C z G m C z

G m G m G m pW n C z

        

        

    

      − − + − + −
  
       = − + − + − + −  
 
   + + + −     

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * * *

1 1 1 2 2 3 3

* * * *

2 1 1 2 2 3 3

1
1

C z p pW n G m G m G m

p C z G m G m G m W n

    

    

      − + + +   = +  
   + +  

          (77) 

Evaluating the derivatives in (72)-(77) at 1z = , and substituting ( ) ( )*' 0 , 1,2,3j jG E S j= − = , 

( )* 0 1W = , ( ) ( )*' 0W E V= −  and ( ) ( )' 1C E I= , we obtain  

 ( ) ( ) ( ) ( )1 1 1 1 1
1

1 lim
z

T T z E I E S Q  
→

 = =           (78) 

 ( ) ( ) ( ) ( )2 2 2 1 2
1

1 lim
z

T T z E I E S Q  
→

 = =           (79) 

 ( ) ( ) ( ) ( )3 3 3 1 3
1

1 lim
z

T T z E I E S Q  
→

 = =           (80) 

 ( ) ( ) ( ) ( )4 4 1
1

1 lim
z

T T z p E I E V Q 
→

 = =           (81) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 2 2 3 3
1

1 lim 1
z

B B z E I pE V E S E S E S    
→

   = = − + + +       (82) 

Plugging (78) and (82) into ( ) ( ) ( )1 11 1 1P T B = ; (79) and (82) into ( ) ( ) ( )2 21 1 1P T B = ; (80) 

and (82) into ( ) ( ) ( )3 31 1 1P T B = ; and (81) and (82) into ( ) ( ) ( )4 41 1 1P T B = , we obtain (68)-

(71) and this completes the proof of Corollary 1. 

 

Theorem 2 For the queueing model   ( ) ( )1 2 3/ /1/ / /
TY

s lkM G G G G BS V B , the probability 

generating function of the queue size irrespective of the state of the system, denoted by ( )qP z ,  

is given by 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )  ( ) ( ) ( )

* * * * * * *1
1 1 2 2 3 3 1 1 2 2 3 3

2

* * * *

1 1 2 2 3 3

1 1

1
q

Q G m G m G m p W n G m G m G m

P z
z p pW n G m G m G m


     



  

   + + − + − + +   
=

 − − + + + 

   (83) 

 

Proof   By adding (28), (29), (30) and (31), we have 

 ( ) ( ) ( ) ( ) ( )1 2 3qP z P z P z P z V z= + + +                                  (84) 

Substituting the expressions in (28)-(31) into (84), we have 

 

( )
( )

( )

( )

( )

( )

( )

( ) ( ) ( ) ( )

( )

* * *

1 1 2 2 3 3

* * * *1
1 1 2 2 3 3

2

1 1 1

1

q

G m Q G m Q G m Q
P z

B z B z B z

p W n G m G m G m Q

B z

  


  



     − − −     = + +

   − + +   
+

 

       (85)                 
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On simplifying (85), we obtain (83), where  ( )D z  has been defined in (32), and this 

completes the proof of Theorem 2. 

 

Corollary 2 For the queueing model   ( ) ( )1 2 3/ /1/ / /
TY

s lkM G G G G BS V B , the steady-state 

probability that the server is busy, irrespective of whether it is providing type 1 or type 2 or 

type 3 services, and on vacation is given by: 

 

 ( )
( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( ) ( ) 

1 1 1 2 2 3 3

2 1 1 1 2 2 3 3

1
1

q

E I E S E S E S pE V Q
P

E I pE V E S E S E S

    

     

 + + + 
=

 − + + + 

       (86) 

Proof  By adding (69), (70), (71) and (72), we get  

 ( ) ( ) ( ) ( ) ( )1 2 31 1 1 1 1qP P P P V= + + +            (87) 

Substituting the expressions in (68)-(71) into (87), we have 

 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) 
( ) ( )

( ) ( ) ( ) ( ) ( ) 
( ) ( )

( ) ( ) ( ) ( ) ( ) 
( ) ( )

( ) ( ) ( ) ( ) ( ) 

1 1 1

1

2 1 1 1 2 2 3 3

2 1 2

2 1 1 1 2 2 3 3

3 1 3

2 1 1 1 2 2 3 3

1

2 1 1 1 2 2 3 3

1
1

1

1

1

E I E S Q
P

E I pE V E S E S E S

E I E S Q

E I pE V E S E S E S

E I E S Q

E I pE V E S E S E S

p E I E V Q

E I pE V E S E S E S

  

     

  

     

  

     

 

     

=
 − + + + 

+
 − + + + 

+
 − + + + 

+
 − + + + 

      (88) 

On simplifying (88), we obtain (86) and this completes the proof of Corollary 2.

  

 

         

4.2 Performance measures of the proposed
 
queueing model 

In this section the performance measures of the queueing system under investigation are given 

in Theorems 3 through 8, respectively.  

Theorem 3 For the queueing model   ( ) ( )1 2 3/ /1/ / /
TY

s lkM G G G G BS V B , the steady state 

probability that the server is idle, denoted by Q , is given by:    

 
( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( )

2 1 1 1 2 2 3 3

1 2

1

1

E I pE V E S E S E S
Q

p E I E V

     

  

 − + + + 
=

+ −
                  (89)  

Proof To prove Theorem 3, we substitute (86) into the normalizing condition ( )1 1qQ P+ = . 

Thus, we obtain  

    

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 
1 1 1 2 2 3 3

2 1 1 1 2 2 3 3

1
1

E I E S E S E S pE V Q
Q

E I pE V E S E S E S

    

     

 + + + + =
 − + + + 

      (90)  

    

From (90), we make Q  subject of the formula to get (89) and this completes the proof of 

Theorem 3. 
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Theorem 4 For the queueing model   ( ) ( )1 2 3/ /1/ / /
TY

s lkM G G G G BS V B , the probability that 

the server is busy (utilization factor), denoted by  ,  is given by: 

 
( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( )
1 1 1 2 2 3 3

1 21

E I pE V E S E S E S

p E I E V

    


  

 + + + =
+ −

        (91) 

where 1   is the stability condition under which the steady state exists. 

Proof  To prove Theorem 4, we substitute (89) into the relation 1Q + = . Thus, we obtain  

 

( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( )

2 1 1 1 2 2 3 3

1 2

1
1

1

E I pE V E S E S E S

p E I E V

     


  

 − + + + 
+ =

+ −
       (92)  

On making   subject of the formula from (92), we obtain the result shown in (91) and this 

completes the proof of Theorem 4. 

Theorem 5 For the queueing model   ( ) ( )1 2 3/ /1/ / /
TY

s lkM G G G G BS V B , the average queue 

size at random epoch, denoted by 
qL ,  is given by 

  
( ) ( ) ( ) ( )

( )( )
2

1 1 1 1

2 1
q

B T T B
L

B

   −
=


                  (93) 

where  

       
( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 2 2 3 3T 1 E I E S E S E S pE V Q      = + + +                      (94) 

( )

( )( ) ( ) ( ) ( ) ( ) 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( )( ) ( )

1 1 1 2 2 3 3

2 2 2 2

1 1 2 2 3 3 1 1 2 2 3 3

2 2

1 2

1

2
1

E I I E S E S E S pE V

T 1 Q E I E S E S E S pE V E S E S E S

p E I E V

    

       

  

− + + +

 = + + + + + +

+

    
       
 
 

        (95) 

( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 2 2 1 3 3 21 1B E I E S E S E S p E V         = − + + +                 (96) 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( ) 

( )( ) ( ) ( ) ( ) ( )

2 22 2 2 2

1 1 1 2 2 3 3 2

1 1 1 1 2 2 1 3 3 2

2

1 2 1 1 2 2 3 3

1

1

2

B E I E S E S E S p E I E V

E I I E S E S E S p E V

p E I E V E S E S E S

     

       

    

  = − + + −
 

 − − + + + 

 − + + 

             (97) 

and ( )2

1E S , ( )2

2E S , ( )2

3E S  and ( )2E V are the second moments of service times type 1, 

type 2, type 3 and vacation time respectively; ( )( )1E I I − is the second factorial moment of 

the batch of arriving customers and Q is given in (89). 

Proof  Let ( )T z  and ( )B z denote the top and bottom of the right hand side of (83), then 
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      ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )* * * * * * *1
1 1 2 2 3 3 1 1 2 2 3 3

2

1 1T z Q G m G m G m p W n G m G m G m


     


   = − + + + − + +            

(98)   

     ( ) ( ) ( )  ( ) ( ) ( )* * * *

1 1 2 2 3 31B z z p pW n G m G m G m   = − − + + +         (99)  

Consequently, (83) becomes 

  ( )
( )

( )q

T z
P z

B z
=           (100) 

According to Kashyap and Chaudhry [22], the application of quotient rule twice on (100) and 

evaluating at 1z = , gives 

 ( )
( )

( )

( ) ( ) ( ) ( )

( )( )
21

1

1 1 1 1
lim

2 1
q q

z
z

T z B T T Bd
L P z

dz B z B→
=

   −
= = =


     

In what follows, we need to obtain the expressions for ( )T z , ( )T z , ( )B z  and ( )B z

respectively.  Carrying out the first and second derivatives on (98) with respect to z , we 

obtain 

( ) ( )
( ) ( ) ( )

( )( ) ( ) ( ) ( )

* * *

1 1 2 2 3 3

* * * *1
1 1 2 2 3 3

2

1

1

G m G m G m
d d

T z T z Q
dz dz p W n G m G m G m

  


  



  + + −  
 = =  

 + − + +  
 

      

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

* * *

1 1 1 2 2 1 3 3 1

* * * *1
1 1 1 2 2 1 3 3 1

2

* * * *1
1 1 2 2 3 3 2

2

* * *1
1 1 1 2 2 1 3 3 1

2

G m C z G m C z G m C z

p W n G m C z G m C z G m C z

Q
p G m G m G m W n C z

p G m C z G m C z G m C z

        


        




    




        



     − + − + −
 

     + − + − + −
 

=
  + + + − 

     − − + − + −


 
 
 
 
  
 
 
 
 

 
    

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * * *1 1
1 1 1 2 2 3 3

2 2

* * * *

1 1 2 2 3 31

1C z p p W n G m G m G m
Q

p C z G m G m G m W n

 
    

 

   

       − − + +     =  
   + + +   

      (101) 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * * *1 1
1 1 1 2 2 3 3

2 2

* * * *

1 1 2 2 3 31

1C z p p W n G m G m G md
T z Q

dz
p C z G m G m G m W n

 
    

 

   

      − − + +      =  
   + + +   
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( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

* * *

1 1 1 2 2 3 3
*1 1

2 * * *
2 2

1 1 1 2 2 3 3

2 * * * *

1 1 1 2 2 3 3

2* * * * *

1 1 2 2 3 31 2

1

2

C z G m G m G m

p p W n

C z G m G m G m

p C z G m G m G m W n

p C z W n C z W n G m G m G m

    
 

      

    

     

     + +
   

− −   
      − + +
  

    = + + +
 

    + + + +  

 
 
 
 
 
 
 
 
  
 
 
 

     (102) 

Similarly, the first and second derivatives of (99) with respect to z  are given as follows:        

( ) ( ) ( ) ( ) ( ) ( ) ( ) * * * *

1 1 2 2 3 31
d d

B z B z z p pW n G m G m G m
dz dz

      = = − − + + +                           

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * * *

1 1 1 2 2 3

* * * *

2 1 1 2 2 3 3

1 1C z p pW n G m G m G m

p C z G m G m G m W n

   

    

     = + − + + +   

  + + + 

        (103) 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * * *

1 1 1 2 2 3

* * * *

2 1 1 2 2 3 3

1 1C z p pW n G m G m G md
B z

dz
p C z G m G m G m W n

   

    

      + − + + +    =  
   + + +  

  

      

( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

* * *

1 1 1 2 2 3 3
*

2 * * *

1 1 1 2 2 3 3

2 * * * *

1 2 1 1 2 2 3 3

2* * * * *

1 1 2 2 3 32 2

1

2

C z G m G m G m

p pW n

C z G m G m G m

p C z G m G m G m W n

p C z W n C z W n G m G m G m

    

    

    

     

      + +
   
 − +   

    − + +
  

    = − + +  

     + − + +   







 


 
 
 
 
 
 

  (104) 

Evaluating the derivatives in (101)-(104) at 1z = , and substituting ( )* 0 1W = ,

( ) ( )* 0W E V = − , ( ) ( )* 20W E V = ( )* 0 1, 1,2,3jG j= = , ( ) ( )* 0 , 1,2,3j jG E S j = − = ,

( ) ( )* 20 , 1,2,3j jG E S j = = , ( ) ( )1C E I = , and ( ) ( )( )1 1C E I I = −  we obtain (94)-(97). On 

putting the results in (94)-(97) into (93), we obtain a closed form expression for qL .  

 

Theorem 6 For the queueing model 
  ( ) ( )1 2 3/ /1/ / /

TY

s lkM G G G G BS V B , the average waiting 

time in the queue at random epoch, denoted by 
qW ,  is given by 
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( ) ( ) ( ) ( )

( )( )
1

2

1 1 1 1

2 1
q

B T T B
W

B
−

    −
 =
 
 

         (105)  

Proof  The proof of Theorem 6 follows directly from Theorem 5 by substituting (93) into 

Little’s  formula q qW L = .This completes the proof of Theorem 6. 

Theorem 7 For the queueing model   ( ) ( )1 2 3/ /1/ / /
TY

s lkM G G G G BS V B , the average size of 

the queuing system at random epoch, denoted by 
sL ,  is given by

   

      

 

( ) ( ) ( ) ( )

( )( )

( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( )

2

1 1 1 2 2 3 3

1 2

1 1 1 1

2 1

1

s
L

B T T B

B

E I pE V E S E S E S

p E I E V

    

  

=
   −



 + + + +
+ −

      (106)  

 

Proof  Substituting (91) and (93) into Little’s formula s qL L = + , we have  

      

( ) ( ) ( ) ( )

( )( )

( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( )

2

1 1 1 2 2 3 3

1 2

1 1 1 1

2 1

1

s
L

B T T B

B

E I pE V E S E S E S

p E I E V

    

  

=
   −



 + + + +
+ −

        (107) 

Simplifying (107), we obtain (106) and this completes the proof of Theorem 7. 

Theorem 8 For the queueing model
  ( ) ( )1 2 3/ /1/ / /

TY

s lkM G G G G BS V B , the mean waiting 

time in the system at random epoch, denoted by sW ,  is given by 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )  ( )( )

( )( ) ( ) ( ) ( )

1 2

2

1 2

2
1

1 1 1 2 2 3 3

2
1

1 2

1

1

1

s
W

B z T z T z B z p E I E V

B z p E I E V

E I pE V E S E S E S B z

B z p E I E V





  

  

    

  

=

      − + −   

  + − 

 + + + +
 + − 

         (108) 

Proof  Substituting (93) into Little’s formula s qW L = , we have      

 

 

( ) ( ) ( ) ( )

( )( )

( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( )

2

1 1 1 2 2 3 3

1 2

1

1 1 1 1

2 1

1

s
W

B T T B

B

E I pE V E S E S E S

p E I E V


    

  

=

    −
 

 
 

 + + +  + 
+ − 

      (109) 

On simplifying (109), we get (108). This completes the proof of Theorem 8. 
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5 Special cases of the batch arrival queueing system with balking, three types of 

heterogeneous service and Bernoulli schedule server vacation  

Some queueing models are found to be sub-models of the proposed queuing model. For 

instance consider the following cases:  

 

Case 1 (No Balking) In this case we consider a situation where there is no balking i.e. all 

customers join the system during busy and vacation periods. So, we let the balking parameters

1 2 1 = = . Then our model reduces to a batch arrival queueing model with Bernoulli 

vacation and three types of heterogeneous service. 

 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )  ( ) ( ) ( )

* * * * * * *

1 1 2 2 3 3 1 1 2 2 3 3

* * * *

1 1 2 2 3 3

1 1

1
q

Q G m G m G m p W n G m G m G m
P z

z p pW n G m G m G m

     

  

   + + − + − + +   
=

 − − + + + 

     (110) 

 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) 
1 1

1

1 1 2 2 3 3

1
1

E I E S Q
P

E I pE V E S E S E S

 

   
=

 − + + + 

     (111)

 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) 
2 2

2

1 1 2 2 3 3

1
1

E I E S Q
P

E I pE V E S E S E S

 

   
=

 − + + + 

     (112)

 

 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) 
3 3

3

1 1 2 2 3 3

1
1

E I E S Q
P

E I pE V E S E S E S

 

   
=

 − + + + 

     (113) 

 

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) 1 1 2 2 3 3

1
1

p E I E V Q
V

E I pE V E S E S E S



   
=

 − + + +    

  (114) 

 ( )
( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( ) ( ) 

1 1 2 2 3 3

1 1 2 2 3 3

1
1

q

E I E S E S E S pE V Q
P

E I pE V E S E S E S

   

   

 + + + 
=

 − + + + 

     (115) 

 
( ) ( ) ( ) ( ) ( ) 1 1 2 2 3 31Q E I pE V E S E S E S    = − + + +        

(116)
 

 
( ) ( ) ( ) ( ) ( ) 1 1 2 2 3 3E I pE V E S E S E S     = + + +   

      (117) 

         
( ) ( ) ( ) ( ) ( ) ( ) 1 1 2 2 3 3T 1 E I E S E S E S pE V Q     = + + +                    (118) 

        

( )

( )( ) ( ) ( ) ( ) ( ) 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( )( ) ( )

1 1 2 2 3 3

2 2 2 2

1 2 2 3 3 1 1 2 2 3 3

2 2

1

1

2

E I I E S E S E S pE V

T 1 Q E I E S E S E S pE V E S E S E S

p E I E V

   

      



− + + +

 = + + + + + +

+

    
       
 
 

      (119) 

        
( ) ( ) ( ) ( ) ( ) ( ) 1 1 2 2 3 31 1B E I E S E S E S pE V     = − + + +                 (120) 
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( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) ( ) 

( )( ) ( ) ( ) ( ) ( )

2 22 2 2 2

1 1 2 2 3 3

1 1 2 2 3 3

2

1 1 2 2 3 3

1

1

2

B E I E S E S E S p E I E V

E I I E S E S E S pE V

p E I E V E S E S E S

    

   

   

  = − + + −
 

 − − + + + 

 − + + 

         (121)   

With (118)-(121), we can obtain the average number of customers in the queue ( )qL  using 

(89). Moreover, the values of average waiting time of a customer in the queue ( )qW , average 

waiting time of a customer in the system ( )qW , and average number of customers in the 

system ( )sL  are obtained using the relations q qW L = , s qW L =  and s qL L = +  (see 

Little, 1961) respectively.   

 

Case 2 (No Vacation) In this case we consider a situation where the server does not take 

vacation. So, we let the vacation parameter 0p = . Then our model reduces

 

batch arrival 

queueing model with balking and three types of heterogeneous service. 

    

( )
( ) ( ) ( )

( ) ( ) ( )

* * *

1 1 2 2 3 3

* * *

1 1 2 2 3 3

1
q

Q G m G m G m
P z

z G m G m G m

  

  

 + + − =
 − + +       

  (122) 

 

( )
( ) ( )

( ) ( ) ( ) ( )
1 1 1

1

1 1 1 2 2 3 3

1
1

E I E S Q
P

E I E S E S E S

  

    
=

 − + + 

           (123) 

 

( )
( ) ( )

( ) ( ) ( ) ( )
2 1 2

2

1 1 1 2 2 3 3

1
1

E I E S Q
P

E I E S E S E S

  

    
=

 − + + 

           (124) 

 

( )
( ) ( )

( ) ( ) ( ) ( )
3 1 3

3

1 1 1 2 2 3 3

1
1

E I E S Q
P

E I E S E S E S

  

    
=

 − + + 

           (125) 

 

( )
( ) ( )

( ) ( ) ( ) ( )
1

1 1 1 2 2 3 3

1
1

p E I E V Q
V

E I E S E S E S

 

    
=

 − + + 
  

                (126) 

 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1 2 2 3 3

1 1 1 2 2 3 3

1
1

q

E I E S E S E S Q
P

E I E S E S E S

    

    

 + + =
 − + + 

         (127) 

 
( ) ( ) ( ) ( )1 1 1 2 2 3 31Q E I E S E S E S     = − + +         (128) 

 
( ) ( ) ( ) ( ) 1 1 1 2 2 3 3E I E S E S E S      = + +         (129) 

           
( ) ( ) ( ) ( ) ( )1 1 1 2 2 3 3T 1 E I E S E S E S Q      = + +                          (130) 

            

( )
( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) 
1 1 1 2 2 3 3

2 2 2 2

1 1 2 2 3 3

1

1

E I I E S E S E S

T 1 Q
E I E S E S E S

    

    

− + +
 =

+ + +

    
  

  

              (131) 

            
( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 1 3 31 1B E I E S E S E S     = − + +                     (132) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.11, No.5, 2021 

 

63 

 

            
( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

2 2 2 2

1 1 1 2 2 3 3

1 1 1 1 2 2 1 3 3

1

1

B E I E S E S E S

E I I E S E S E S

   

      

  = − + +
 

 − − + + 

                  (133) 

The performance measures can be obtained in the same manner as in Case 1. 

 

Case 3 (No Vacation and No Balking) In this case we consider a situation where the server 

does not take vacation and there is no balking. So, we let the vacation parameter 0p =
 
and the 

balking parameters
1 2 1 = = . Then our model reduces

 

batch arrival queueing model with 

three types of heterogeneous service. 

       

( )
( ) ( ) ( )

( ) ( ) ( )

* * *

1 1 2 2 3 3

* * *

1 1 2 2 3 3

1
q

Q G m G m G m
P z

z G m G m G m

  

  

 + + − =
 − + + 

        (134) 

 

( )
( ) ( )

( ) ( ) ( ) ( )
1 1

1

1 1 2 2 3 3

1
1

E I E S Q
P

E I E S E S E S

 

   
=

 − + + 

            (135) 

 

( )
( ) ( )

( ) ( ) ( ) ( )
2 2

2

1 1 2 2 3 3

1
1

E I E S Q
P

E I E S E S E S

 

   
=

 − + + 

            (136) 

 

( )
( ) ( )

( ) ( ) ( ) ( )
3 3

3

1 1 2 2 3 3

1
1

E I E S Q
P

E I E S E S E S

 

   
=

 − + + 

            (137) 

 

( )
( ) ( )

( ) ( ) ( ) ( )1 1 2 2 3 3

1
1

p E I E V Q
V

E I E S E S E S



   
=

 − + + 
  

                     (138) 

 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 2 2 3 3

1 1 2 2 3 3

1
1

q

E I E S E S E S Q
P

E I E S E S E S

   

   

 + + =
 − + + 

            (139) 

 
( ) ( ) ( ) ( )1 1 2 2 3 31Q E I E S E S E S    = − + +         (140) 

 
( ) ( ) ( ) ( ) 1 1 2 2 3 3E I E S E S E S     = + +         (141) 

           
( ) ( ) ( ) ( ) ( )1 1 2 2 3 3T 1 E I E S E S E S Q     = + +                          (142) 

            

( )
( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) 
1 1 2 2 3 3

2 2 2 2

1 2 2 3 3

1

1

E I I E S E S E S

T 1 Q
E I E S E S E S

   

   

− + +
 =

+ + +

    
  

  

              (143) 

            
( ) ( ) ( ) ( ) ( )1 1 2 2 3 31 1B E I E S E S E S     = − + +                      (144) 

            
( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

2 2 2 2

1 1 2 2 3 3

1 1 2 2 3 3

1

1

B E I E S E S E S

E I I E S E S E S

   

   

  = − + +
 

 − − + + 

                   (145) 

Case 4 (No third type of service) In this case we consider a situation whereby the server is 

providing only two types of service and with balking and Bernoulli schedule server vacation. 

We then let the parameter of type 3 service to be zero i.e., 3 0 = and 1 2 1 + = . In 
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consequence, our model reduces

 

batch arrival queueing model with three types of 

heterogeneous service, balking and Bernoulli schedule server vacation. This type of model 

was studied by Baruah et al. (2013).

  

( )
( ) ( ) ( )( ) ( ) ( )

( ) ( )  ( ) ( )

* * * * *1
1 1 2 2 1 1 2 2

2

* * *

1 1 2 2

1 1

1
q

Q G m G m p W n G m G m

P z
z p pW n G m G m


   



 

   + − + − +   
=

 − − + +      (146) 
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E I E S Q
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E I pE V E S E S

  
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      (147) 
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E I pE V E S E S

  

    
=
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           (148)
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p E I E V Q
V

E I pE V E S E S

 
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=
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               (149) 
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   

    

 + + 
=

 − + + 

           (150) 

 

( ) ( ) ( ) ( ) 
( ) ( ) ( )

2 1 1 1 2 2

1 2

1

1

E I pE V E S E S
Q

p E I E V

    

  

 − + + 
=

+ −
      (151) 

 

( ) ( ) ( ) ( ) 
( ) ( ) ( )

1 1 1 2 2

1 21

E I pE V E S E S

p E I E V

   


  

 + + =
+ −

       (152) 

        
( ) ( ) ( ) ( ) ( ) 1 1 1 2 2T 1 E I E S E S pE V Q     = + +                          (153) 
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T 1 Q E I E S E S pE V E S E S

p E I E V

   

     

  

− + +

 = + + + +

+

    
       
 
 

            (154) 

         
( ) ( ) ( ) ( ) ( ) 1 1 1 1 2 2 21 1B E I E S E S p E V       = − + +                  (155) 

        

( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ) 

( )( ) ( ) ( ) ( )

2 22 2 2

1 1 1 2 2 2
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2

1 2 1 1 2 2

1

1

2

B E I E S E S p E I E V

E I I E S E S p E V

p E I E V E S E S

    

     

   

  = − + −
 

 − − + + 

 − + 

           (156) 

6 Conclusion 

Presented in this paper is a non-Markovian queue with three types of service, balking and 

Bernoulli server vacation. The elapsed service time and vacation time have been introduced as 

supplementary variables and the model is described as a bivariate Markov process. 

Consequently, the non-Markovian process is converted to Markovian process. The steady 

state probability generating function of the queue size has been derived. Also, the steady state 

system performance measures like the average number of customers in the queue and in the 
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system, the average waiting time in the queue and in the system, the idle state probability, the 

utilization factor are obtained. We have also discussed some special cases of the proposed to 

show that the results found in literature, in particular Baruah et al. (2012, 2013), coincide with 

our results. 
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