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Abstract  

A non-linear explicit scheme has been studied for autonomous and non-autonomous initial value problems in 

ordinary differential equations (ODEs). This research proposed fifth order of convergence. The stability region of 

the scheme is also shown, as is the evolution of the scheme's associated local truncation error. A few numerical 

experiments showed that the scheme is fit for initial value problems with singular solutions, blowup the ODEs, 

singularly perturbed and stiff problems. MATLAB R2019a was used for the numerical computations and plotting 

of results produced by all methods. 

Keywords. Nonlinear method, local truncation error, L-Stability, Variable step-size, autonomous and non-

autonomous. 

1. Introduction 

The usage of ordinary differential equations (ODEs) is present everywhere in science, engineering, economics, 

social sciences, and health care. The field of ODEs is an extensive mathematical discipline and is widely used to 

study the mathematical modeling of many physical problems like radioactive decay, population dynamics, 

mechanical systems, fluid flows, electrical networks, rate of chemical reactions, and many others [8]. Initial value 

problems (IVPs) of ODEs are complex by nature and their pure analytical solutions are not possible, such ODEs 

can be solved numerically, just in a few cases, IVPs can be solved analytically [7]. In terms of convergence, the 

numerical schemes performed better and were easily result-oriented than analytical schemes. Many researchers 

formulated numerous schemes for the solutions of such ODEs [10, 12]. Numerical methods for solutions of ODEs 

are common. Mathematicians have developed several effective single and multi-step methods to get an 

approximate solution. Solving ODEs is a challenge in pure and applied mathematics so the numerical methods 

have significance for estimating the solution of the ODEs [6, 8].  

Therefore, in this research, the method known as fifth order has been developed to resolve IVPs with integration 

interval considering constant and variable step size. This method has rational character and good stability 

characteristics i.e.  L-stability. The proposed numerical technique discretizes the interval [xn-x0] as follows. 

                           xn=x0+nh,  (n=1,2, 3…, M)  
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where,  

ℎ =
𝑥𝑛−𝑥0

𝑀
  

h is the step size along with the integration interval of [xn-x0]. 

In these cases, this paper aims to implement the developed method in variable step size and to adjust the step sizes 

to retain the assessed local errors lesser than tolerance efficiently. 

The paper is structured as: the derivation of fifth-order is performed in Section 2, while the error and linear stability 

analysis are conducted in Section 3 and 4 respectively. Implementation in variable step-size mode is formulated in 

Section 5. Then, the performance of this method has been assessed through different numerical experiments. 

2. Derivation of the improved scheme   

Here the general first-order ODE has been considered to demonstrate different numerical methods for the solution 

of ODEs with an initial condition as defined below. 

                  
  𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0   𝑦, 𝑓(𝑡, 𝑦) ∈ ℝ,  𝑡 ∈ [𝑎, 𝑏] ⊂ ℝ .                                        (1) 

Existence of unique solution of (1) is assumed for the integration interval of 𝑡 ∈ [𝑎, 𝑏]  . 

Here,   

𝑦𝑛 ≈ 𝑦(𝑡𝑛), 

Where, 𝑦𝑛 is the approximation to the theoretical solution 𝑦(𝑡) at the nodal points  

𝑡𝑛 = 𝑎 + 𝑛ℎ ;  

taking the step size    

ℎ =
𝑥𝑛−𝑥0

𝑀
 

where 𝑛 = 1,2,3 … 𝑀.         

After getting the motivation from [7], the method has been improved for order of convergence and L-stability.                 

 The approximate solution at 𝑡 = 𝑡𝑛+1; 

                                             𝑦𝑛+1 =
𝐴+𝐵.ℎ

1+𝐶.ℎ+𝑑.ℎ2+𝐸.ℎ3+𝐹.ℎ4                                           (2) 

 

where A, B, C, d, E, and F are unknown co-efficient which depend on the known variables at 𝑡𝑛. 

Equation (2) is expanded by Taylor’s series, we get                                                      

  yn+1=𝐴 + (−𝐴𝐶 + 𝐵)ℎ + (−𝐴𝑑 + (𝐴𝐶 − 𝐵)𝐶)ℎ2 + (−𝐴𝐸 + (𝐴𝐶 − 𝐵)𝑑 + (−𝐴𝐶2 + 𝐴𝑑 + 𝐵𝐶)𝐶)ℎ3 +

(−𝐴𝐹 + (𝐴𝐶 − 𝐵)𝐸 + (−𝐴𝐶2 + 𝐴𝑑 + 𝐵𝐶)𝑑 + (𝐴𝐶3 − 2𝐴𝐶𝑑 − 𝐵𝐶2 + 𝐴𝐸 + 𝐵𝑑)𝐶)ℎ4 + ((𝐴𝐶 − 𝐵)𝐹 +

(−𝐴𝐶2 + 𝐴𝑑 + 𝐵𝐶)𝐸 + (𝐴𝐶3 − 2𝐴𝐶𝑑 − 𝐵𝐶2 + 𝐴𝐸 + 𝐵𝑑)𝑑 + ( −𝐴𝐶4 + 3𝐴𝐶2𝑑 + 𝐵𝐶3 − 2𝐴𝐶𝐸 − 𝐴𝑑2 −

2𝐵𝐶𝑑 + 𝐴𝐹 + 𝐵𝐸)𝐶)ℎ5 + ((−𝐴𝐶2 + 𝐴𝑑 + 𝐵𝐶)F+(𝐴𝐶3 − 2𝐴𝐶𝑑 − 𝐵𝐶2 + 𝐴𝐸 + 𝐵𝑑)𝐸 + (−𝐴𝐶4 + 3𝐴𝐶2𝑑 +

𝐵𝐶3 − 2𝐴𝐶𝐸 − 𝐴𝑑2 − 2𝐵𝐶𝐷 + 𝐴𝐹 + 𝐵𝐸)𝑑 + (𝐴𝐶5 − 4𝐴𝐶3𝑑 − 𝐵𝐶4 + 3𝐴𝐶2𝐸 + 3𝐴𝐶𝑑2 + 3𝐵𝐶2𝑑 −

2𝐴𝐶𝐹 − 2𝐴𝐸𝑑 − 2𝐵𝐶𝐸 − 𝐵𝑑2 + 𝐵𝐹)𝐶) ℎ6 + 𝑂(ℎ7) . 

                                                                                                                          (3)   

Solving for A, B, C, d, E, and F, by equating the coefficients up to ℎ5 and comparing it with Taylor’s series t= 𝑡𝑛, 

we get  
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𝐴 = 𝑦𝑛    (4) 

 

 𝐵 = −𝐴𝐶 + 𝐵       (5)                               

 

𝐶 = 2𝐴𝐶2−2𝐴𝑑−2𝐵𝐶   (6) 
 

 

𝐷 = −6𝐴𝐶3 + 12𝐴𝐶𝑑 + 6𝐵𝐶2 − 6𝐴𝐸 − 6𝐵𝑑     (7)                            

 

 

𝐸 =  24𝐴𝐶4 − 72𝐴𝐶2𝑑 − 24𝐵𝐶3 + 48𝐴𝐶𝐸 + 24𝐴𝑑2 + 48𝐵𝐶𝑑 − 24𝐴𝐹 − 24𝐵𝐸   (8) 

 

𝐹 = −120𝐴𝐶5 + 480𝐴𝐶3𝑑 + 120𝐵𝐶4 − 360𝐴𝐶2𝐸 − 360𝐴𝐶𝑑2 − 360𝐵𝐶2𝑑 + 240𝐴𝐶𝐹 + 240𝐴𝑑𝐸 +

240𝐵𝐶𝐸 + 120𝐵𝑑2 − 120𝐵𝐹                  

                                 (9) 

              

After solving above system of nonlinear equations, we get 

 

                             𝐴 = 𝑦           (10)     

          

𝐵 =
1

5 ⁄ (90(𝑦′′)
2

𝑦′𝑦2−240𝑦′′(𝑦′)
3

𝑦−20𝑦′′𝑦′′′𝑦3+120(𝑦′)
5

+60(𝑦′)
2

𝑦′′′𝑦2−10𝑦′𝑦′′′′𝑦3+𝑦′′′′′𝑦4)

( 6𝑦2(𝑦′′)2−36𝑦𝑦′′(𝑦′)2+24(𝑦′)4+8𝑦2𝑦′′′𝑦′−𝑦3𝑦′′′′)
            (11) 

   

𝐶 = 
−1

5 ⁄ (𝑦′′′′′𝑦3−5𝑦2𝑦′′′′𝑦′−20𝑦2𝑦′′′𝑦′′+20𝑦𝑦′′′(𝑦′)
2

+60(𝑦′′)
2

𝑦′𝑦−60𝑦′′(𝑦′)
3

)

( 𝑦3(𝑦′′′′−8𝑦2𝑦′′′𝑦′−6𝑦2(𝑦′′)2+36𝑦𝑦′′(𝑦′)2−24(𝑦′)4)
                              (12) 

 

 

 

𝑑 =
1

10 ⁄ (−2𝑦2(𝑦′′′′′𝑦′−5𝑦2𝑦′′′′𝑦′′−10𝑦𝑦′′′′(𝑦′)
2

+30𝑦(𝑦′′)
3

+40𝑦′′′(𝑦′)
3

−60(𝑦′′)
2

(𝑦′)
2

)

( 𝑦3(𝑦′′′′−8𝑦2𝑦′′′𝑦′−6𝑦2(𝑦′′)2+36𝑦𝑦′′(𝑦′)2−24(𝑦′)4)
                                  (13)  

 

 

𝐸 =

1
30 ⁄ (3𝑦2(𝑦′′′′′𝑦′′ − 5𝑦2𝑦′′′′𝑦′′′ − 6𝑦𝑦′′′′′(𝑦′)2 + 40𝑦(𝑦′′′)2𝑦′ − 30𝑦𝑦′′′(𝑦′′)2 + 30𝑦′′′′′(𝑦′)3 −

120𝑦′′′𝑦′′(𝑦′)2 + 90(𝑦′′)3𝑦′)

( 𝑦3(𝑦′′′′ − 8𝑦2𝑦′′′𝑦′ − 6𝑦2(𝑦′′)2 + 36𝑦𝑦′′(𝑦′)2 − 24(𝑦′)4)
 

                         (14) 

𝐹

=

1
120 ⁄ (4𝑦2(𝑦′′′′′𝑦′′′ − 5𝑦2(𝑦′′′′)2 − 24𝑦𝑦′′′′′𝑦′′𝑦′ + 40𝑦𝑦′′′′𝑦′′′𝑦′ + 60𝑦𝑦′′′′(𝑦′′)2 − 80𝑦(𝑦′′′)2𝑦′′ + 24𝑦′′′′′(𝑦′)3

−120𝑦′′′′𝑦′′(𝑦′)2 − 80(𝑦′′′)2(𝑦′)2 + 360𝑦′′′(𝑦′′)2𝑦′ − 180(𝑦′′)4)

( 𝑦3(𝑦′′′′ − 8𝑦2𝑦′′′𝑦′ − 6𝑦2(𝑦′′)2 + 36𝑦𝑦′′(𝑦′)2 − 24(𝑦′)4)
  

           (15) 

 

After putting the equations, (10) - (15) into (2),  we get 

 𝒚𝒏+𝟏= 
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(24(−y4(y′′′′′h + 20y3y′′′y′′h + 10y3y′′′′y′h − 60y2y′′′(y′)2h − 90y2(y′′)2y′h + 240yy′′(y′)3h −

120y(y′)5h + 5y4y′′′′ − 40y3y′′′y′ − 30y3(y′′)2 + 180y2y′′(y′)2 − 120y(y′)4)

(−180(y′′)4h4 − 24y3y′′′′′h + 1440y′′(y′)3h − 5y2(y′′′′)2h4 − 80(y′′′)2(y′)2h4 + 24  y′′′′′ (y′)3  h4 +

360(y′′)3y′ h3 + 120 y′′′′  (y′)3 h3 + 360y (y′′)3h2 + 480 y′′′(y′)3h2 − 720 (y′′)2(y′)2h2 + 40yy′′′y′′′′

 y′ h4 − 24y y′′y′′′′′y′ h4 − 120yy′′′′(y′)2 h2 + 480y2y′′′y′′h + 120 y2y′′′′y′h − 480yy′′′(y′)2h −

1440y(y′′)2y′h + 4 y2y′′′y′′′′′h4 − 80y(y′′′)2y′′h4 + 60y(y′′)2y′′′′h4 + 360y′′′(y′′)2y′h4 − 120y′′y′′′′

    (y′)2h4 − 20y2 y′′′y′′′′h3 + 12 y2y′′y′′′′h3 + 160 y(y′′′)2y′h3 − 120yy′′′(y′′)2h3 −

24yy′′′′′(y′)2h3 − 480y′′′y′′(y′)2h3 − 60y2y′′y′′′′h2 + 24y2y′′′′′y′h2 + 120y′′′′y3 − 720(y′′)2y2 −

−2880(y′)4 − 960y′′′y′y2 + 4320y′′(y′)2y)  

 

                                                                                                                                        (16) 

3. Local truncation error 

The local truncation error (LTE) associated to a numerical method is:  

                               𝐿𝑇𝐸 = 𝐶ℎ𝑝+1𝑦(𝑝+1)(𝑥) + Ο(ℎ𝑝+2),                   (17) 

where C is an error constant and p is order of accuracy for the numerical method. 

Now, consider the following operator in (16); 

                                        ℒ(𝒵(𝑡), ℎ) = 𝒵(𝑡 + ℎ) −
𝐿

𝑀
 ,           (18) 

where 𝐿 𝑎𝑛𝑑 𝑀 is numerator and denominator respectively   of proposed scheme given in (16) 

where z(t) is an arbitrary analytic function defined on interval [a, b]. Expanding the above expression by Taylor 

series  about t and collecting terms in h, after substituting z(t) by the solution y(t)  and t by tn , one can obtain the 

following LTE for the method (16) which confirms its 5th order accuracy as follows :  

1

3600
(

1

(24(𝑦𝑛
′)4−36𝑦𝑛

′′(𝑦𝑛
′)2𝑦+8𝑦𝑛

′′′𝑦𝑛
′(𝑦𝑛)2+6(𝑦𝑛

′′)2(𝑦𝑛)2−𝑦𝑛
(4)(𝑦𝑛)3)[120(𝑦𝑛

′)4𝑦𝑛
(6) −720(𝑦𝑛

′)3𝑦𝑛
′′𝑦𝑛

(5) −

1200(𝑦𝑛
′)3𝑦𝑛

′′′𝑦𝑛
(4) + 2700(𝑦𝑛

′)2(𝑦𝑛
′′)2𝑦𝑛

(4) + 3600(𝑦𝑛
′)2𝑦𝑛

′′(𝑦𝑛
′′′)2 − 180(𝑦𝑛

′)2𝑦𝑛
′′𝑦𝑛

(6)𝑦𝑛 +

240(𝑦𝑛
′)2𝑦𝑛

′′′𝑦𝑛
(5)𝑦𝑛 + 150(𝑦𝑛

′)2(𝑦𝑛
(4))2𝑦𝑛 − 7200𝑦𝑛

′(𝑦𝑛
′′)3𝑦𝑛

′′′ + 720𝑦𝑛
′(𝑦𝑛

′′)2𝑦𝑛
(5)𝑦𝑛 −

600𝑦𝑛
′𝑦𝑛

′′𝑦𝑛
′′′𝑦𝑛

(4)𝑦𝑛 − 800𝑦′(𝑦𝑛
′′′)3𝑦𝑛 + 40𝑦𝑛

′𝑦𝑛
′′′𝑦𝑛

(6)(𝑦𝑛)2 + 2700(𝑦𝑛
′′)5 − 1350(𝑦𝑛

′′)3𝑦𝑛
4𝑦𝑛 +

1800(𝑦𝑛
′′)2(𝑦𝑛

′′′)2𝑦𝑛+30(𝑦𝑛
′′)2𝑦𝑛

(6)(𝑦𝑛)2 − 240𝑦𝑛
′′𝑦𝑛

′′′𝑦𝑛
(5)(𝑦𝑛)2 + 150𝑦𝑛

′′(𝑦𝑛
(4))2(𝑦𝑛)2 +

100(𝑦𝑛
′′′)2𝑦𝑛

(4)(𝑦𝑛)2 − 5𝑦𝑛
(4)𝑦(6)(𝑦𝑛)3 + 6(𝑦𝑛

(5))2(𝑦𝑛)3] 

  (19) 

 

4. Linear stability analysis 

Dahlquist’s test problem has been performed for the linear stability analysis  

                                             𝒴′ = 𝜆𝒴,     𝑅(𝜆) < 0,           (20) 

The following difference equation is readily obtained from equation (20): 

                           
24(ℎ𝜆+5)

ℎ4𝜆4−8ℎ3𝜆3+36ℎ2𝜆2−96ℎ𝜆+120
 .                             (21) 

If 𝒵 = ℎ𝜆 𝑤𝑖𝑡ℎ 𝑅𝑒(𝜆) < 0 then, the stability function is in the form of: 

 

                  ∅(𝒵) =
1+1

5⁄ 𝒵

1−4
5⁄ 𝒵+ 3 10 ⁄ 𝒵 2−1

15⁄ 𝒵 3 1 120⁄ 𝒵 4   
 .          (22) 
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Stability region of this method has been shown by the shaded portion in fig.1 

    

Fig 1. Absolute stability region of the fifth order method (16) 

The method's absolute stability region (16), depicted in Fig.  1, contains the left half complex plane, satisfying the 

condition for the method to be A-stable [7]. Furthermore, the proposed method satisfies the following condition: 

lim
𝑧→∞

𝜙(𝑧) = 0 

Since this method is accurate to the fifth order and L-stable. 

 

5. Numerical Experiments  

Some numerical experiments have been presented by  implementing the proposed scheme(16). The numerical 

experiments have been performed on several IVPs having different behavior of solution . MATLAB version 

R2019a(9.6.0.1072779) on 64-bit operating-system has been used for the computational work.  

The two well-known fifth order methods have been used for the comparison. One of the methods is Taylor’s 

method given as: 

Specify 𝑥0, 𝑦0, 𝑧0, ℎ 

((𝑥0, 𝑦0) initial points, 

                                   𝑥𝑛  point where the solution is required 

                             h the step length to be used in the marching process) 

Compute  
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𝑓′(𝑥𝑖 , 𝑦𝑖),  𝑓′′(𝑥𝑖 , 𝑦𝑖), 𝑓′′′(𝑥𝑖 , 𝑦𝑖) .  .  .   

Compute 

𝑦(𝑥𝑖 + ℎ) =  𝑦(𝑥𝑖) + ℎ 𝑓(𝑥𝑖 , 𝑦𝑖) + ℎ2

2⁄ 𝑓′(𝑥𝑖 , 𝑦𝑖) + ℎ3

6⁄ 𝑓′′(𝑥𝑖 , 𝑦𝑖) + 

                                               ℎ
4

24⁄ 𝑓′′′(𝑥𝑖 , 𝑦𝑖) + ℎ4

120⁄ 𝑓′′′(𝑥𝑖 , 𝑦𝑖)+ .   .  . 𝑥𝑖 = 𝑥𝑖 + ℎ  

Until 𝑥𝑖until 𝑥𝑖 = 𝑥𝑛  

And second on of the methods is the Fifth Order Runge-Kutta method given as: 

         𝑦𝑖+1 =  𝑦𝑖 +
1

90
(7𝑘1 + 32𝑘3 + 12𝑘4 + 32𝑘5 + 7𝑘6)ℎ 

𝑘1 = 𝑓(𝑥𝑖 , 𝑦𝑖) 

𝑘2 = 𝑓 (𝑥𝑖 +
1

4
ℎ, 𝑦𝑖 +

1

4
𝑘1ℎ) 

𝑘3 = 𝑓 (𝑥𝑖 +
1

4
ℎ, 𝑦𝑖 +

1

8
𝑘1ℎ +

1

8
𝑘2ℎ) 

𝑘4 = 𝑓 (𝑥𝑖 +
1

2
ℎ, 𝑦𝑖 −

1

2
𝑘2ℎ + 𝑘3ℎ) 

𝑘5 = 𝑓 (𝑥𝑖 +
3

4
ℎ, 𝑦𝑖 +

3

16
𝑘1ℎ +

9

16
𝑘4ℎ) 

𝑘6 = 𝑓 (𝑥𝑖 + ℎ, 𝑦𝑖 −
3

7
𝑘1ℎ +

2

7
𝑘2ℎ +

12

7
𝑘3ℎ −

12

7
𝑘4ℎ +

8

7
𝑘5ℎ) 

Table 1. Nonlinear equation with Initial value problem 

 𝒚′ = 𝟏 + 𝒚𝟐,                                    𝒚(𝟎) = 𝟏,              𝑬𝒙𝒂𝒄𝒕 = 𝐭𝐚𝐧 (𝒙 +
𝝅

𝟒
) 

 

 

 

Methods 

Step size 

            xfinal= 0.5           xfinal= 1   

At h=0.001  At h=0.01 At h=0.05 At h=0.01 

 

 

 

Taylor Method 

4.3565e-11 4.0338e-08 Inf Inf 

4.3565e-11 4.0338e-08 Inf Inf 

4.6014e-10 4.7609e-09 Inf Inf 

0.0029 0.0094 0.0049 0.0102 

 

 

 

RK Method 

0.3228 0.3246 8.9598e+171 1.9754e+86 

0.3228 0.3246 NAN Nan 

0.0779 0.0799 NAN Nan 

0.0123 0.0080 0.0824 0.0019 

 

 

 Proposed      

Method 

2.1432e-12 2.6731e-11 1.2892e-04 

 

5.2e-3 

 

1.3332e-12 2.6731e-11 5.1565e-06 6.5957e-06 

1.6698e-13 5.6497e-12 1.0970e-05 7.8909e-05 

0.0255 0.0222 0.0227 0.0227 
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Table 2. Nonlinear equation with Initial value problem. 

 

  

𝒚′ =
𝟏

𝒚𝟐
,                         𝒚(𝟎) = 𝟏,              𝑬𝒙𝒂𝒄𝒕 = (𝟑𝒙 + 𝟏)

𝟏
𝟑⁄  

 

  

 

 

Methods 

 

Step size 

           xfinal= 0.5              xfinal= 1 

At h=0.001  At h=0.01 At h=0.05,  At h=0.01 

 

 

 

Taylor Method 

1.0214e-14 9.3808e-10   3.6860e-07 9.3808e-9 

8.4377e-14 7.9860e-11 2.3144e-07    5.9635e-11 

3.2739e-14 8.0731e-11 2.8368e-07 7.4669e-11 

0.0087 0.0088 0.008 0.0089 

 

 

 

RK Method 

1.7282 1.7264   8.9598e+171 1.9754e+86 

1.7282   1.7264 NAN NAN 

0.5681 0.5730 NAN NAN 

0.0126 0.0046 0.0506   2.0500e-04 

  

 

 Proposed      

Method 

5.5511e-15 1.0830e-11 3.8696e-08 

 

1.0830e-11 

 

4.4409e-15 9.2293e-12 2.4459e-08 6.8914e-12 

1.5015e-15 9.3200e-12 2.9873e-08 8.6250e-12 

0.0072 0.0248  3.6000e-04 0.0026 
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Table 3. Nonlinear equation with Initial value problem. 

 

  

𝒚′ =
𝟏

𝒚
,                         𝒚(𝟎) = 𝟏,              𝑬𝒙𝒂𝒄𝒕 = (√𝟐𝒙 + 𝟏) 

 

  

 

 

Methods 

 

Step size 

             xfinal= 0.5          xfinal= 1 

At h=0.001 At h=0.01 At h=0.05 At h=0.01 

 

 

 

Taylor Method 

8.8818e-13 1.1501e-11 4.1515e-08 1.1501e-11 

8.6597e-14   1.1281e-11 3.4791e-08 9.6954e-12 

3.3688e-13 9.6005e-12 3.5376e-08 1.0031e-11 

0.0022 0.0145 0.001 0.0658 

 

 

 

RK Method 

1.8509e+16    43.5263 3.9412 1.8998e+03 

1.8509e+16 43.5263 3.9412 1.8998e+03 

5.1193e+14 10.7084 1.4619 259.3529 

  0.0015 0.008 0.0104 0.0077 

 

 

 Proposed      

Method 

4.4409e-15 2.2722e-12 7.8310e-09 2.2722e-12 

4.0432e-15 2.2291e-12 6.5793e-09   1.9194e-12 

2.0237e-15 1.8964e-12 6.6756e-09 1.9826e-12 

3.600e-3 7.3900e-04  4.3100e-04 0.0188 

 

5.1 Results and discussion 

Anew developed fifth-order improved scheme is able to solve nonlinear IVPs in computational and applied 

mathematics. The maximum-error, last errors and average errors have been tabularized. The proposed improved 

scheme has smaller errors than the other methods having same order of accuracy.  In this article, it is proved that 

the proposed scheme has more accuracy and effectiveness in the comparison to some existing standard methods.  

The Tables 1-3 showed the errors and CPU times for all the numerical schemes considering the IVPs. Different 

step-sizes ℎ = 0.01, 0.05, 0.001  at the 𝑥𝑓𝑖𝑛𝑎𝑙 = 0.5, 1 have been used for obtaining numerical results. The first 

nonlinear IVP possesses a blow-up singular solution given as  𝑦(𝑥) = ta n (𝑥 +
𝜋

4
)with singularity at 𝑥 =

𝜋

4
 . The 

second and third nonlinear IVPs have a singular solution, which is given as 𝑦(𝑥) = (3𝑥 + 1)
1

3⁄  with singularity 

at 𝑥 = −
1

3
 and 𝑦(𝑥) =

𝟏

𝒚
 at 𝑥 = −

1

2
  respectively. 

 

6. Conclusion 

It is concluded that the fifth order explicit non-linear scheme has good capability in dealing with IVPs in ODEs. 

Many standards and non-standard methods found in literature cannot handle these types of equations efficiently, 
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but due to L-stable of this scheme, it is an appropriate option for solving singular and stiff ODEs at a low cost as 

it has been evidenced by the CPU values. 
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