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ABSTRACT: This paper presents the development of a convergent numerical scheme for the solution of initial 

value problems of first order ordinary differential equations. The scheme has been derived via the combination of 

two functions namely, polynomial and exponential functions. The local truncation error (𝜏𝑛(ℎ)), order of 

convergence, consistency and stability of the proposed scheme have been analyzed in the present study.  The 

Taylor’s series expansion has been used to derive the principal term of (𝜏𝑛(ℎ)). The Dahlquist’s test equation is 

used to investigate the linear stability region. It is observed that the newly proposed scheme is fourth order 

convergent, consistent and conditionally stable with the region of linear stability. Three IVPs of different nature 

have been solved numerically to check the applicability of a new proposed scheme. The absolute error has been 

calculated at each mesh point of the integration interval. The numerical results show that the scheme is 

computationally effective, adequate and compares favorably with exact solutions. The aid of MATLAB version: 

9.2.0.538062 (R2017a) has been used to carry out all numerical calculations. 
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1. INTRODUCTION 

Ordinary differential equations emanate in many context of Mathematics and Social and Natural sciences. The 

significance of ODEs in fields of science and engineering cannot be denied. Mathematical models emanating from 

these fields are most often ODEs together with their appropriate boundary and initial conditions. Such physical 

models report the dynamic aspects of system and represent the real world situation based on the data available in 

the past and present as detailed in Refs. [1 - 4]. 

   It is a known fact that stiff ODEs constitute the complex and challenging models that cannot be solved 

analytically. It is difficult to acquire their exact solutions. In such situations, one has to go with numerical 

approximate solutions of the models achievable by various numerical schemes of different characteristics [5, 6]. 

Development of new numerical schemes with different characteristics for the solution of IVPs in ODEs has 

attracted the attention of many numerical analysts in past and recent years as detailed in Refs. [7 - 21]. 

   The main intent of this study is to develop a new numerical scheme of order four via the combination of cubic 

polynomial and exponential function. Also the local truncation errors, consistency and the conditional stability of 

the scheme has been thoroughly investigated. Numerical results further confirm the behavior of the scheme when 

compared with exact solution in order to compute the errors. The rest of the paper is structured as follows; section 

2 presents the problem formulation and development of the new numerical scheme. In section 3, the local 

truncation error of the scheme has been inspected. Also the order of the accuracy of the scheme is obtained. In 

section 4, analysis properties have been studied to show the efficiency of the new scheme. In Section 5, numerical 

experiments are carried out. Section 6 presents discussion of results and concluding remarks. 

 

2. PROBLEM FORMULATION AND DERIVATION OF A FOURTH ORDER CONVERGENT 

SCHEME 

2.1 PROBLEM FORMULATION 

We consider a first order ordinary differential equation together with initial condition of the form 
𝑑

𝑑𝑥
𝑦(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) ,          𝑦(𝑥0) = 𝑦0, 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ ℝ .                               … (1) 
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Let us suppose that the numerical solution ‘ 𝑦𝑛+1 ’ estimated at the given interval [𝑥𝑛 , 𝑥𝑛+1] , 𝑛 ≥ 0 to exact 

solution ‘𝑦(𝑥𝑛+1) ’ to (1) be represented by the cubic polynomial and exponential function. 

 

2.2 DERIVATION OF A FOURTH ORDER CONVERGENT SCHEME 

Consider a function of the form 

𝐹(𝑥) = 𝐴0 + 𝐴1𝑥 + 𝐴2𝑥2 + 𝐴3𝑥3 + 𝐵𝑒−2𝑥 .                              … (2) 

Where 𝐴0 is a constant and 𝐴1, 𝐴2, 𝐴3, 𝐵 are undetermined constants. The integration interval of [a, b] is defined 

as 

𝑎 = 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛 = 𝑏 .                           … (3) 

The step size is defined as  

ℎ =
𝑏−𝑎

𝑁
 .                      … (4) 

The mesh point is defined as 

𝑥𝑛 = 𝑥0 + 𝑛ℎ   , 𝑛 = 1,2,3, … , 𝑁                          … (5) 

𝑜𝑟 

𝑥𝑛+1 = 𝑥0 + (𝑛 + 1)ℎ   . 𝑛 = 0,1,2,3, … , 𝑁 − 1                        … (6) 

Expanding (2) at the points 𝑥𝑛 and 𝑥𝑛+1 generates 

𝐹(𝑥𝑛) = 𝐴0 + 𝐴1𝑥𝑛 + 𝐴2𝑥𝑛
2 + 𝐴3𝑥𝑛

3 + 𝐵𝑒−2𝑥𝑛  ,                      … (7) 

and 

𝐹(𝑥𝑛+1) = 𝐴0 + 𝐴1𝑥𝑛+1 + 𝐴2𝑥𝑛+1
2 + 𝐴3𝑥𝑛+1

3 + 𝐵𝑒−2𝑥𝑛+1 .                                 … (8)

  

Respectively, Differentiating (7) four times and using the fact that 

𝐹′(𝑥𝑛) = 𝑓𝑛 , 𝐹′′(𝑥𝑛) = 𝑓𝑛
(1)

 , 𝐹′′′(𝑥𝑛) = 𝑓𝑛
(2)

 , 𝐹𝑖𝑣(𝑥𝑛) = 𝑓𝑛
(3)

 . 

We obtain 

 𝐴1 + 2𝐴2𝑥𝑛 + 3𝐴3𝑥𝑛
2 − 2𝐵𝑒−2𝑥𝑛 = 𝑓𝑛 ,                                … (9) 

 2𝐴2 + 6𝐴3𝑥𝑛 + 4𝐵𝑒−2𝑥𝑛 = 𝑓𝑛
(1)

 ,                              … (10) 

 6𝐴3 − 8𝐵𝑒−2𝑥𝑛 = 𝑓𝑛
(2)

,                      … (11) 

 16𝐵𝑒−2𝑥𝑛 = 𝑓𝑛
(3)

 ,                     … (12) 

 𝐵 =
𝑓𝑛

(3)

16𝑒−2𝑥𝑛
  .                       … (13) 

 Substituting in eq. (11), we obtain 

 6𝐴3 −
8𝑓𝑛

(3)

16𝑒−2𝑥𝑛
× 𝑒−2𝑥𝑛 = 𝑓𝑛

(2)
 , 

 6𝐴3 −
1

2
𝑓𝑛

(3)
= 𝑓𝑛

(2)
 , 

 6𝐴3 = 𝑓𝑛
(2)

+
1

2
𝑓𝑛

(3)
 , 

 𝐴3 =
1

6
𝑓𝑛

(2)
+

1

12
𝑓𝑛

(3)
 .                     … (14) 

Substituting (13) and (14) into (10), we obtain 

2𝐴2 + 6 (
1

6
𝑓𝑛

(2)
+

1

12
𝑓𝑛

(3)
) 𝑥𝑛 + 4 (

𝑓𝑛
(3)

16𝑒−2𝑥𝑛
) × 𝑒−2𝑥𝑛 = 𝑓𝑛

(1)
 , 

2𝐴2 + 𝑓𝑛
(2)

𝑥𝑛 +
1

2
𝑓𝑛

(3)
𝑥𝑛 +

𝑓𝑛
(3)

4
= 𝑓𝑛

(1)
 , 

2𝐴2 + (𝑓𝑛
(2)

+
1

2
𝑓𝑛

(3)
) 𝑥𝑛 = (𝑓𝑛

(1)
−

1

4
𝑓𝑛

3) , 

𝐴2 = (
1

2
𝑓𝑛

(1)
−

1

8
𝑓𝑛

3) − (
1

2
𝑓𝑛

(2)
+

1

8
𝑓𝑛

(3)
) 𝑥𝑛  .                            … (15) 

Substituting (13), (14) and (15) into (9), we obtain 

𝐴1 = 𝑓𝑛 − 2𝐴2𝑥𝑛 − 3𝐴3𝑥𝑛
2 + 2𝐵𝑒−2𝑥𝑛 , 

𝐴1 = 𝑓𝑛 − 2 {(
1

2
𝑓𝑛

(1)
−

1

8
𝑓𝑛

3) − (
1

2
𝑓𝑛

(2)
+

1

4
𝑓𝑛

(3)
) 𝑥𝑛} 𝑥𝑛 − 3 {

1

6
𝑓𝑛

(2)
+

1

12
𝑓𝑛

(3)
} 𝑥𝑛

2 + 2 {
𝑓𝑛

(3)

16𝑒−2𝑥𝑛
} 𝑒−2𝑥𝑛  , 

𝐴1 = 𝑓𝑛 − 𝑓𝑛
(1)

𝑥𝑛 +
1

4
𝑓𝑛

(3)
𝑥𝑛 + 𝑓𝑛

(2)
𝑥𝑛

2 +
1

2
𝑓𝑛

(3)
𝑥𝑛

2 −
1

2
𝑓𝑛

(2)
𝑥𝑛

2 −
1

4
𝑓𝑛

(3)
𝑥𝑛

2 +           
1

8
𝑓𝑛

(3)
 , 

𝐴1 = (𝑓𝑛 +
1

8
𝑓𝑛

(3)
) − (𝑓𝑛

(1)
−

1

4
𝑓𝑛

(3)
) 𝑥𝑛 + (

1

2
𝑓𝑛

(2)
+

1

4
𝑓𝑛

(3)
) 𝑥𝑛

2 .                             … (16) 

Subtracting (7) from (8) gives the following: 

𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = (𝐴0 + 𝐴1𝑥𝑛+1 + 𝐴2𝑥𝑛+1
2 + 𝐴3𝑥𝑛+1

3 + 𝐵𝑒−2𝑥𝑛+1) − (𝐴0 + 𝐴1𝑥𝑛 + 𝐴2𝑥𝑛
2 + 𝐴3𝑥𝑛

3 +

                                      𝐵𝑒−2𝑥𝑛) , 
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𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = 𝐴1(𝑥𝑛+1 − 𝑥𝑛) + 𝐴2(𝑥𝑛+1
2 − 𝑥𝑛

2) + 𝐴3(𝑥𝑛+1
3 −  𝑥𝑛

3) + 𝐵(𝑒−2𝑥𝑛+1 − 𝑒−2𝑥𝑛)            … (17) 

Since; 

𝑥𝑛 = 𝑥0 + 𝑛ℎ ,                                 … (18)  

and   

𝑥𝑛+1 = 𝑥0 + (𝑛 + 1)ℎ .                   … (19) 

Therefore, 

𝑥𝑛+1 − 𝑥𝑛 = ℎ ,                       … (20) 

𝑥𝑛+1
2 − 𝑥𝑛

2 = {𝑥0 + (𝑛 + 1)ℎ}2 − {𝑥0 + 𝑛ℎ}2 , 

𝑥𝑛+1
2 − 𝑥𝑛

2 = 𝑥0
2 + 2𝑥0𝑛ℎ + 2𝑥0ℎ + (𝑛2 + 2𝑛 + 1)ℎ2 − 𝑥0

2 − 2𝑥0𝑛ℎ − 𝑛2ℎ2 , 

𝑥𝑛+1
2 − 𝑥𝑛

2 = 2𝑥0𝑛ℎ + 2𝑥0ℎ + 𝑛2ℎ2 +2nℎ2 + ℎ2 − 2𝑥0𝑛ℎ − 𝑛2ℎ2 , 

𝑥𝑛+1
2 − 𝑥𝑛

2 = 2𝑥0ℎ +(2n+1)ℎ2 ,                            … (21) 

and 

𝑥𝑛+1
3 − 𝑥𝑛

3 = {𝑥0 + (𝑛 + 1)ℎ}3 − {𝑥0 + 𝑛ℎ}3 , 

𝑥𝑛+1
3 − 𝑥𝑛

3 = {𝑥0
3 + (𝑛3 + 1 + 3𝑛2 + 3𝑛)ℎ3 + 3𝑥0

2(𝑛 + 1)ℎ + 3𝑥0(𝑛2 + 2𝑛 + 1)ℎ2} − {𝑥0
3 + 𝑛3ℎ3 +

                         3𝑥0
2𝑛ℎ + 3𝑥0𝑛2ℎ2} , 

𝑥𝑛+1
3 − 𝑥𝑛

3 = {𝑥0
3 + 𝑛3ℎ3 + ℎ3 + 3𝑛2ℎ3 + 3𝑛ℎ3 + 3𝑥0

2𝑛ℎ + 3𝑥0
2ℎ + 3𝑥0𝑛2ℎ2 + 6𝑥0𝑛ℎ2 + 3𝑥0ℎ2 − 𝑥0

3 −

                         𝑛3ℎ3 − 3𝑥0
2ℎ − 3𝑥0𝑛2ℎ2} , 

𝑥𝑛+1
3 − 𝑥𝑛

3 = 3𝑥0
2ℎ + 3𝑥0(1 + 2𝑛)ℎ2 + (3𝑛2 + 3𝑛 + 1)ℎ3 ,                          … (22) 

Setting 𝑥0 = 0 in eq (18), (19), (21) and (22) yields 

𝑥𝑛 = 𝑛ℎ ,                             … (23) 

𝑥𝑛+1 = (𝑛 + 1)ℎ ,                        … (24) 

𝑥𝑛+1
2 − 𝑥𝑛

2 = (2𝑛 + 1)ℎ2 ,                                    … (25) 

𝑥𝑛+1
3 − 𝑥𝑛

3 = (3𝑛2 + 3𝑛 + 1)ℎ3  ,                        … (26)  

Substituting (23), (24), (25) and (26) in (17), we obtain   

𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = 𝐴1ℎ + 𝐴2ℎ2(2𝑛 + 1) + 𝐴3ℎ3(3𝑛2 + 3𝑛 + 1) + 𝐵(𝑒−2(𝑛+1)ℎ − 𝑒−2𝑛ℎ) , 

𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = 𝐴1ℎ + 𝐴2ℎ2(2𝑛 + 1) + 𝐴3ℎ3(3𝑛2 + 3𝑛 + 1) + 𝐵𝑒−2𝑛ℎ(𝑒−2ℎ − 1)            … (27) 

Substitute the values of A1, A2, A3 and B in eq. (27) yields 

𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = [(𝑓𝑛 +
1

8
𝑓𝑛

(3)
) − (𝑓𝑛

(1)
−

1

4
𝑓𝑛

(3)
) 𝑥𝑛 + (

1

2
𝑓𝑛

(2)
+ 

1

4
𝑓𝑛

(3)
) 𝑥𝑛

2] ℎ + [(
1

2
𝑓𝑛

(1)
−

1

8
𝑓𝑛

(3)
) −

                                      (
1

2
𝑓𝑛

(2)
+  

1

4
𝑓𝑛

(3)
) 𝑥𝑛] ℎ2(2𝑛 + 1) + [

1

6
𝑓𝑛

(2)
+

1

12
𝑓𝑛

(3)
] ℎ3(3𝑛2 + 3𝑛 + 1) +

𝑓𝑛
(3)

16𝑒−2𝑛ℎ ×                                        𝑒−2𝑛ℎ(𝑒−2ℎ − 1)                  … (28) 

Substitute 𝑥𝑛 = 𝑛ℎ into eq. (28), we obtain 

𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = [(𝑓𝑛 +
1

8
𝑓𝑛

(3)
) − (𝑓𝑛

(1)
−

1

4
𝑓𝑛

(3)
) 𝑛ℎ + (

1

2
𝑓𝑛

(2)
+  

1

4
𝑓𝑛

(3)
) 𝑛2ℎ2] ℎ + [(

1

2
𝑓𝑛

(1)
−

1

8
𝑓𝑛

(3)
) −

                                      (
1

2
𝑓𝑛

(2)
+  

1

4
𝑓𝑛

(3)
) 𝑛ℎ] ℎ2(2𝑛 + 1) + [

1

6
𝑓𝑛

(2)
+

1

12
𝑓𝑛

(3)
] ℎ3(3𝑛2 + 3𝑛 + 1) +

𝑓𝑛
(3)

16𝑒−2𝑛ℎ ×                                       𝑒−2𝑛ℎ(𝑒−2ℎ − 1) , 

𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = (𝑓𝑛 +
1

8
𝑓𝑛

(3)
) ℎ + (

1

2
𝑓𝑛

(1)
−

1

8
𝑓𝑛

(3)
) ℎ2(2𝑛 + 1) − (𝑓𝑛

(1)
−

1

4
𝑓𝑛

(3)
) 𝑛ℎ2 +

                                      (
1

2
𝑓𝑛

(2)
+

1

4
𝑓𝑛

(3)
) 𝑛2ℎ3 − (

1

2
𝑓𝑛

(2)
+

1

4
𝑓𝑛

(3)
) 𝑛(2𝑛 + 1)ℎ3 + (

1

6
𝑓𝑛

(2)
+  

1

12
𝑓𝑛

(3)
) ℎ3(3𝑛2 +

                                      3𝑛 + 1) +
𝑓𝑛

(3)

16
(𝑒−2ℎ − 1) , 

𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = (𝑓𝑛 +
1

8
𝑓𝑛

(3)
) ℎ + [(

1

2
𝑓𝑛

(1)
−

1

8
𝑓𝑛

(3)
) (2𝑛 + 1) − (𝑓𝑛

(1)
−

1

4
𝑓𝑛

(3)
) 𝑛] ℎ2 +

[(
1

2
𝑓𝑛

(2)
+

1

4
𝑓𝑛

(3)
) 𝑛2 − (

1

2
𝑓𝑛

(2)
+

1

4
𝑓𝑛

(3)
) 𝑛(2𝑛 + 1) + (

1

6
𝑓𝑛

(2)
+

1

12
𝑓𝑛

(3)
) (3𝑛2 + 3𝑛 + 1)] ℎ3 +

𝑓𝑛
(3)

16
(𝑒−2ℎ − 1) .

                     … (29) 

Since one-step numerical scheme will be developed, let  

𝑦𝑛+1 − 𝑦𝑛 = 𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛)  

𝑦𝑛+1 = 𝑦𝑛 + (𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛)) .                  … (30) 

Substituting (29) into (30), we have 

𝑦𝑛+1 = 𝑦𝑛 + +
𝑓𝑛

(3)

16
(𝑒−2ℎ − 1) + (𝑓𝑛 +

1

8
𝑓𝑛

(3)
) ℎ + [(

1

2
𝑓𝑛

(1)
−

1

8
𝑓𝑛

(3)
) (2𝑛 + 1) − (𝑓𝑛

(1)
−

1

4
𝑓𝑛

(3)
) 𝑛] ℎ2 +

              [(
1

2
𝑓𝑛

(2)
+

1

4
𝑓𝑛

(3)
) 𝑛2 − (

1

2
𝑓𝑛

(2)
+

1

4
𝑓𝑛

(3)
) 𝑛(2𝑛 + 1) + (

1

6
𝑓𝑛

(2)
+

1

12
𝑓𝑛

(3)
) (3𝑛2 + 3𝑛 + 1)] ℎ3 . 
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                     … (31) 

The simplified form of (31) is 

𝑦𝑛+1 = 𝑦𝑛 +
1

16
(𝑒−2ℎ − 1)𝑓𝑛

(3)
+ ℎ (𝑓𝑛 +

1

8
𝑓𝑛

(3)
) +

ℎ2

2
(𝑓𝑛

(1)
−

1

4
𝑓𝑛

(3)
) +

 ℎ3

2
(

1

3
𝑓𝑛

(2)
+

1

6
𝑓𝑛

(3)
) .           … (32) 

Equation (32) is the newly developed fourth order one-step numerical scheme. 

 

3. ORDER OF ACCURACY OF THE NEW NUMERICAL SCHEME 

    According to Ref. [15], local truncation error measures the order of accuracy for any numerical scheme. 

Consider the Taylor’s series expansion of the form 

𝑦(𝑥𝑛 + ℎ) = 𝑦(𝑥𝑛) + ℎ𝑓 +
1

2!
ℎ2𝑓(1) +

1

3!
ℎ3𝑓(2) + 

1

4!
ℎ4𝑓(3)+

1

5!
ℎ5𝑓(𝑖𝑣) + 𝑂(ℎ6) .            … (33) 

From the definition of a local truncation error for explicit one step scheme, we write that: 

Local Truncation Error = 𝜏𝑛+1 = 𝑦(𝑥𝑛 + ℎ) − 𝑦𝑛+1 .                … (34) 

Substituting (32) and (33) into (34), we obtain 

𝜏𝑛+1 = [𝑦(𝑥𝑛) + ℎ𝑓 +
1

2!
ℎ2𝑓(1) +

1

3!
ℎ3𝑓(2) +

1

4!
ℎ4𝑓(3) +

1

5!
ℎ5𝑓(𝑖𝑣)] − [𝑦𝑛 +

1

16
(𝑒−2ℎ − 1)𝑓𝑛

(3)
+

              ℎ (𝑓𝑛 +
1

8
𝑓𝑛

(3)
) +

ℎ2

2
(𝑓𝑛

(1)
−  

1

4
𝑓𝑛

(3)
) +  

 ℎ3

2
(

1

3
𝑓𝑛

(2)
+

1

6
𝑓𝑛

(3)
) ] +  𝑂(ℎ6) .             … (35) 

Replacing the term 𝑒−2ℎ from eq. (35) by its Maclaurin’s series, we obtain 

 𝜏𝑛+1 = [𝑦(𝑥𝑛) + ℎ𝑓 +
1

2!
ℎ2𝑓(1) +

1

3!
ℎ3𝑓(2) +

1

4!
ℎ4𝑓(3) +

1

5!
ℎ5𝑓(𝑖𝑣)] − [𝑦𝑛 +

1

16
(1 − 2ℎ +

(−2ℎ)2

2!
+

(−2ℎ)3

3!
+

                
(−2ℎ)4

4!
+

(−2ℎ)5

5!
+ ⋯ − 1) 𝑓𝑛

(3)
+ ℎ (𝑓𝑛 +

1

8
𝑓𝑛

(3)
) +

ℎ2

2
(𝑓𝑛

(1)
− 

1

4
𝑓𝑛

(3)
) +  

 ℎ3

2
(

1

3
𝑓𝑛

(2)
+

1

6
𝑓𝑛

(3)
) ] +  𝑂(ℎ6) .

                    … (36) 

Solving further, eq. (36), we obtain 

𝜏𝑛+1 = 𝑦(𝑥𝑛) + ℎ𝑓 +
1

2
ℎ2𝑓(1)+

1

6
ℎ3𝑓(2) +

1

24
ℎ4𝑓(3) +

1

120
ℎ5𝑓(𝑖𝑣) −  𝑦𝑛 − ℎ𝑓𝑛 −  

ℎ2

2
𝑓𝑛

(1)
−

ℎ3

6
𝑓𝑛

(2)
−

ℎ4

24
𝑓𝑛

(3)
+

               
ℎ5

60
𝑓𝑛

(3)
+  𝑂(ℎ6) .                    … (37) 

   By means of the localizing assumption, the terms up to h4 have been eliminated and eq. (37) has been reduced 

into the following expression:  

𝜏𝑛+1 =
1

60
ℎ5 (

1

2
𝑓(𝑖𝑣) − 𝑓𝑛

(3)
) +  𝑂(ℎ6) .                 … (38) 

Thus, the leading term of the local truncation error involves h5, which confirms the fourth order accuracy of the 

new proposed numerical scheme, given by eq. (32).Hence, the new proposed scheme has the convergence of 

fourth order. 

 

4. ANALYSIS OF THE PROPERTIES OF THE PROPOSED SCHEME 

     This section presents the consistency, stability and convergence properties of the proposed numerical scheme 

(32) as follows. 

4.1 CONSISTENCY. According to Ref. [6], consistency essentially requires that: for a numerical scheme to be 

consistent, it is important for the truncation errors to be zero when the step size h gets smaller and ultimately 

converges to zero. Alternatively, the consistency of a one-step numerical scheme can be measured as follows: 

 lim
ℎ→0

(
𝐿𝑇𝐸

ℎ
) = lim

ℎ→0
(

𝜏𝑛+1

ℎ
) = lim

ℎ→0
(

1

60
ℎ5(

1

2
𝑓(𝑖𝑣)−𝑓𝑛

(3)
)+ 𝑂(ℎ6)

ℎ
) = 0 .                … (39) 

From above criterion, it is easy to observe that the proposed numerical scheme has consistency characteristics. 

4.2 STABILITY. According to Ref. [6], numerical schemes are stated to be numerically stable if they are able to 

damping out the small fluctuations achieved with inside the enter data. Some factors that affect stability include 

the differential equation that’s being solved, or the numerical method that’s being used, or the step size h used in 

numerical calculations. To illustrate the idea of stability analysis of the proposed numerical scheme, consider the 

following Dahlquist’s test problem: 

𝑦′(𝑥) = 𝜇𝑦(𝑥) ,  𝑦(0) = 1 ,   𝜇 < 0                              … (40) 

where 𝜇 is a complex constant. 

The exact solution of eq. (40) is given by 

 𝑦(𝑥) = 𝑒𝜇𝑥  , 𝜇 < 0                                 … (41) 

For an integration interval [𝑥𝑛 , 𝑥𝑛+1] where ℎ = 𝑥𝑛+1 − 𝑥𝑛 ; the exact solution at the point 𝑥 = 𝑥𝑛+1 is acquired 

as 

𝑦𝐸𝑥𝑎𝑐𝑡(𝑥𝑛+1) = 𝑒𝜇𝑥𝑛+1 = 𝑒𝜇(𝑥𝑛+ℎ) = 𝑒𝜇𝑥𝑛𝑒𝜇ℎ = 𝑦𝐸𝑥𝑎𝑐𝑡(𝑥𝑛)𝑒𝜇ℎ .                        … (42) 
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When implemented the proposed numerical scheme (30) on this test problem; it produce 

𝑦𝑛+1 = 𝜑𝑦𝑛  Where 𝜑 = 1 + 𝜇ℎ +
(𝜇ℎ)2

2!
+

(𝜇ℎ)3

3!
+

(𝜇ℎ)4

4!
                   … (43) 

Comparing the Equations (42) and (43), it can see clearly that the Eq. (43) is the fifth term of the series expansion 

of the function 𝑒𝜇ℎ in the exact solution. The error amplification factor given by Eq. (43) can be restrained by 

|𝜑| < 1 so that the errors may not magnify. Thus, the region of stability of the proposed one-step numerical scheme 

satisfies 

|1 + 𝜇ℎ +
(𝜇ℎ)2

2!
+

(𝜇ℎ)3

3!
+

(𝜇ℎ)4

4!
| < 1 .                   … (44)  

We substitute 𝑧 = 𝜇ℎ, then Equation (44) provides 

|1 + 𝑧 +
𝑧2

2!
+

𝑧3

3!
+

𝑧4

4!
| < 1 .                      … (45) 

Using Equation (45), the stability region for the proposed one-step numerical scheme is plotted in Figure 1. Hence, 

the proposed numerical scheme (32) is observe to be conditionally stable with the region of linear stability given 

below. 

 

Fig. 1. The stability region (Un-shaded) for the proposed scheme (32). 

4.3 CONVERGENCE. According to Ref. [7], the necessary and sufficient conditions for a one-step numerical 

scheme to be convergent are consistency and stability. Since the proposed numerical scheme satisfied these 

conditions effectively, we can conclude that the new proposed numerical one-step scheme is convergent. 

5. IMPLEMENTATION OF THE NUMERICAL SCHEME (32) 

This last section presents some numerical experiments to test the performance of the proposed numerical scheme 

(32). 

5.1. NUMERICAL EXPERIMENTS 

It is always necessary to signify the implementability, compatibility and accuracy of the newly developed one-step 

numerical scheme for solving IVPs arising from dynamic systems. To do so, the scheme was written in an 

algorithm form, transformed into computer codes with the help of MATLAB programming language and employed 

with couple of IVPs on a digital computer.  

We consider the following numerical experiments. 

5.1.1. Experiment 1 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 ;   𝑦 (0) = 1;    ℎ = 0.1;   0 ≤ 𝑥 ≤ 1 

Analytical Solution: 

𝑦(𝑥) = 2𝑒𝑥 − 𝑥 − 1  

The comparative analysis of the results are shown in Table 1 below 
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Table 1. The comparative analysis of the results produced via the new scheme (′ 𝒚𝒏′) in the context of the exact 

solution (′ 𝒚(𝒙𝒏)′) in the interval of integration 𝑥 ∈ [0,1] with large constant step-size ℎ = 0.1  

𝒏 𝒉 𝒙𝒏 𝒚𝒏 𝒚(𝒙𝒏) 𝑨. 𝑬 

1 0.1 0.0000 1.0000 1.0000 0.0000 

2 0.1 0.1000 1.1103 1.1103 0.0000 

3 0.1 0.2000 1.2428 1.2428 0.0000 

4 0.1 0.3000 1.3997 1.3997 0.0000 

5 0.1 0.4000 1.5836 1.5836 0.0000 

6 0.1 0.5000 1.7974 1.7974 0.0000 

7 0.1 0.6000 2.0442 2.0442 0.0000 

8 0.1 0.7000 2.3275 2.3275 0.0000 

9 0.1 0.8000 2.6511 2.6511 0.0000 

10 0.1 0.9000 3.0192 3.0192 0.0000 

11 0.1 1.0000 3.4366 3.4366 0.0000 

 

 

 

 

 

 

 

Fig.2. Comparison of exact solution with proposed scheme (32) for the numerical experiment 1. 

5.1.2. Experiment 2 
𝑑𝑦

𝑑𝑥
= 1 + 𝑦2 ;   𝑦 (0) = 1;    ℎ = 0.01;   0 ≤ 𝑥 ≤ 0.5 

Analytical Solution: 

𝑦(𝑥) = 𝑡𝑎𝑛 (𝑥 +
𝜋

4
)  

The comparative analysis of the results are shown in Table 2 below 

Table 2. The comparative analysis of the results produced via the new scheme (‘𝒚𝒏’) in the context of the exact 

solution (‘𝒚(𝒙𝒏)’) in the interval of integration 𝑥 ∈ [0,0.5] with small constant step-size ℎ = 0.01 

 

𝒏 𝒉 𝒙𝒏 𝒚𝒏 𝒚(𝒙𝒏) 𝑨. 𝑬 

0 0.01 0.0000 1.0000 1.0000 0.0000 

5 0.01 0.0500 1.1053 1.1054 0.0000 

10 0.01 0.1000 1.2230 1.2230 0.0000 

15 0.01 0.1500 1.3560 1.3561 0.0001 

20 0.01 0.2000 1.5084 1.5085 0.0001 

25 0.01 0.2500 1.6856 1.6858 0.0002 

30 0.01 0.3000 1.8956 1.8958 0.0002 

35 0.01 0.3500 2.1494 2.1497 0.0003 

40 0.01 0.4000 2.4643 2.4650 0.0007 

45 0.01 0.4500 2.8677 2.8689 0.0011 

50 0.01 0.5000 3.4062 3.4082 0.0021 
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Fig.3. Comparison of exact solution with proposed scheme (32) for the numerical experiment 2. 

5.1.3. Experiment 3 
𝑑𝑦

𝑑𝑥
= 𝑥𝑦3 ;   𝑦 (0) = 1;    ℎ = 0.01;   0 ≤ 𝑥 ≤ 0.5 

Analytical Solution: 

𝑦(𝑥) =
1

√1−𝑥2
  

The comparative analysis of the results are shown in Table 3 below 

Table 3. The comparative analysis of the results produced via the new scheme (‘𝑦𝑛’) in the context of the exact 

solution (‘𝑦(𝑥𝑛)’) in the interval of integration 𝑥 ∈ [0,0.5] with small constant step-size ℎ = 0.01 

𝒏 𝒉 𝒙𝒏 𝒚𝒏 𝒚(𝒙𝒏) 𝑨. 𝑬 

0 0.01 0.0000 1.0000 1.0000 0.0000 

5 0.01 0.0500 1.0013 1.0031 0.0000 

10 0.01 0.1000 1.0050 1.0050 0.0000 

15 0.01 0.1500 1.0114 1.0114 0.0000 

20 0.01 0.2000 1.0206 1.0206 0.0000 

25 0.01 0.2500 1.0328 1.0328 0.0000 

30 0.01 0.3000 1.0483 1.0483 0.0000 

35 0.01 0.3500 1.0675 1.0675 0.0000 

40 0.01 0.4000 1.0911 1.0911 0.0000 

45 0.01 0.4500 1.1198 1.1198 0.0000 

50 0.01 0.5000 1.1547 1.1547 0.0000 

 

     
     Fig.4. Comparison of exact solution with proposed scheme (32) for the numerical experiment 3 
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6. DISCUSSION OF RESULTS AND CONCLUDING REMARKS 

This section presents the brief description of resultss achieved via new proposed one-step numerical scheme (32).  

6.1 DISCUSSION OF RESULTS 

  The initial value problems in ordinary differential equations arising from scientific computations can be solved 

effectively by using new proposed numerical scheme (32). Three numerical examples have been solved to verify 

the performance of the new proposed numerical scheme in terms of the accuracy in the context of the exact solution 

and also the absolute relative errors computed at the final mesh point of the integration interval under consideration 

as shown in Table 1-3. The mesh points (‘𝒙𝒏’), numerical solution (‘𝒚𝒏’), the exact solution (‘𝒚(𝒙𝒏)’) and the 

absolute errors (‘𝑨. 𝑬’) are displayed in third, fourth, fifth and sixth columns respectively. The new scheme has 

the behavior of decreasing errors with small step-size. Table 1-3 clearly indicated that the results of the new scheme 

and the exact solution increase over time. From figure 2-4, we discovered a similar behavior in exact and numerical 

solutions, which indicated that there is no disruption in the simulation curve and new approximate solution is in 

good agreement with the exact solution.  

6.2 CONCLUDING REMARKS 

  In this paper, we have developed a new fourth order numerical scheme for the solution of IVPs in ordinary 

differential equations via the combination of cubic polynomial and exponential function. We have examined the 

truncation error, convergence, consistency and stability of the fourth order numerical scheme (32).The numerical 

results in Figures 2-4 depict that the fourth order numerical scheme is accurate and converges quicker to the exact 

solution. It is also observed that the proposed numerical scheme is consistent with conditional stability as shown 

in Figure 1. Hence, from the practical viewpoint, the suggested fourth order numerical scheme is effective, robust, 

accurate and very near to the exact solution. Finally, all the numerical calculations were carried out with the help 

of MATLAB version: 9.2.0.538062 (R2017a). 
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