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Abstract 

The main focus of this paper is to propose a fourth-order convergent modified numerical algorithm by using an 

exponential and polynomial type function for getting the approximate solution of initial value problems (IVPs) in 

ordinary differential equations (ODEs). The proposed algorithm has been tested and analyzed for the convergence, 

stability, consistency, of several numerical experiments that proved the superiority of the proposed algorithm 

against algorithms including the fourth-order arithmetic mean (AM), the fourth-order harmonic mean (HM), and 

the fourth-order Contra harmonic mean(���). 
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1. Introduction 
Many researchers are working to solve many real-world physical problems. They are the ones that came up with 

the laws and theories that are related to natural physical problems. Most of the time, these laws take the form of 

differential equations. In the domains of engineering and physics, an ODE is crucial. It is the most significant tool 

for solving the physical and natural problems that belong to the field of science. The mostly real-world applications 

and pure mathematical research are interconnected to the ordinary differential equations. The most mathematical 

formulation of physical laws are defined in terms of ODEs and have applications in the field of fluid dynamics, 

chemistry, Biology, Medicine, Population dynamics, Economy, Social sciences, and many more. It is used to 

define the motion of projectile, rocket, charge, satellite planet, current in a circuit, conduction of heat, force on 

bodies, or bodies in motion depending on ODEs. There are many methods for solving initial value problems of the 

form given below: 

		�� = �	
, ��	, �	
� = �  (1) 

At present time, we have many exact and numerical techniques for solving the equation of the type (1) that 

gives approximate and analytical solutions, but some ODEs have no exact solutions.  It is a known fact that several 

mathematical models arising from the real and physical life situations cannot be solved explicitly in most of the 

cases such as nonlinear lotka Volterra competition model and logistic equation in population dynamics, Lorenz 

system in meteorology, pendulum, and duffing equations in mechanical engineering, VanderPol equation in 

electrical engineering, Newton’s law of cooling in thermodynamics, geodesic equation in geology, radioactive 

decay in nuclear physics, the motion of a charged particle, Fermi–Ulam–Pasta Oscillator and many more. In such 

situations, numerical methods of different characteristics and orders are needed mainly due to nonlinear terms 

involved in the practical problems. 

These are all ODEs in which we need to use numerical methods to get the solutions. Some methods are 

explicit, and some are implicit methods. In continuation of this effort, many researchers have derived new 

numerical integration methods of explicit and implicit nature in an attempt to obtain better approximate results 

than various of the available ones in the present literature such as [1,2,5,6,10,12], just to mention a few. In [10] 

author developed a new numerical technique for the solution of initial value problems of first-order ODEs whereas 

in the present study, we have proposed a new modified algorithm based upon the exponential and polynomial 

function for the solution of initial value problems of first-order ODEs, the paper is organized as follows: the Section 

2 starts with the derivation of the polynomial and exponential type function for a proposed new modified numerical 

algorithm, the section 3 to proves that proposed new modified numerical algorithm is fourth-order convergent and 

discuss the local truncation error, consistency and larger stability region of the proposed algorithm structured 

within its subsections. The Section 4 takes into consideration four numerical problems of varying nature to 

illustrate the performance of the algorithm based on the computation of errors. The last Section 5 summarizes the 

above discussion with highlights of major findings in the present research study. 

 

2.1 Derivation of New modified algorithm 

Let us presume that the theoretical solution of y(x) to the initial value problem (1) can be locally represented in 

the interval ��� 	, �����	, � ≥ 0 by the exponential and polynomial type function; 

	∅	�� = 	�� + ������� + ���� + ���� + � � + �! (2) 
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where ��, ��, ��, ��, �  are real unknown coefficients and �!is a constant. We shall imagine "#  is a numerical 

approximate to the theoretical outcome y(x) and. ∅# = ∅	�� , "�� .  
We interpret mesh point as follows: 

���� = �� + ℎ,			� = 0,1,2, … (3) 

Imposing the following constraints on the exponential and polynomial type function (2) in order to get the 

undetermined coefficients. 

 

2.2The Exponential and Polynomial type Function. 

a. The exponential and polynomial function must correspond with the theoretical solution at 

� = �� 	()*	� = ����	. 
Hence we require that 

	∅	��� = 	�� + �������, + ����� + ����� + � �� + �!	. (4) 

 

∅	����� = 	�� + �������,-. + ������� + ������� + � ���� + �!	. (5) 

b. Secondly, the derivatives of the polynomial and exponential type function are required to correspond with the 

differential equation, furthermore its first, second, third and fourth derivatives with respect to x at � = ��  we 

denote nth total derivatives of ∅	�, "� with respect to x with ∅	#� such that 

∅�	��� = Ɵ# . (6) 

 

∅�	��� = Ɵ#
	��

. (7) 

 

∅�	��� = Ɵ#
	��

. (8) 

 

∅�	��� = Ɵ#
	��

. (9) 

 

Ɵ# = −3	�� + �������, + 3����� + 2���� + � . (10) 

 

	Ɵ#
	�� = 9	�� + �������, + 6���� + 2��. (11) 

 

Ɵ#
	�� = −27	�� + �������, + 6��. (12) 

 

Ɵ#
	�� = 	�� + �������, . (13) 

 

Solving �� + �� from equation (13), 

 

	�� + ��� = �
5�Ɵ#

	�����,. (14) 

Substitute (14) into (12) we have, 

 

�� = �
! 6Ɵ#

	�� + �
�Ɵ#

	��7. (15) 

 

Substitute (14),(15) into (11), we have, 

 

�� = �
� 8Ɵ#

	�� − �
9Ɵ#

	�� − 6Ɵ#
	�� + �

�Ɵ#
	��7 ��:. (16) 

 

Substitute (14),(15),(16) into (10) we have, 

 

� = �
�;Ɵ#

	�� − 6Ɵ#
	�� − �

9Ɵ#
	��7 �� + �

� 6Ɵ#
	�� + �

�Ɵ#
	��7 ���. (17) 

 

Replace 

	∅	��� = "#. (18) 

 

 ∅	����� = "#��, (19) 

 

implies that 
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 ∅	����� − ∅	��� = "#�� − "#. (20) 

 

"#�� − "# = 	�� + ��������,-. − ����,� + �������� − ���� + �������� − ���� + � ����� − ���. (21) 

Recall that 

 

���� = �� + ℎ,                                   with         � = 0,1,2… (22) 

 

Substitute (14), (15), (16), (17) into (21), we have and neglecting the terms in �� , ���…. 
 

"#�� = "# + �
5�Ɵ#

	��	���< − 1� + �
! 6Ɵ#

	�� + �
�Ɵ#

	��7 ℎ� + �
� 6Ɵ#

	�� − �
9Ɵ#

	��7 ℎ� + 6Ɵ# + �
�;Ɵ#

	��7 ℎ.  (23) 

Hence (23) is the new modified algorithm for solution of the first order differential equation. 

 

3.1. Local Truncation Error Analysis 
We decide the order of convergence of any numerical algorithm by analysis of local truncation error. In order to 

check the order of the algorithm, we subtract the numerical algorithm (23) from the well-known Taylor’s series 

expansion for y(x) in powers of h which has been described below: 

 

We know that Taylor’s series expansion is 

"	�#� = "	�#� + ℎƟ + �
�!ℎ�Ɵ	�� + �

�!ℎ�Ɵ	�� + �
�!ℎ�Ɵ	�� + �

 !ℎ Ɵ	�� + >	ℎ!�.  (24) 

Local truncation error is defined as 

?@A = B	�#��� − "#��. (25) 

 

?@A = "	�#� + ℎƟ + �
�!ℎ�Ɵ	�� + �

�!ℎ�Ɵ	�� + �
�!ℎ�Ɵ	�� + �

 !ℎ Ɵ	�� −	C"# + �
5�Ɵ#

	��	���< − 1� + �
! 6Ɵ#

	�� +
															��Ɵ#

	��7 ℎ� + �
� 6Ɵ#

	�� − �
9Ɵ#

	��7 ℎ� + 6Ɵ# + �
�;Ɵ#

	��7 ℎD + >	ℎ!�. (26) 

 

Replacing the terms ���< by its Maclaurin’s series, one obtains. 

 

?@A = "	�#� + ℎƟ + �
�!ℎ�Ɵ	�� + �

�!ℎ�Ɵ	�� + �
�!ℎ�Ɵ	�� + �

 !ℎ Ɵ	�� − C"# + �
5�Ɵ#

	�� 61 − 3ℎ + 	��<�E
�! + 	��<�F

�! +
						��<�G�! + 	��<�H

 ! +⋯− 17 +	 �			! 6Ɵ#
	�� + �

�Ɵ#
	��7 ℎ� + �

� 6Ɵ#
	�� − �

9Ɵ#
	��7 ℎ� + 6Ɵ# + �

�;Ɵ#
	��7 ℎD + >	ℎ!�. (27) 

 

?@A = "	�#� + ℎƟ + �
�!ℎ�Ɵ	�� + �

�!ℎ�Ɵ	�� + �
�!ℎ�Ɵ	�� + �

 !ℎ Ɵ	�� −							 C"# + �
5�Ɵ#

	��	−3ℎ + 9<E
� + �;<F

! +
5�<G
�� +														���<H��J � +

�
! 6Ɵ#

	�� + �
�Ɵ#

	��7 ℎ� + 	�
� 6Ɵ#

	�� − �
9Ɵ#

	��7 ℎ� + 6Ɵ# + �
�;Ɵ#

	��7 ℎD + >	ℎ!�.  (28) 

Under local assumption the terms up to ℎ� have been cancelled from (28) and we are left with the following 

expression: 

?@A = �
 !ℎ KƟ#

	�� − 3Ɵ#
	��L + >	ℎ!�. (29) 

Thus, the leading term of the local truncation error involves ℎ  which confirms that the proposed new numerical 

modified algorithm based upon polynomial and exponential function given by (29) has fourth order of convergence. 

 

3.2 Consistency Analysis 

The numerical algorithm needs to be consistent that the truncation errors to be zero when the step size h gets 

smaller and ultimately extend to zero. Among many, the consistency analysis of a numerical algorithm is one of 

the ways to check that whether 

lim<→J	
QRS
< = 0. (30) 

From the above criterion, it is easy to observe that the proposed modified numerical algorithm has consistency 

characteristics. Further, it is also known that any algorithm considered to be consistent has an order of accuracy 

greater than 0. 

Based upon this fact, consistency of the proposed algorithm can safely be claimed since the fourth-order 

accuracy of the proposed algorithm has already been proved in the previous section. 

 

3.3 Stability 

The algorithm is said to be numerically stable if it is efficient of damping out the small change execute in the input 

data. The idea of stability may be taken in different conditions: it may be correlated with the specific numerical 

algorithm used, or the step size h used in numerical computations or with the particular problem being solved, one 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.11, No.6, 2021 

 

4 

of the popular way to apply the test problem for stability analysis of the proposed numerical algorithm is 

6TUT�7 "	�� = ∅"	��; "	0� = 1  which has known as exact solution "	�� = exp		−∅��  where ∅> 0 is, in general, 

a complex constant. For an integration interval��� , �����, where ℎ = �� − ����; the exact solution at the point � =
���� is: 

"	����� = �∅�,-. = �∅	�,�<� = �∅�,�∅< = "	����∅<, ∅ < 0 (31) 

When applied the proposed numerical algorithm on this test problem; it yields 

�[�\ = ]�[   where   ] = \ + ∅^ + 	∅^�_
_ + 	∅^�`

a + 	∅^�b
_b   (32) 

Comparing the Equations (31) and (32), it is clearly seen that the Equation (32) is a five term approximation for 

the function �∅< in the exact solution. The error growth factor given by (32) can be controlled by |ψ| < 1 so that 

the errors may not amplify. Thus, the stability function of the proposed numerical algorithm (23) requires that 

⃒1 + ∅ℎ + 	∅ℎ��
2 + 	∅ℎ��

6 + 	∅ℎ��
24 ⃒ < 1 

Setting z=∅ℎ, then (32) yields ⃒\ + e + e_
_ +

e`
a +

eb
_b⃒ < \ 

The region of absolute stability for the proposed numerical algorithm (23) is defined by the region in the complex 

plane such that ⃒\ + e + e_
_ +

e`
a +

eb
_b⃒ < 1. 

The stability region is plotted in the figure 1 given below. 

 
Figure 1. The Stability Region of the Fourth-Order Proposed Numerical Algorithm 

 

4. NUMERICAL PROBLEMS 

Examples 1-4 in this part discuss numerical values of y(x) for initial value problems (IVPs) and absolute inaccuracy 

of the proposed algorithm and a few known algorithms. The results of the proposed new modified algorithm based 

on exponential and polynomial functions, AM (The fourth-order arithmetic mean), (The fourth-order harmonic 

mean), (The fourth-order Contra harmonic mean method), and their absolute percentage errors and exact solution 

at various x-values are shown in Tables 1-4. These findings were validated using the MATLAB software (version 

5.0). (R-2014-b). 

Problem 4.1 consider initial value problem 

 

                         
f�
f
 = 
�` − �, �	� = \,													 ≤ 
 ≤ \,										^ = . \ 

 

The exact solution of problem 4.1 is 

 

                                       "	�� = �
h������iEj		  
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Table 1. Shows the results of example 4.1 

X-Value Exact Proposed Error AM Error HM Error klm Error 

0     1.0000    1.0000          0 1.0000         0.0002 1.0000         0 1.0000         0 

0.1000     0.9088    0.9088     0.000 0.9090    0.0002 0.9087    0.0001 0.9088    0.0001 

0.2000     0.8316    0.8316     0.000 0.8319    0.0003 0.8314    0.0002 0.8315    0.0001 

0.3000     0.7645    0.7645     0.000 0.7648    0.0003 0.7643    0.0002 0.7643    0.0001 

0.4000     0.7049    0.7049     0.000 0.7052    0.0003 0.7046    0.0002 0.7047    0.0001 

0.5000     0.6511    0.6511     0.000 0.6514    0.0003 0.6508    0.0003 0.6509    0.0002 

0.6000     0.6019    0.6019     0.000 0.6023    0.0003 0.6017    0.0003 0.6018    0.0002 

0.7000     0.5566    0.5566     0.000 0.5570    0.0003 0.5564    0.0003 0.5565    0.0002 

0.8000     0.5146    0.5146     0.000 0.5149    0.0003 0.5143    0.0003 0.5144    0.0002 

0.9000     0.4754    0.4754     0.000 0.4757    0.0003 0.4751    0.0003 0.4752    0.0002 

1.0000     0.4388    0.4388     0.000 0.4391    0.0003 0.4385    0.0002 0.4386    0.0002 

Problem 4.2 consider initial value problem 

                         
f�
f
 = 
 + �, �	� = \,													 ≤ 
 ≤ \,										^ = . \ 

The exact solution of problem 4.2 is 

                                       "	�� = 2�� − � − 1		  
Table 2. Shows the results of example 4.2 

X-Value Exact Proposed Error AM Error HM Error klm Error 

0 1.0000    1.0000          0 1.0000         0 1.000 0 1.0000         0 

0.1000 1.1103    1.1103     0.0000 1.1100    0.0003 1.1105    0.0001 1.1104    0.0001 

0.2000 1.2428    1.2428     0.0000 1.2421    0.0007 1.2431    0.0003 1.2430    0.0002 

0.3000 1.3997    1.3997     0.0000 1.3986    0.0011 1.4001    0.0004 1.4000    0.0002 

0.4000 1.5836    1.5836     0.0000 1.5821    0.0015 1.5842    0.0006 1.5840    0.0003 

0.5000 1.7974    1.7974     0.0000 1.7955    0.0020 1.7982    0.0008 1.7979    0.0004 

0.6000 2.0442    2.0442     0.0000 2.0417    0.0025 2.0452    0.0009 2.0447    0.0005 

0.7000 2.3275    2.3275     0.0000 2.3244    0.0031 2.3286    0.0011 2.3281    0.0006 

0.8000 2.6511    2.6511     0.0000 2.6473    0.0038 2.6524    0.0014 2.6518    0.0007 

0.9000 3.0192    3.0192     0.0000 3.0146    0.0046 3.0208    0.0016 3.0201    0.0009 

1.0000 3.4366    3.4365     0.0000 3.4311    0.0054 3.4384    0.0019 3.4376    0.0010 

Problem 4.3 consider initial value problem 

                         
f�
f
 = 
�_ − �, �	� = \,													 ≤ 
 ≤ \,										^ = . \ 

The exact solution of problem 4.3 is 

                                       "	�� = �
���		  

Table 3. Shows the results of example 4.3 

X-Value Exact Proposed Error AM Error HM Error klm Error 

0     1.0000    1.0000          0 1.0000         0 1.0000         0 1.0000         0.0001 

0.1000 0.9091    0.9091     0.0000 0.9093    0.0002 0.9090    0.0001 0.9090    0.0001 

0.2000 0.8333    0.8333      0.0000 0.8337    0.0004 0.8331    0.0002 0.8332    0.0002 

0.3000 0.7692    0.7692     0.0000 0.7697    0.0004 0.7689    0.0003 0.7691    0.0002 

0.4000 0.7143    0.7143     0.0000 0.7148    0.0005 0.7139    0.0003 0.7141    0.0002 

0.5000 0.6667    0.6667     0.0000 0.6672    0.0006 0.6663    0.0004 0.6665    0.0002 

0.6000 0.6250    0.6250     0.0000 0.6256    0.0006 0.6246    0.0004 0.6248    0.0002 

0.7000 0.5882    0.5882     0.0000 0.5889    0.0006 0.5878    0.0004 0.5880    0.0002 

0.8000 0.5556    0.5556     0.0000 0.5562    0.0007 0.5551    0.0004 0.5553    0.0003 

0.9000 0.5263    0.5263     0.0000 0.5270    0.0007 0.5258    0.0005 0.5260    0.0003 

1.0000 0.5000    0.5000 0.0000 0.5007    0.0007 0.4995    0.0005 0.4997    0.0004 

Problem 4.4 consider initial value problem 

              
f�
f
 =

�` nop 

_ , �	� = \,													 ≤ 
 ≤ \,										^ = . \ 

The exact solution of problem 4.4 is 

                                       "	�� = �
√��rst�	  
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Table 4. Shows the results of example 4.4 

X-Value Exact Composed Error AM Error HM Error klm Error 

0     1.0000    1.0000          0 1.0000         0 1.0000         0 1.0000         0 

0.1000 1.0540    1.0540     0.0000 1.0539    0.0001 1.0540    0.0000 1.0540    0.0000 

0.2000 1.1171    1.1172     0.0001 1.1170    0.0001 1.1171    0.0000 1.1171    0.0000 

0.3000 1.1914    1.1915     0.0001 1.1912    0.0002 1.1914    0.0000 1.1914    0.0000 

0.4000 1.2798    1.2799     0.0002 1.2794    0.0003 1.2797    0.0000 1.2797    0.0000 

0.5000 1.3860    1.3862     0.0002 1.3855    0.0005 1.3859    0.0001 1.3859    0.0001 

0.6000 1.5156    1.5159     0.0003 1.5148    0.008 1.5154    0.0002 1.5154    0.0002 

0.7000 1.6765    1.6770     0.0005 1.6753    0.0012 1.6762    0.0003 1.6762    0.0003 

0.8000 1.8810    1.8816     0.0006 1.8790    0.0020 1.8804    0.0005 1.8803    0.0006 

0.9000 2.1483 2.1490     0.0007 2.1449    0.0034 2.1475    0.0008 2.1471    0.00012 

1.0000 2.5116    2.5119     0.0003 2.5054    0.0062 2.5105    0.0011 2.5091    0.00025 

We notice that in Tables 1-4, the error incurred in the fourth-order arithmetic mean (AM), The fourth-order 

harmonic mean (HM) and The fourth-order Contra harmonic mean (CvM) is greater than that of the proposed 

numerical algorithm and the same time get larger as n increases. Hence proposed numerical algorithm is more 

accurate than the fourth-order arithmetic mean (AM), The fourth-order harmonic mean (HM), and The fourth-

order Contra harmonic mean (CvM) as we can see from Tables 1-4.   

 

5. CONCLUSION  
In this research work, a new modified numerical algorithm has been proposed for solving the IVPs in ODEs 

(ordinary differential equations). The proposed algorithm has been created from exponential and polynomial type 

functions. The outcomes of the proposed algorithm have been compared with the fourth-order arithmetic means 

(AM), the fourth-order harmonic mean (HM), and the fourth-order Contra harmonic mean (CvM), and found that 

the proposed algorithm has been fourth-order and performing greater accuracy as compared to all mentioned 

algorithms and others well known second-order algorithms and third-order algorithms. The proposed numerical 

algorithm has also been analyzed for stability, consistency, and the local truncation error; and found that the 

proposed algorithm is more stable, consistent, and fourth-order accurate. 
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