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Abstract 

In this article, Adomian’s decomposition method is used to give an analytical solution to homogeneous partial 

differential equations modeling problems in sciences and engineering. The solution algorithm yields a rapidly 

convergent sequence of analytic approximants, which is readily computable, without recourse to linearization, 

perturbation and discretization as practiced by the traditional methods. The method provides direct scheme for 

solving the problems and is capable of greatly reducing the size of computational work while still maintaining 

high accuracy when compared with the theoretical solution. The method can also help to overcome the problems 

caused by the shortage of analytical methods for the computation of solutions to nonlinear differential equations. 
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1. Introduction 
The usefulness of nonlinear partial differential equations in addressing scientific problems is becoming    ever 

more generally recognized in the scientific community as a result of the success of its application in fields as 

wide ranging as finance, biology, engineering, psychology, economics, physics etc. Applications of these 

equations depend strongly on the existence of theoretical or exact solutions which can be computed by many 

standard known methods. However, some nonlinear problems can only be suitably tackled by resorting to 

numerical methods, which requires continuous development of innovative numerical approaches that tailored for 

these complicated deferential equations [6,7,8,9,10]. Adomian’s decomposition method has received much 

attention in the last few decades. Unlike the existing numerical methods, ADM does not require massive 

computations inherent in discretization methods. The representation of nonlinear terms using Adomian’s 

polynomial avoids the truncation error inherent in computational grids methods, which employ a linear 

approximation between the grid points.  

In this work, we are concerned with the solution of nonlinear differential equations of the form; 

Fu Lu Ru Nu g= + + =      1.1                                                                       

Here g  is a specified analytic function and F  represents a general nonlinear differential operator, L  is the 

linear operator, R  is the random or stochastic operator and N  is the nonlinear operator [12]. For the purpose of 

this work, we shall assume that equation (1.1) corresponds to an initial value problem with a nonlinear 

deterministic partial differential equation. 

 

1.1 Review of Adomian’s method 

We shall consider natural and chemical systems as modeled by equation (1.1) where L
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∂∑ , the remainder operator of the linear terms and assume N  to be a 

simple nonlinearity such as 2 ( )N R f u= , where ( )f u  is an analytic function of the solution u . 2R  may 

have a similar form as the remainder operator R  on may not include derivatives [11] . For simplicity, we write 

1( ) ( )R u R u= −  and 2( ) ( )N u R f u= − , thus equation (1.1) becomes 

1 2 ( )Lu g R u R f u= + +                                                1.2                                                                                                                          

We noted from [11] that this is a usual form of Adomian’s and co-workers except for the replacement of 

1R R= −  and 2 ( )Nu R f u= − . This does not affect the derivation except to eliminate the power of negative 

one and is adopted for the sake of simplicity. We next solve for solution u  as modeled by equation (1.2) 

Upon inverting the linear operator L  on both sides of (1.2) we have 
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1 1 1 1

1 2 ( )L L L g L R u L R f u− − − −= + +                         1.3                                                                                                                          

Where 
1L− is p-fold indefinite integral operator ... (.) ...dx dx∫ ∫  

Equation (1.3) yields integral equation 
1 1 1

1 2 ( )u L g L R u L R f uφ − − −= + + +                            1.4                                                                                                                          

and 
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∂∑  comprises the terms that arise from the initial or boundary conditions. 

The notion of analytic parametrization is utilized to craft out the Adomian decomposition series [1] 
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By substituting (1.5) into (1.4) we have 

1 1 1

1 2

0 0 0

m m m

m m m

m m m

u L g L R u L R Aλ φ λ λ
∞ ∞ ∞

− − −

= = =

= + + +∑ ∑ ∑                                      1.6 

We observed that various functions for ( )xλ  would subsume well-know series as special case of the Adomian 

decomposition series [2], thus requiring the components mu  and mA  to become constants to be determined. 

Adomian choice is a special case corresponding 1λ = , where the analytic parameter this becomes the grouping 

parameter [12] 
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Next we compute the initial solution components 0u  such that 

1

0u L gφ −= +                                                                             1.8 
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The series 
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=∑ converges very rapidly and the m-term approximation 
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=∑  serves as a practical 

solution for purposes of synthesis and design. 

To continue our computation of the solution components further than the initial component 0u , we shall 

requires for Adomian polynomials mA . Adomian and co-worker determined the polynomials by implicit 

differentiations  
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Where mA  are polynomials in 0 1 2( , , ,. . . )mu u u u The first few Adomian polynomials from 0A  to 10A  may 

be found in Adomian and co-worker [1,2] 
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Where 
0

0

0

( )
( )

v
v

v

f u
f u

u

∂
=

∂
, as discussed by V Choi, H.-W. and Shin, J.-G [3] 

  

1.1.2 Applications 

 

Problem 1 

Consider the nonlinear equation 
2 2

2

2 2
0, 0 1, 0

u u u
u u x t

t x x

∂ ∂ ∂
− + − = ≤ ≤ >

∂ ∂ ∂
                                               1.13 

with the initial conditions 
( ,0)

( ,0) xu x
u x e

t

∂
= =

∂
 

The exact solution of the above problem is ( , ) x tu x t e +=   

Using the Adomian approach as discussed above, we rewrite (1.13) in an operator; 
2 0t x xL u L u u uu− + − =                                            1.14                                                          
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Operating 
1L−  on both sides of (1.14) and imposing the initial conditions, we have 

1 1 1 2 1 0t x xL L u L L u L u L uu− − − −− + − =   1.15                                                                                                                 

1 1 2 1( , ) ( ,0) ( ,0)t x xu x t u x tu x L L u L u L uu− − −= + + − +                                        1.16                                              

Where 
1

0 0

(.)

t t

L dtdt− = ∫ ∫  

2u  and xuu  are two nonlinear part in (1.16) 

Let 
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mA  and mB  are the Adomian polynomials generated for the nonlinearities  in (1.16) 

1 1 1

0 0 0

( , ) ( ,0) ( ,0) ( , ) ( , ) ( , )t x n n n

n n n

u x t u x tu x L L u x t L A x t L B x t
∞ ∞ ∞

− − −

= = =

     
= + + − +     

     
∑ ∑ ∑      1.17 

                                   

By using scheme (1.11), we generate the followings; 
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From equation (1.17) 
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The solution 1 2 3 4

0

( , ) . . .n

n

u x t u u u u u
∞

=

= = + + + +∑ is thus computed. This is equivalent to power series 

expansion of the exact solution 
x te +

 

  Problem 2 

Let us consider a non linear wave equation 
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with the initial conditions 
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Using the Adomian’s approach as discussed above, we rewrite (1.13) in an operator; 
2 22( )x tL u uL u t x− = − +                                                                                                                               1.19      
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Operating 
1L−  on both sides of (1.19) and imposing the initial conditions, we have                                                                                                               

1 1 1 2 2[ 2( )]x x x t xL L u L uL u L t x− − −− = − +                                                                                                               
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2 2 1 1 2 2( , ) [ 2( )]x t xu x t x t L uL u L t x− −= + + − − +                                                                                               

1.21 
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tuL u  is the nonlinear term in (1.20) 
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By using scheme (1.11), we generate the followings; 
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From the scheme (1.22), 
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The solution 1 2 3 4

0

( , ) . . .n

n

u x t u u u u u
∞

=

= = + + + +∑ is computed. We observed that the self canceling 

“noise” terms appear between the various components. The non-canceled terms in 0u  yields the exact solution

2 2( , )u x t x t= + . 

 

1.1.4 Conclusion 

In this work, we have revisited Adomian’s methodology and implement his approach to obtain analytical 

solution to nonlinear partial differential equations. We observed that the method convergences rapidly to the 

exact solutions. This approach is elegant, powerful and accurate. The method provides a new approach to obtain 

an analytical solution to scientific and financial problems without modeling compromises merely for the sake of 

achieving linearization as commonly practiced by conventional numerical methods 
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