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Abstract 

The typical Cox proportional hazard (PH) model will provide erroneous estimates if the PH assumption is broken, 

which is quite prevalent in medical research. We have developed an expanded version of the basic Cox Model 

that includes a time-lag function and a frailty parameter to account for time-variant covariates, heterogeneity and 

unobserved components in this study. Secondary data from 558 Breast cancer (BC) patients diagnosed at Korle 

Bu teaching hospital were analyzed. The dataset was divided into two parts: training (which had 70% of the data) 

and validation (30 percent). Tests for the functional form of continuous covariates and outliers were included in 

the model diagnostics. The Shoenfeld residual test and the graphical test served as the foundation for the PH 

assumption test. In a noncompeting risk environment, the PH assumption was violated by progesteron receptor 

status, molecular subtype, and tumor grade at diagnosis. Frailty component was revealed to be a significant 

contributor to the developed model, accounting for around 15% of all fatalities attributable to heterogeneity and 

unobserved variables. Our model outperformed current models such as the Exponential AFT model, stratified 

Cox (interaction) model, the standard Cox PH Model and Park and Qiu (2017) model in terms of AIC, BIC, 

likelihood ratio test and area under the ROC curve. Breast cancer survival in Ghana is influenced by stage at 

diagnosis, metastatic status, lymph node involvement, and HER2 overexpression, according to our model. 

Among other findings, BC patients who develop metastasis are 41.264 times more likely to die from the disease 

than individuals who do not develop metastasis. Individuals with higher stages of BC (III and IV) are 6.89 times 

more likely to die from the disease than patients with lower stages (I and II). To improve BC care and prognosis, 

it was suggested that medical officers and diagnosticians take into account the identified significant determinants 

regulating survival as well as the estimated risk and survival probability. 

Keywords: Breast Cancer, Frailty, Heterogeneity, Cox Proportional Hazard Model, Stratified Cox (interaction), 

Extended Cox. 

 

1.  Introduction 

Breast cancer (BC) is a hereditary disorder caused by the uncontrolled multiplication of aberrant breast cells as a 

result of DNA damage [1]. Although around 75% of the causes of BC are unclear, 25% can be attributed to 

modifiable and non-modifiable factors [2,3]. 

Although the Cox PH Model (homogenous and semi-parametric) has been the most robust in comparison to 

parametric and nonparametric models for the last four decades, it has several drawbacks. It is based on 

proportional hazards, which posits that hazard ratios for certain fixed factors are stable across time. In real-world 

medical practice, patient factors are mainly heterogeneous and time-varying; in this instance, the Cox PH model 

in its original form will not be appropriate [4]. It is common in clinical trials for effects to fluctuate over time, 

and because standard models do not provide for a natural explanation of such effects, there is a need to extend 

these models [5].The Cox PH model, which is a pure version of survival, produces approximation relationships 

that largely disregard nonlinear factors. An accurate or true survival model reflects both the linear and nonlinear 

connection between variables and the response variable in practice [6].Unobserved heterogeneity, unobserved 

variables, and time-variant covariates for noncompeting risk age groups are not addressed by the Cox Model in 

its original form. 

Frailty is a latent unobserved random variable that accounts for unobserved heterogeneity and unobserved 

variables in survival modeling [7,8].Heterogeneity emerges as a result of differences in patients, provider care, 

and other hidden factors [9]. In survival studies, when unobserved heterogeneity (frailty) is overlooked, bias is 
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introduced into the estimations, leading to misleading results. Frailty can be included in survival models to 

account for unobserved heterogeneity in addition to observable factors [10]. In multi-center research, frailty 

variance is considerable and should not be overlooked when modeling [8]. 

In order to make educated decisions on breast cancer prognosis, recent research have underlined the need of 

evaluating competing causes of death. Traditional approaches for describing survival processes, such as the 

Kaplan Meier product-limit method and Cox Model, are not designed to account for the competing nature of 

numerous causes for the same event, and hence yield inaccurate estimates when examining the marginal 

probability for cause-specific occurrences [11]. The occurrence of the event of interests is ruled out due to 

competing risk [12]. To evaluate competing risk in different age groups, noncompeting risk models are compared 

to competing risk models to see if the latter is overestimated [13].[14,15] discovered that the risk of competing 

events rises with age, from 19 percent in patients less than 75 years to 54 percent in patients older than 75 years. 

According to a recent evaluation of cancer-related papers published in the last decade that used the Cox PH 

model, 81 percent of them failed to account for the proportionate hazard assumption [16]. The proportional 

hazards (PH) assumption has never been rigorously tested in a large clinical trial dataset, and the effects of 

time-varying treatments have never been fully understood [17]. 

 

2. Method 

Secondary data from 558 BC patients diagnosed at Korle Bu teaching hospital between 2010 and 2015 and 

followed up on (right censored) until the end of 2015 were analyzed. Event history analysis was used to identify 

these individuals' survival status, demographics, and tumor features. The Akaike Information Criterion (AIC), 

Bayesian Information Criteria (BIC), and Reciever Operation Characteristic (ROC) curves were used to compare 

various survival models. The data was analyzed using the R programming language. The participants in the study 

ranged in age from 13 to 97 years old. Prior to the testing of the PH assumption, test of influential and nonlinear 

covariates was conducted. The Cox PH assumption was tested with the shoenfeld residual test and the graphical 

method. Comparing estimates of cumulative incidence functions and the complement of the Kaplan Meier 

Product limit estimator, as well as estimates of the Cox PH model and the Fine Gray model to check any 

overestimation of probabilities, were utilized to account for competing risk in the survival data used. Competing 

risk ages were identified (about 7 percent) and analysed separately. The remaining 93 percent of the survival data 

was used in main analysis the model. The dataset was divided into two parts: training (which had 70% of the data) 

and validation (which held 30% of the data) (30 percent). 

The following relationships was used to develop the modified version of the standard Cox Model: 

The Cox PH Model is given by : 

                      1
0 xp (1)( ) ( )e

k

i i
i

Xt t 
=

 

  

= βX  

The frailty parameter , ℓ in model building is assumed to have a multiplicative effect on the baseline hazard  

ψ0(t) given by : 

                     0( ) ( ) (2)t t =  

The Gamma distribution is given by; 

                         ( )
( )

1

, 0, 0 (3)
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− −
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Partial Maximum Likelihood Estimator for the standard Cox Model is given by;           

                   ( )
11

log log exp (4)
nn n

i i ij i
i ji

PL x V x  
==

  
= −    
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ijV  modifies the risk set over time. 

The area under the ROC curve (AUC), AIC and BIC were the basis for comparing models. Likelihood ratio test 

was also employed in comparing nested models. 
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Where p is the number of model parameters. 

 

3. Model Formulation 

Equation 1 is a one parameter |Cox Proportional Hazard Model with unspecified shape parameter (absorbed by 

the baseline hazard 0( )t  and scale parameter iβ  . 

Consider the Cox regression model with observed and unobserved covariates with respective vectors to be:                                           

                
1 1

0 xp (8)( ) ( )e
k k

u u

i i i i
i i

X Xt t  
= =

 + 
  

=, X βX  

Generating (8) as a two parameter distribution with the unobserved covariates factored out as random effect ( ) 

assumed to account for heterogeneity and unobserved covariates, we obtain,  

        
1

0, xp( ) ( )e (9)
k

i i
i

X Xt t 
=

 

  

= β  

Introducing a nonnegative function into equation (9) given by: 

                             ( ) ( )
1

exp (10)
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x d t
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We obtain equation (11) as follows; 

                         

( )
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X X d tt t   
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For the special case where the null hypothesis is true, (11) reverts to the modified frailty Cox Proportional 

Hazard Model (9) 

( )
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: ... 0
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If the time function in (11) is replaced with a lagged time effect we obtain:            

                 ( )
1 1

0, xp( ) ( )e (12)
k k

i i i i i
i i

X X tt t    
= =

 + − 
  
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In a special case where we specify the lag time as           equation 12 becomes: 
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We now compute the expectation of the gamma distribution with scale and shape parameters of   and    

1 =
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respectively,  
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 Gamma distribution has no closed forms, and to ensure that our model is identifiable, we consider 

the restriction   =      

                                           ( ) 1 ( )x c
 
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With variance  
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When     =    equation  (a) simplifies to an exponential distribution (with a constant hazard function) 

yielding equation (e) as shown below:  
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Substituting equation (d) into (13) yields: 
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For ease of simplicity, we let                   and obtain   ln  =

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.12, No.1, 2022 

 

56 

         

( )
1 1 1

0, xp 1( ) ( )e (15)
k k k

i i i i i i i
i i i

X X t Xt t     
= = =

 + − −  
  

= β X
 

We simplify (15) further to obtain 
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Equation 16 represents our 3 parameter Extended Cox Model. The scale parameters iβ and 
i  controlling the 

dispersion of the probability distribution and the location parameter i which moves the curve of the distribution   

from left to right.   However, because our updated model is still semi-parametric with an undetermined baseline 

hazard, the shape parameter is absorbed by the baseline hazard; the model has no shape parameter. 

 

4. Model Building Assumptions 

The following assumptions were considered in model development: 

i. Random effect parameter , ℓ  was considered to have  multiplicative effect on the baseline hazard. 

ii. Nonnegative function , ( )x  was considered to have multiplicative effect on the baseline hazard. 

iii. Frailty parameter   γ   was considered to follow a Gamma distribution. 

iv. The expectation of the γ frailty is assumed to be 1 with a finite variance. 

 

5. Statistical Properties of modified Cox Model 

The modified Survival frailty model developed from equation (16) is   

         ( )
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 Applying the Laplace Transformation to (17) yields  
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         Equation (18) can be simplified as follows 
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 The developed modified Hazard ratio is given by: 
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 Simplifying yields 
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The derived hazard ratio permits the hazard ratio to change over time which grants greater flexibility than 

proportional hazards assumption. 

Also, we can now ascertain whether differs significantly from zero or otherwise. This will enable us evaluate the 

proportional hazards assumption. 

 

6. Parameter Estimation Of The Modified Cox PH Model 

In general, for time-invariant covariates the partial likelihood from a Cox regression model is given as:                   
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We wish to maximize the log partial likelihood by taking log of both sides to obtain 
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ation (24) represents the actual maximized function. The score equations for partial likelihood are written as: 

The maximum partial likelihood estimates are found using the equation, 

                  ( ) ( ) ( ) ( ) ( ) ( ); ; ;U l U l U l     
  

  
= = =
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                                ( ) ( ) ( )0 ; 0 ; 0.U U U  = = =   

7. Comparing Developed Model with Existing Models 

  Table 1. Comparing Models by AIC, BIC and ROC  

 

Test of no-interaction Assumption 

To know which of the Stratified Cox Model is more appropriate statistically; that is,  the no-interaction model 

or the interaction model,  we must first look at the hazard function model for the interaction situation. The test 
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is a likelihood ratio (LR) test which compares log-likelihood statistics for the interaction model and the 

no-interaction model.  

Null hypothesis: β11 = β12 = . . . = β17 = 0 and β21 = β22 = . . . = β27 = 0 

0 : interractionLR under H no2

14dfχ  

 

Conclusion: Reject null hypothesis; interaction model is preferred. 

The results of comparing our created models (Modified Cox and Frailty Cox) to current models such as 

Exponential AFT, Stratified Cox model, and [18]models are shown in Table 1. Our constructed models 

outperformed existing models on the basis of lowest AIC, BIC values, and greatest area under the ROC curve, as 

seen by the findings. Our enhanced model, which added a time function with lag effect and a frailty parameter, 

was clearly the best overall. 

Table 2. Comparing Nested Models by Likelihood Ratio Test 

 

We employed the likelihood ratio test as an additional performance test because the formulated models are nested 

models with the normal Cox model. Because the difference is statistically significant, our constructed model fits 

the data far better than the Null Model and so optimizes the likelihood function. The null hypothesis, which 

asserts that the Null model fits better, is rejected. 

8. Testing for Influential Covariates 

The index plots below the comparison of the magnitudes of the largest dfbeta values to the regression 

coefficients of the 14 covariates. The output below suggests that none of the observations is terribly influential 

individually, even though some of the dfbeta values for some covariates are large compared with the others. If 

the removal of the outliers from the data did not cause a change in the coefficient of the respective covariate  
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Figure1.  dfbeta Test For Influential Covariates 

9. Test Nonlinear Covariates 

Nonlinearity is not an issue for categorical variables, so we only examine plots of martingale residuals and 

partial residuals against the continuous variable, Age. The Figure shows the plot of martingale residual on the y 

axis and the Age continuous covariate on the x-axis on the range of (-INF, +1). By inspection  of the plots we 

can see after  application of transformations of log and square root  to the covariate that generally, linear model 

is a good fit for age ; an indication that the hazard ratios of the prospective model will be reliable when we 

assume that continuous covariate (Age) have a linear functional form. Expressed in another way, the LOESS 

curve is most reasonably linear (roughly flat) for Age variable with no transformation; hence satisfying the Cox 

Proportional hazard assumption.  This is important to help know the functional form of Age covariate that 

should be included in the model, i.e either linearly by direct inclusion in the model or its transformation. We 

therefore assume that the continuous covariate (Age) have a linear form. 
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Figure2. Plot of Martingale Residuals by Age, with Loess Line (Age not in model) 

 

Table3.  Goodness of Fit Test of Proportional Hazard Assumption (No Competing Risk) 
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             Figure 3. Graphical Test for Cox Proportional Hazard Assumption 

 

 

 

 

Table4.  Goodness of Fit Test of Proportional Hazard Assumption (Under Competing Risk) 

 

Goodness of Fit (GOF) test for validating a proportional hazard assumption test between the observed and 

estimated survival function values; the resulting P value is a more objective method than a graphical method and 

Shoenfeld residual test. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.12, No.1, 2022 

 

62 

It is evident from tables 3 and 4 that GOF test is affected by competing risk. If this assumption is ignored, from 

table 3 where competing risk in the data set is unaccounted for, it can be seen that there were only two significant 

time-dependent covariates  compared to 3 significant time-dependent covariates under noncompeting risk data 

set. This means that when competing risk in the data set is ignored, a number of time-dependent covariates are 

wrongly identified as time-invariant covariates to be included in the model; which can lead to erroneous 

estimates and conclusions. 

 

Table5. Test of Significance of for Competing and noncompeting Risk Ages 

 

 

Figure4. Cumulative Incidence comparison of Competing and noncompeting Risk Ages 

 

It's critical to evaluate the prognosis of breast cancer as well as the risk of dying from reasons other than breast 

cancer when analysing survival. From Figure 4 and Table 5, it is inferable that there is no significant difference 

between the mortalities of patients resulting from the BC disease with respect to lower and higher ages. Again, 

Figure4 shows that increased age and comorbidity are both linked to reduced survival. However, there was a 

significant difference in mortalities resulting from comorbidities (competing risk) in the lower and higher ages. 

This is a reasonable finding, since majority (about 77%) of BC mortality have been ascribed to postmenopausal 

age groups of women attributable to intense comorbidities at higher ages [19]. 
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Figure5. Comparison of Survival Probabilities for Competing and Noncompeting Risk Patients  

Noncompeting risk BC patients had poorer survival rates than competing risk BC patients, according to our 

research. While comorbidities in patients are often associated with higher risks than patients without 

comorbidities, this is conditional on certain conditions, according to [20].With regard to our study, we can 

explain that this conditional factor was identified in the noncompeting risk age groups over a five-year follow-up 

period because roughly 67 percent of BRCA 1, which causes the most aggressive Triple Negative molecular 

subtype, was found in the noncompeting risk age categories. Among the BC subtypes, triple negative has been 

linked to a poor prognosis and the greatest mortality rates, notably in Sub-Saharan African nations. Among our 

study, the competing risk was low (about 7%), but significant in those over the age of 57. According to our 

findings, anemia was a common source of comorbidity. Cancer patients frequently develop anemia, which has a 

substantial negative influence on their quality of life and overall prognosis [21].        

                 Table6. Parameter Estimates of the Formulated Model 

 

Variance of random effect = 0.145, gamma (0.145) = 1, p<0.01 

 

Our model identified stage at diagnosis, Metastasis status, lymph node involvement and HER2 overexpression as 

the significant factors that influence breast cancer survival in Ghana. The variance of random effect explains the 

quantum of variability among individuals across all treatments, and not within each group. Hence about 15% of 

all deaths are due to random effects. The estimated hazard ratio (HR) comparing risk of dying due to BC by low 
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and high staging of the disease  is exp (1.93) =  6.89. Meaning patients at higher staging of BC (III and IV) are 

about 6.89 times at risk of dying from the disease than patients at lower staging (I and II) of the disease. 

Metastasis tells whether the cancer has spread to other parts of the body. The estimated HR with respect to 

metastasis is 3.72. To this end, BC patients who experience metastasis are a whopping exp (3.72) = 41.264 times 

at risk of dying from the disease than patients experiencing no metastasis. This is supported by [22] who 

concluded that metastasis is the most important undermining prognostic factor in breast cancer survival. Lymph 

nodes are classified as N1 (1 to 3 lymph nodes involved), N2 (4 to 9 lymph nodes involved), and N3 (more than 

10 lymph nodes involved). From the table patients with Lymph nodes at N2 and beyond are exp(1.46) =  4.31 

times at risk of dying from the disease than patients below this level. The HR comparing risk of dying due to BC 

by negative and positive HER2 status of the disease is exp (2.84) = 17.116. Meaning patients with positive HER2 

status are about 17.116 times at risk of dying from the disease those of negative status. This finding is supported 

by [23] who found that HER2 amplification/overexpression is a marker of poor prognosis in breast cancer. 

 

   Figure 6. Reciever Operation Characteristic Curve for the Modified Cox Frailty Model 

Our constructed model displayed strong prediction power (AUC = 0.964) after partitioning the survival data into 

70% Training and 30% Validation sets, dichotomizing into thresholds, and computing the resulting sensitivity 

and specificity to predict clinical risk by stratifying BC patients into higher or lower risk categories of clinical 

importance. 

10. Conclusion  

In this paper, we focused on a joint frailty Cox Model with a time lagged function.  In its basic form, the 

standard Cox Model is a homogenous model that is influenced by competing risk in the survival data. Again, the 

proportional hazard assumption precludes the inclusion of time-varying components in the model, resulting in 

erroneous and biased conclusions. We added a function of time with a time-lag effect and a frailty parameter to 

the existing Cox model to address these problems. We discovered that the extended Cox Model, which only 

included the Frailty parameter and did not include a time function, also outperformed the normal Cox Model. 

Frailty component was revealed to be a significant determinant of survival, accounting for around 15% of all 

fatalities attributable to heterogeneity and unobserved variables and confounders. As a result, we conclude that 

our suggested models captures heterogeneity and time-dependent covariates in a way that outperforms several 

existing models, notably Stratified Cox, Exponential AFT model and [18]model. 

11. Ethical considerations  
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The authors have paid close attention to ethical considerations. 

 

12. Future Research  

The assumption that the Gamma distribution reduces to an exponential distribution provided a critical basis for 

modeling the frailty parameter. Future research could focus on modeling the scale and shape factors to determine 

the ideal combination for a more accurate estimation. While such a strategy may produce a better model, 

parameter estimate using Maximum Likelihood estimation may be difficult, if not impossible, due to the Gamma 

distribution's lack of a closed form. Alternative ways of estimating the parameters of such a future model could 

be considered in future studies. 
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