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Abstract 

The purpose of this article  is to introduced the concept of �C − f� − weak contraction in cone metric space and 

also establish a coincidence and common fixed point result for �C − f� − weak contractions in cone metric 

spaces. Our result proper generalizes the results of Sintunavarat and Kumam [7]. We also give an example in 

support of our result. 

Keywords :- Cone metric spaces, weak contraction, �C − f� − weak contraction, coincidence point, common 

fixed point. 

 

Introduction 

It is quite natural to consider generalization of the notion of metric  d ∶  X ×   X →  [0, ∞�. The question was, 

what must [0, ∞� be raplace by E.  In 1980 Bogdan Rzepecki [6]in 1987 Shy- Der Lin [5]and in 2007 Huang and 

Zhang [4]  gave the same answer; Replace the real numbers with a Banach ordered by a cone, resulting in the so 

called cone metric. 

Cone metric space are generalizations of metric space, in which each pair of points of domain is assigned to a 

member of real Banach space with a cone. This cone naturally induces a partial order in a Banach space.  

Recently , Choudhary and Metiya [3]  established a fixed point result for a weak contractions in cone metric 

spaces. Sintunavarat and Kumam [7] give the notion of f- contractions and establish a coincidence and common 

fixed  point result for f −weak contraction in cone metric space.  

In this paper, we introduce the notion of �C − f� − weak contraction condition on cone metric space and prove 

common fixed point theorem for �C − f� − weak contraction mapping. Our results are proper generalizations of 

[7]. 

In next section we give some previous and known results which are used to prove of our main theorem. 

Priliminaries 

In 1972, the concept of C − contraction was introduced by Chatterjea [1]  as follows, 

Definition1:- Let �X, d� be a metric space. A mapping T ∶  X →  X is called a Chatterjea type contraction if there 

exists  k ∈  , 0, -
. / such that for all x, y ∈  X the following inequality holds: 

  d�Tx, Ty� ≤  k [d�x, Ty�  +  d�y, Tx�]     2.1 
Later, Chouddhury [2] introduced the generalization of Chatterjea type construction as follows, 

Definition 2:- A self mapping T ∶  X →  X is said to be weak C- contraction if for all x, y ∈   X, 
 d�Tx, Ty� ≤ -

. [d�x, Ty� +  d�y, Tx�]  − ψ 6d�x, Ty�, d�y, Tx�7    2.2 
where ψ ∶  [0, ∞�.  →  [0, ∞� is  a continuous mapping such that ψ �x, y�  =  0 if and only if x =  y =  0.  
Now we introduced the following definition of �C − f� − weak contraction which is proper generalization of 

Definition 2 

Definition 3:- Let �X, d� be a metric space and f ∶  X →  X. A mapping T ∶  X →  X is said to be �C − f� − weak 

contraction if  

  d�Tx, Ty� ≤ -
. [d�fx, Ty� +  d�fy, Tx�]  −  ψ �d�fx, Ty�, d�fy, Tx� �   2.3 

for x, y ∈  X where ψ ∶  [0, ∞�.  →  [0, ∞� is  a continuous mapping such that ψ  �x, y�  =  0 if and only if 

x =  y =  0.  
Remark 4:- If we take ψ �x, y�  =  k�x +  y� where  0 <  k < -

. then 2.2 reduces to 2.1,  that is weak C − 

contraction are generalization of C- contraction. 

Remark 5:- If we take f =  I (identity mapping) then 2.3 reduced to 2.2,  that is C − f� − weak contraction are 

generalization of weak C- contraction.  

Remark 6:- If we take f =  I  (identity mapping) and ψ �x, y�  =  k�x +  y�  where  0 <  k < -
.  then 2.3  

reduced to 2.1,  that is �C − f� − weak contraction are generalization of  C- contraction.  

Definition 7:- Let E be a real Banach space and P a subset of E. P is called a cone if and only if 
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i.  P is closed non empty and P ≠ { 0 }, 
ii.  a, b ∈  R, a, b ≥  0, x, y ∈  P → ax +  by ∈  P, 
iii.  x ∈  P and −x ∈  P →   x =  0. 

Given a cone P ⊂  E, define a partial ordering ≤  with respect to P by x ≤  y if and only if y −  x ∈  P. We shall 

write x ≤  y to indicate that x ≤  y, but x ≠  y, while x ≪  y will stand for y −  x ∈  int P, with int  P denoting 

the interior of P. 
The cone P is called normal if there is a number k >  0 such that for all x, y ∈  E, 
    0 ≤  x ≤  y → ∥ x ∥ ≤  K ∥  y ∥.   
The least positive number satisfying the above inequality is called the normal constant of P. 
The cone P is called regular if every increasing sequence bounded form above is convergent. That is, if { xG} is a 

sequence such that  

     x-  ≤  x.  ≤ . . . . . . ≤  xG  ≤ . . . . . . . ≤  y  
for some y ∈  E, then there is x ∈  E such that ∥ xG −  x ∥→  0 as n →  ∞. Equivalently, the cone P  is regular if 

and only if every decreasing sequence bounded from below is convergent. It is well known that a regular cone  is 

a normal cone. 

In the following we always suppose E is a Banach space, P is a cone in E with intP ≠ ϕ and ≤  is a partial 

ordering with respect to P.    
Definition 8:- Let X be a non empty set. Suppose that the mapping d: X ×  X →  E satisfies  

i.  0 ≤  d�x, y�, for all x, y ∈  X, and d�x, y�  =  0 if and only if x =  y, 
ii.  d�x, y�  =  d�y, x�, for all x, y ∈  X, 
iii.  d�x, y�  ≤  d�x, z�  +  d�z, y�, for all x, y, z ∈  X. 

Then, d is called a cone metric on  X, and �X, d� is called a cone metric space. 

Definition 9 :- Let �X, d�  be a cone metric space. Let { xG } be a sequence in X and x ∈  X. If for every c ∈  E 

with 0 ≪  c there exists n >  M,   N�O_Q, O�  ≪  c, then { xG } is said to be convergent and { xG } converges to x, 

and x is the limit of { xG }. We denote this by limG → RxG  =  x or xG  →  x, as n →  ∞.  
Definition 10:- Let �X, d�  be a cone metric space and { xG } be a sequence in X. If for any c ∈  E with 0 ≪
 c, there exists m, n >  M such that d�xG, xS�  ≪  c, then { xG }  is called a Cauchy sequence in X.   
Definition 11:- Let �X, d�  be a cone metric space and { xG } be a sequence in X.  If every Cauchy sequence is 

convergent in X, then X called a complete cone metric space. 

Lemma 12:- Let �X, d� be a cone metric space, P be a normal cone with normal constant K. Let { xG} be a 

sequence in X. Then { xG } converges to x if and only if d�xG, x�  →  0, as n → ∞. 

Lemma 13:- Let �X, d� be a cone metric space, P be a normal cone with normal constant K. Let { xG } be a 

sequence in X. If { xG }  converges to x and { xG}  converges to y, then  x =  y, that is the limit of { xG }  is unique. 

Lemma 14:- Let �X, d� be a cone metric space and { xG } be a sequence in X. If { xG } converges  to x, then { xG } 

is Cauchy sequence. 

Lemma 15:- Let �X, d� be a cone metric space, P be a normal cone with normal constant K. Let { xG } be a 

sequence in X. Then { xG }  is a Cauchy sequence if and only if d�x_n, x_m�  →  0, as m, n →  ∞. 
Lemma 16:- Let �X, d� be a cone metric space, P be a normal cone with normal constant K. Let { xG } and { yG } 

be two sequences in X and xG →  x, yG →  y, as  n →  ∞. Then, d�xG, yG�  →  d�x, y� as n →  ∞. 
Lemma 17:- If P is a normal cone in E, then 

i.  if 0 ≤  x ≤  y and  a ≥  0, where a is real number, then 0 ≤  ax ≤  ay, 
ii.  if 0 ≤  xG  ≤  yG, for n ∈  N and xG  →  x, yG  →  y, then 0 ≤  x ≤  y. 

Lemma 18:- Let E is a real Banach space with cone P in E, then for a, b, c ∈  E, 
i.  if a ≤  b and b ≪  c, then a ≪  c, 
ii.  if a ≪  b and b ≪  c, then a ≪  c. 

Definition 19:- Let �Y, ≤�  be a partially ordered set. Then, a function F: Y →  Y  is said to be monotone 

increasing if it preserves ordering. 

Definition 20:- Let f and T be self mappings of a nonempty set X. If w =  fx =  Tx  for some x ∈  X, then x is 

called a coincidence point of f and T, and w is called a point of coincidence of f and T. If w =  x, then x is called 

a common fixed point of f and T. 
In [7], Sintunavarat and Kumam prove following, 

Theorem 21:- Let �X, d�  be  a cone metric space with a regular cone P such that d�x, y�  ∈ int P for x, y ∈  X 

with x ≠  y. Let f ∶  X →  X and T ∶  X →  X be mappings satisfying the inequality 

  d�Tx, Ty� ≤ -
. [d�fx, fy�]  −  ψ 6d�fx, fy�7     2.4 

for x, y ∈  X, where ψ ∶  int P ∪  { 0 }  →  int P ∪  { 0 } is continuous mapping such that 

i.  ψ�t�  =  0 if and only if t =  0, 
ii.  ψ�t�  ≪   t for t ∈  int P, 
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iii.  either ψ�t�  ≤  d�fx, fy� or ψ �t�  ≥  d�fx, fy� for t ∈  int P ∪  { 0 }. 
If T�X� ⊆  f�X� and f�X� is a complete subspace of X, then f and T have a unique point of coincidence in X. 

Moreover, f and T have a common  fixed point in X if ffz =  fz for the coincidence point z. 
Main Results 

Theorem22:- Let �X, d�  be  a cone metric space with a regular cone P such that d�x, y�  ∈  int P for x, y ∈  X 

with x ≠  y. Let f ∶  X →  X and T ∶  X →  X be mappings satisfying the inequality 

  d�Tx, Ty� ≤ -
. [d�fx, Ty�  +  d�fy, Tx�]  −  ψ 6d�fx, Ty�, d�fy, Tx�7   3.1 

for x, y ∈  X, where ψ ∶  �int P ∪  { 0 }�.   →  int P ∪  { 0 } is continuous mapping such that 

i. ψ�t-, t.�  =  0 if and only if t-  =  t.  =  0, 
ii.  ψ�t-, t.�  ≪  min { t-, t.} for t-, t.  ∈  int P, 
iii.  either ψ�t-, t.�  ≤  d�fx, fy� or ψ �t-, t.�  ≥  d�fx, fy� for t-, t.  ∈  int P ∪ { 0 }. 

If T�X� ⊆  f�X� and f�X�  is a complete subspace of  X , then f  and T  have a unique point of coincidence in 

X. Moreover, f and T have a common  fixed point in X if ffz =  fz for the coincidence point z. 

Proof:- Let xY ∈  X.  Since  T�X� ⊆  f�X�,  we construct the sequence { fxG}   where fxG  =  TxGZ-,  n ≥   1.  If 
fxG\-  =  fxG, for some n, then trivially f and T have coincidence point in X. If fxG\-  ≠  fxG, for  n ∈  N then, 

from (3.1)we have  

       d�fxG, fxG\-�  =  d�TxGZ-, TxG�   
    ≤  -

. [d�fxGZ-, TxG� +  d�fxG, TxGZ-�]  −  ψ 6d�fxGZ-, TxG�, d�fxG, TxGZ-�7 
By the property of ψ, that is ψ �t-, t.�  ≥  0 for all  t-, t.  ∈  int P ∪  { 0 }, we have  

d�fxG, fxG\-�  ≤  d�fxGZ-, fxG�.  
Its follows that the sequence { d�fxG, fxG\-�} is monotonically decreasing. Since cone P is regular and  0 ≤
 d�fxG, fxG\-�, for all n ∈  N, there exists r ≥  0 such that 

 d�fxG, fxG\-�  →  r  as  n →  ∞.  
Since ψ is continuous and  

 d�fxG, fxG\-�  ≤  -
. [d�fxGZ-, TxG� +  d�fxG, TxGZ-�]  −  ψ 6d�fxGZ-, TxG�, d�fxG, TxGZ-�7  

by taking n →  ∞, we get 

   r  ≤   r −  ψ�r, r�   
which is contradiction, unless r =  0. Therefore, d�fxG, fxG\-�  →  r  as  n →  ∞. 
Let c ∈  E with 0 ≪  c be arbitrary. Since d�fxG, fxG\-�  →  r   as  n →  ∞, there exists m ∈  N such that 

  d�fx_m, fx_�m + 1��  ≪   ψ ]ψ ,^
. , ^

./ , ψ ,^
. , ^

./_.  
Let B�fxS, c�  =  { fx ∈   X: d�fxS, fx� ≪  c }. Clearly, xS ∈   B�fxS, c� . Therefore, B�fxS, c� is nonempty. Now 

we will show that Tx ∈  B�fxS, c�, for fx ∈  B�fxS, c�. 
Let x ∈  B�fxS, c�. By property (3) of ψ, we have the following two possible cases. 

 �`ab �c�:   d�fx, fxS�  ≤  ψ ,^
. , ^

./,   
�`ab �cc�:   ψ ,^

. , ^
./  <  d�fx, fxS�  ≪  c.  

We have, 

Case (i):   d�Tx, fxS�   ≤   d�Tx, TxS�  +  d�TxS, fxS�  
              ≤  -

. [d�fx, TxS� +  d�fxS, Tx�]  −  ψ6d�fx, TxS�, d�fxS, Tx�7  +  d�TxS, fxS�  
                  ≤  -

. [d�fx, fxSZ-� +  d�fxS, Tx�] −  ψ6d�fx, fxSZ-�, d�fxS, Tx�7  +  d�fxS\-, fxS�  
   ≤   ψ ,^

. , ^
./  +  ψ ]ψ ,^

. , ^
./ , ψ ,^

. , ^
./_   

   ≪  ^
.  + ^

.  
   ≪   c .  
Case (ii):      d�Tx, fxS�   ≤   d�Tx, TxS�  +  d�TxS, fxS�  
             ≤  -

. [d�fx, TxS� +  d�fxS, Tx�]  −  ψ6d�fx, TxS�, d�fxS, Tx�7  +  d�TxS, fxS�  
                          ≤  -

. [d�fx, fxSZ-� +  d�fxS, Tx�] –  ψ6d�fx, fxSZ-�, d�fxS, Tx�7 

    + d�fxS\-, fxS�  
            ≤  -

. [d�fx, fxSZ-� +  d�fxS, Tx�]  −  ψ ]ψ ,^
. , ^

./ , ψ ,^
. , ^

./_   
   + ψ ]ψ ,^

. , ^
./ , ψ ,^

. , ^
./_  

          ≪   c .  
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Therefore, T is a self mapping of B�fxS, c�. Since fxS  ∈   B�fxS, c�  and fxG  =  TxGZ-, n ≥  1, it follows that 

xS  ∈   B�fxS, c� , for all n ≥  m. Again, c is arbitrary. This establishes that { fxG } is a Cauchy sequence in f�X�. 
It follows from completeness of f�X� that fxG  →  fx, for some x ∈  X. Now, we observe that 

          d�fxS, Tx�   =   d�TxGZ-, Tx�  
   ≤  -

. [d�fxGZ-, fx� +  d�fx, fxGZ-�]  −  ψ 6d�fxGZ-, fx�, d�fx, fxGZ-�7.  
By making n →  ∞, we have d�fx, Tx�  ≤  0 . Therefore, d�fx, Tx�  =  0 , that is, fx =  Tx . Hence, x is a 

coincidence point of f and T. 

For uniqueness of the coincidence point of f and T, let, if possible, y ∈  X �x ≠  y� be another coincidence point 

of f and T. 
We note that 

  d�fx, fy�   =   d�Tx, Ty�  
        ≤  -

. [d�fx, Ty�  +  d�fy, Tx�]  −  ψ 6d�fx, Ty�, d�fy, Tx�7  
        ≤  -

. [d�fx, fy�  +  d�fy, fx�]  −  ψ �d�fx, fy�, d�fy, fx� �.   
Hence ψ 6d�fx, fy�, d�fy, fx�7  ≤  0 , which contradiction, by the property of ψ . Therefore, f  and T  have a 

common unique point of coincidence of  X. 

Let z be a coincidence point of f and T. It follows from ffx =  fz and z being a coincidence point of f and T that 

ffz =  fz =  Tz. 
From 3.1, we get 

  d�Tfz, Tz�  ≤  -
. [d�fz, Tz�  +  d�fz, Tfz�]  −  ψ 6d�fz, Tz�, d�fz, Tfz�7  

         ≤   d�fz, Tfz�.  
Which contradiction. Therefore Tfz =  fz, that is ffz =  fz =  Tz. Hence fz is a common fixed point of f and T. 
The uniqueness of the common fixed point is easy to establish from 3.1. This complete the proof.  

It is easy to see that if f =  I (identity mapping ) in Theorem 22  then we get following Corollary.  

Corollary 23:- Let �X, d�  be  a cone metric space with a regular cone P such that d�x, y�  ∈  int P for x, y ∈  X 

with x ≠  y. Let  T ∶  X →  X be a mapping satisfying the inequality 

 d�Tx, Ty� ≤ -
. [d�x, Ty�  +  d�y, Tx�]  −  ψ 6d�x, Ty�, d�y, Tx�7    3.2 

for x, y ∈  X, where ψ ∶  �int P ∪  { 0 }�.  →  int P ∪  { 0 } is continuous mapping such that 

i.  ψ�t-, t.�  =  0 if and only if t-  =  t. =  0, 

ii.  ψ�t-, t.�  ≪  min { t-, t.}  for t-, t. ∈  int P, 
iii.  either ψ�t-, t.�  ≤  d�fx, fy� or ψ �t-, t.�  ≥  d�fx, fy� for t-, t.  ∈  int P ∪  { 0 }.  

If T�X� ⊆  f�X� and f�X� is a complete subspace of X, then  T has a unique point  in X.  
If we take   ψ �t-, t.�  =  k�t- +  t.� for  0 <  k < -

.  in Corollary 23 then we get following result. 

Corollary24:- Let �X, d�  be  a cone metric space with a regular cone P such that d�x, y�  ∈  int P for x, y ∈  X 

with x ≠  y. Let  T ∶  X →  X be a mapping satisfying the inequality 

  d�Tx, Ty� ≤ -
. [d�x, Ty�  +  d�y, Tx�]       3.3 

for x, y ∈  X. If T�X� ⊆  f�X� and f�X� is a complete subspace of X, then  T has a unique point  in X.  
If we take  ψ �t-, t.�  =  6α –  k7 �t- + t.� for α ∈  f-

g , -
./ , 0 <  k < -

. in Theorem 22 then  we get following 

result.  

Corollary 25:- Let �X, d�  be  a cone metric space with a regular cone P such that d�x, y�  ∈ int P for x, y ∈  X 

with x ≠  y. Let f ∶  X →  X and T ∶  X →  X be a mapping satisfying the inequality 

  d�Tx, Ty�  ≤  k[d�fx, Ty�  +  d�fy, Tx�]      3.4 
for x, y ∈  X.  If T�X� ⊆  f�X�  and f�X�  is a complete subspace of X,  then f  and  T  have a unique point of 

coincidence in X. Moreover, f and T have a common  fixed point in X if ffz =  fz for the coincidence point z. 
Example 26:- Let X =  [0,1], E =  R ×  R, with usual norm, be a real Banach space, P =  { �x, y�  ∈  E ∶  x, y ≥
  0 } be a regular cone and the partial ordering ≤ with respect to the cone P be the usual partial ordering in E. 

Define d ∶  X ×  X →  E as : 

   d�x, y�  =  �∣ x −  y ∣, ∣  x −  y ∣�, for  x, y ∈  X.  
Then �X, d�  is a complete cone metric space with d�x, y�  ∈  int P ,  for x, y ∈  X with x ≠  y.  Let us define 

ψ ∶  �int P ∪  { 0 }�.  →  int P ∪  { 0 } such that ψ �t-, t.�  = ij\ ik
l  for all t-, t.  ∈  int P ∪  { 0 }, fx =  2x and 

Tx = n
o for x ∈  X then, Theorem 22  is true and 0 ∈  X is  the unique common fixed point of f and T. 

Corollary 27:- Let �X, d�  be  a cone metric space with a regular cone P such that d�x, y�  ∈ int P for x, y ∈  X 

with x ≠  y. Let f ∶  X →  X and T ∶  X →  X be mappings satisfying the inequality 
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   ∫Y
q�rn,rs�ρ�s�ds ≤ β ∈ ∫Y

q�vn,rs�\ q�vs,rn�ρ�s�ds    3.5 
for x, y ∈  X, β ∈  fY,-

. /  and ρ ∶  [0, ∞�  →  [0, ∞� is a Lebesgue integrable mapping satisfying ∈ tYw  ρ�s� ds for 

ϵ >  0. If T�X� ⊆  f�X� and f�X� is a complete subspace of X, then f and T have a unique point of coincidence in 

X. Moreover, f and T have a common  fixed point in X if ffz =  fz for the coincidence point z. 
Corollary 28 :- Let �X, d�  be  a cone metric space with a regular cone P such that d�x, y�  ∈  int P for x, y ∈  X 

with x ≠  y. Let  T ∶  X →  X be mapping satisfying the inequality 

   ∫Y
q�rn,rs� ρ�s�ds ≤ β∫Y

q�n,rs�  \ q�s,rn� ρ�s�ds    3.6 
for x, y ∈  X, β ∈  fY,-

. /  and ρ ∶  [0, ∞�  →  [0, ∞�  is a Lebesgue integrable mapping satisfying ∫Y
wρ�s� ds  for 

ϵ >  0. Then T has a  fixed point in X. 
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