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Abstract 
In this paper, we prove common fixed point theorems in Fuzzy Metric spaces for weakly compatible mappings 

along with property (E.A.) .Property (E.A.) buys containment of ranges without any continuity requirement 

besides minimizing the commutatively conditions of the maps to commutatively at their point of coincidence. 

Moreover, property (E.A.) allows replacing the completeness requirement of the space with a more natural 

condition of closeness of the range. 
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1. INTRODUCTION 
It proved a turning point in the development of Mathematics when the notion of Fuzzy set was introduced by 

Zadeh [23] which laid the foundation of Fuzzy Mathematics. Fuzzy set theory has applications in applied 

sciences such as neural network theory, stability theory, Mathematical Programming, Modeling theory, 

Engineering Sciences, Medical Sciences (medical genetics, nervous system), image processing, control theory, 

communication etc. 

Kramosil and Michalek [9] introduced the notion of a Fuzzy Metric space by generalizing the concept of the 

probabilistic metric space to the fuzzy situation. George and Veeramani[5] modified the concept of fuzzy metric 

spaces introduced by Kramosil and Michalek[9]. There are many view points of the notion of the metric space in 

fuzzy topology for instance one can refer to Kaleva and Seikkala [8], Kramosil and Michalek [9], George and 

Veeramani [5], the E.A property is introduced by Aamri, M. and Moutawakil [1] Regan and Abbas [ 2] obtained 

some necessary and sufficient conditions for the existence of common fixed point in fuzzy metric spaces .Popa 

([14 ]- [15]) introduced the idea of implicit function to prove a common fixed point theorem in metric spaces . 

Singh and Jain[7] further extended the result of Popa  ([14 ]- [15]) in Fuzzy Metric spaces. For the reader 

convenience, we recall some terminology from the theory of Fuzzy Metric spaces. 

 

2. PRELIMINARIES 
Definition 2.1. ([23]) 

 Let X be any non empty set. A Fuzzy set M in X is a function with domain X and values in [0, 1]. 

 

Definition 2.2. ([17])  

A mapping *: [0, 1]×[0, 1] → [0, 1] is called a continuous t-norm if ([0, 1],* ) is an abelian topological monoid 

with unit 1such that, a *b ≤ c* d, for a ≤ c, b ≤ d. 

Example :2.1   

1) a*b = ab 

2)  a*b= min{a,b} 
 Definition 2.3. ([9])  

The 3 − tuple (X,M,* ) is called a Fuzzy metric space in the sense of Kramosil and Michalek if X is an arbitrary 

set,* is a continuous t − norm and M is a Fuzzy set in X
2
×[0,∞) satisfying the following conditions: 

(a) M(x, y, t) > 0, 

(b) M(x, y, t) = 1 for all t > 0 if and only if x = y, 

(c) M(x, y, t) = M(y, x, t), 

(d) M(x, y, t) *M(y, z, s) ≤ M(x, z, t + s), 

(e) M(x, y, .) : [0,∞) → [0, 1] is a continuous function, 

for all x, y, z ∈ X and t, s > 0. 

 M(x, y, t) can be thought as degree of nearness between x and y with respect to t. 

 It is known that M(x,y, .) is non decreasing for all x, y ∈ X([5]). 

Definition 2.4.  

A sequence {xn} in X converges to x if and only if for each t >0 there exists n0 ∈ N,such that, M(xn, x, t) = 1 , 

for all n ≥ n0. 
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Definition 2.5 

The sequence {xn} n∈N is called Cauchy sequence if 

p ∈ N. 

 

Definition 2.6 
A Fuzzy Metric space X is called complete if every Cauchy sequence is convergent in X.

 

Definition 2.7.  [20]  

Two Self mappings A and S of a Fuzzy Metric space (X, M

commute at their coincidence points, i.e., Ax = Sx implies

 ASx = SAx. 

 

Definition 2.8  [1]  

Two Self mappings A and S on a fuzzy metric space (X,M,*) are said to satisfy the property (E.A)  if there exists 

a sequence {xn} in X such that       Lim

MAIN RESULT 

THEOREM 3.1 : 
Let A,B ,S & T be self map on a fuzzy metric space (X,M,*) where * is a continuous norm such that 

a*b=min{a,b} satisfying the following condition

(i) A(x) U B(x)  ⊂ S(x) ∩

(ii) {A,T} & {B,S} are satisfy E.A Property &weakly compatible

(iii) There exists k ∈(0,1) such that  

M(Ax,By,t)  ≥  M(Tx,Sy,kt)*M(Tx,Ax,kt)*M(By,Ax,kt)*max{M(Ax,Sy,kt) *M(By,Sy,kt)}     

                                                                                                         

(iv) T(x) is closed subspace of X

Then A ,B, S, T have unique common fixed point.

Proof :  
Suppose the pair {B,S} satisfy E.A. p

z  =Limn->∞ Sxn  for some z∈X.  

Now B(x) ⊂ T(x) it implies that there is  a sequence {y

Put  x= yn and y = xn  in Equation—(3.1.1)

M(Ayn,Bxn,t )  ≥  M(Tyn,Sxn,kt)*M(Ty

M(Ayn,Bxn,t)  ≥  M(Bxn,Sxn,kt)* M(Bx

                              Max{ M(Ayn,Sxn

  Taking limit  n →∞ 

M(Limn ->∞Ayn,z,t)   ≥   M(z,z,kt)* M(z,

                                    max{ M(Limn 

M(Limn ->∞Ayn,z,t)  ≥  1* M(z, Limn 

                                     max{ M(Lim

  

M(Limn ->∞Ayn,z,t)  ≥ M(Limn ->∞Ay

This implies a contradiction 

Limn ->∞Ayn  =z 

Suppose T(x) is a closed subspace of X then z=Tu for some u

If Au=z if not,  

Put x=u & y=xn  in Eq –(3.1.1)  

M(Au,Bxn,t)  ≥M(Tu,Sxn,kt)* M(Tu,Au,kt) * 

M(Au ,z, t)  ≥M(z, z ,kt)* M(z, Au ,kt) * M(z, Au, kt)*max{ M(Au ,z, kt), M(z, z, kt) } 

 M(Au ,z, t)  ≥  1* M(z,Au,kt) * M(z,Au,kt)*max{ M(Au, z,kt),1} 

M(Au, z, t)  ≥M(Au ,z, kt)  

This implies a contradiction 

Therefore Au=z 

Hence Au= Tu = z  

Since A(x) ⊂ S(x)  ∃ u ∈  X  such that z = Sv

If Bv = z if not,  

Put x=yn  & y=v in Equation —3.1.1

M(A yn,Bv,t)  ≥ M(T yn,Sv,kt)* M(T
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N is called Cauchy sequence if = 1,for all t > 0 and 

A Fuzzy Metric space X is called complete if every Cauchy sequence is convergent in X. 

Two Self mappings A and S of a Fuzzy Metric space (X, M, *) are said to be weakly compatible if they 

commute at their coincidence points, i.e., Ax = Sx implies 

Two Self mappings A and S on a fuzzy metric space (X,M,*) are said to satisfy the property (E.A)  if there exists 

} in X such that       Limn->∞Axn  =Limn->∞ Sxn=z  for some z∈X.  

Let A,B ,S & T be self map on a fuzzy metric space (X,M,*) where * is a continuous norm such that 

a*b=min{a,b} satisfying the following condition 

∩ T(x) 

{A,T} & {B,S} are satisfy E.A Property &weakly compatible 

(0,1) such that   

M(Ax,By,t)  ≥  M(Tx,Sy,kt)*M(Tx,Ax,kt)*M(By,Ax,kt)*max{M(Ax,Sy,kt) *M(By,Sy,kt)}     

                                                                                                         -------- (3.1.1) Equation  

T(x) is closed subspace of X 

Then A ,B, S, T have unique common fixed point. 

Suppose the pair {B,S} satisfy E.A. property therefore there exist  a sequence {xn} in X  such that  Lim

T(x) it implies that there is  a sequence {yn} in X  such that Bxn= Tyn. 

(3.1.1) 

,kt)*M(Tyn,Ayn,kt)*M(Bxn,Ayn,kt)*max{M(Ayn,Sxn,kt),M(Bx

,kt)* M(Bxn,Ayn,kt) * M(Bxn,Ayn,kt)* 

n,kt),M(Bxn,Sxn,kt)} 

M(z,z,kt)* M(z, Limn ->∞Ayn,kt) * M(z, Limn ->∞Ayn,kt)* 

n ->∞Ayn,z,kt), M(z,z,kt)}  

n ->∞Ayn,kt) * M(z Limn ->∞,Ayn,kt)* 

Limn ->∞Ayn,z,kt),1} 

Ayn,z,kt)   

Suppose T(x) is a closed subspace of X then z=Tu for some u∈X 

kt)* M(Tu,Au,kt) * M(Bxn,Au,kt)*max{ M(Au, Sxn,kt), M( Bxn, Sx

M(Au ,z, t)  ≥M(z, z ,kt)* M(z, Au ,kt) * M(z, Au, kt)*max{ M(Au ,z, kt), M(z, z, kt) }  

M(Au ,z, t)  ≥  1* M(z,Au,kt) * M(z,Au,kt)*max{ M(Au, z,kt),1}  

X  such that z = Sv 

3.1.1 

,Sv,kt)* M(Tyn, A yn, kt) * M(Bv,A yn, kt)* 
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= 1,for all t > 0 and  

 

, *) are said to be weakly compatible if they 

Two Self mappings A and S on a fuzzy metric space (X,M,*) are said to satisfy the property (E.A)  if there exists 

Let A,B ,S & T be self map on a fuzzy metric space (X,M,*) where * is a continuous norm such that 

M(Ax,By,t)  ≥  M(Tx,Sy,kt)*M(Tx,Ax,kt)*M(By,Ax,kt)*max{M(Ax,Sy,kt) *M(By,Sy,kt)}      

(3.1.1) Equation   

} in X  such that  Limn->∞Bxn = 

,kt),M(Bxn,Sxn,kt)} 

, Sxn,kt) } 
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                             max{ M(A yn ,Sv,kt), M(Bv, Sv,kt)} 

M(A yn,Bv,t)  ≥M(B xn,Sv,kt)* M(B xn, A yn, kt) * M(Bv,A yn, kt)* 

                           max{ M(A yn ,z,kt), M(Bv, z,kt),} 

Taking limit n →∞  

M(z,,Bv,t)  ≥M(z,z,kt)* M( z,z, kt) * M(Bv,z, kt)*max{ M(z,z ,kt), M(Bv,z,kt)}   

M(z,,Bv,t)  ≥ M(z,,Bv,kt)   

Sv = Bv = z 

Since  {A,T} is weakly compatible  

ATu=TAu 

Az=Tz 

Az = Tz = z 

Similarly Bz=Sz=z 

∴ z= Az = Bz = Tz = Sz. 

Thus  z is a common fixed point of A,B,S&T. 

Uniqueness: 
 Let w be another fixed point of A ,B,S, T  

Put  x=z & y=w in Equation—(3.1.1) 

M(Az,Bw,t)  ≥M(Tz,Sw,kt)* M(Tz,Az,kt) * M(Bw,Az,kt)*max{ M(Aw, Sw,kt), M(Bw, Sw,kt)} 

M(z,w,t)  ≥M(z,w,kt)* M(z,z,kt) * M(w,z,kt)*max{ M(w, w,kt), M(w,w,kt)}  

M(z,w,t) ≥ M(z,w,kt)  

This implies a contradiction. 

Therefore, z=w 

Thus z  is a unique common fixed point of A,B,S & T 
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