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Abstract 

In this paper  a new type of one step iteration for self mappings is introduced under certain conditions in normed 

linear space and studied with a contractive conditions of Rafiq [4]. 
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1. INTRODUCTION 

Let X  be a nonempty closed convex subset of  a normed linear space E  and :T X X→  be a self mapping 

and{ }nx  be the sequence then for arbitrary 0x X∈ Mann[3] iteration process is defined as 

( )1
1 0

n n n n n
x x Tx for nλ λ+ = − + ≥  

Similarly Ishikawa[2] iteration process for{ }nx is given by 
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( )
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' '
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Where 0x X∈ is arbitrary and { } { }',n nλ λ  are sequences of real numbers such that
'0 1 , 0 1n nλ λ≤ ≤ ≤ ≤ .  

By using the concept of  Mann iteration process Sahu[5]  introduced a new G-iteration process:- 

LetT  be a self mapping of  Banach space then G-iteration process associated by T is defined in the following 

manner, 

Let 0 1,x x X∈ and 

( ) ( )2 1 1
1

n n n n n n n n
x x Tx Txµ λ λ µ+ + += − + + −      for 0n ≥  

Where  { } { }and
n n

µ λ  satisfy 
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(iii) lim 0n
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Das and Debata [1] generalized the Ishikawa iteration processes from the case of one self mapping to the case of 

two self mappings and ofS T X  given by 

( )
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By using  above iteration Das and Debata[1] established the common fixed points of quasi-nonexpansive 

mappings in a uniformly convex Banach space.Several other researchers such as Takahashi and Tamura[6] 

investigated iteration in a strictly convex Banach space,for the case of  two nonexpansive mappings under 

different assumptions and contractive conditions. 

Our aim in this paper is to establish some fixed point theorems by using a more general contractive condition 

than those of Rafiq [4].We shall use a new type of one step iteration for self mappings and employ the following 

contractive definition:  

Let X be a closed convex subset of normed linear space N   Suppose thatT  be a self mapping of X  .There 

exist a constant 0L ≥ such that ,x y X∀ ∈ ,we have 

( ) ( )2 ... 1.1
L x Tx

Tx Ty e x Tx x yδ δ−− ≤ − + −
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Where 0 1 and xeδ≤ < denotes the exponential function of x X∈ . 

After this we extend the above contractive definition for a pair of mapping in following manner:  

 Let X be a closed convex subset of  normed linear space N   Suppose that andS P  are two self mappings of 

X  satisfying the following contractive condition 

( ) ( )2 , , 0 ... 1.2
L x Sx

Sx Py e x Sx x Py x y X Lδ δ−− ≤ − + − ∀ ∈ ≥
 

Where 0 1 and xeδ≤ < denotes the exponential function of x X∈ .
     

 

2. MAIN RESULTS 

Theorem 2.1: Let X  be a closed convex subset of  normed linear space N   and let T   be a  self mapping of

X satisfying the contractive condition of (1.1) and { }nx  be the sequence of G-iterates associated with T then 

G-iteration process is defined in the following manner: 
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Proof:- If { }nx  
converges on z X∈  then lim n

n
x z

→∞
= . 

Now we shall show that z  is the fixed point of T  . 

Consider 
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  …(2.1.1)                                                                                                   

We observe by the definition of G-iteration that 

( )
1 1 1 2 1

(1 )1 n nn
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Now  putting  above  value  in  (2.1.1)  then  we  have 
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Letting n→∞ then we have 

(1 )z Tz h z Tz− ≤ − −  

which is a contradiction. 

Hence z Tz=   is a fixed point of T . 

Remark: When { } { }1nµ = and{ } { }n nkλ = then above G-iterative process reduces to Mann iteration. 

Theorem 2.2: Let X   be a closed convex subset of normed linear space N  and let S  and P   be a pair of self 

mappings of X  satisfying the contractive condition of(1.2) and { }nx be the sequence of G-iterates associated 

with S and P then G-iteration process is defined in the following manner: 
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Proof:-If{ }nx converges on z X∈   then   lim n
n

x z
→∞

= . 

Now we shall show that z   is the common fixed point of S  and P . 

Consider 
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                                                                                                              ...(2.2.1) 

We observe by the definition of G-iteration that 
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Now  putting above values in (2.2.1) then we have 
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Letting n→∞ then we have 

(1 )z Pz h h z Pzδ− ≤ − + −  

Which is a contradiction. 

Hence z Pz=  i.e. z   is a fixed point of .P  

Similarly we can show that 

(1 )z Sz h h z Szδ− ≤ − + −
 

Hence z Sz=  i.e. z  is a fixed point of S. 

Finally we can say that z  is a common fixed point of & .S P  

This completes the proof of theorem. 
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