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Abstract  

The aim of this paper is to construct general Cantor like sets in two dimensional space ℝ� and three dimensional  

space ℝ� and to study their properties related with areas , volumes , Riemann and Lebesgue  integrability. 
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1.  INTRODUCTION  

The well-known Cantor set is a subset of closed interval [0, 1]. It is uncountable,  closed, compact, 

nowhere dense and perfect subset of metric space [0, 1] with absolute  value metric and is of measure zero. 

Moreover, it is a subset of all those real numbers in [0, 1] whose ternary expansion contains the digits 0, 2 

and not 1. In the year 2008, Smith- Voltera defined Cantor like subsets in [0, 1] of nonzero measures and 

studied their properties.  Author has defined Cantor l i k e  sets in [a, b] and their studied properties,  in [4]. 

In this  paper we wi l l  construct  general Cantor  type  sets in two  dimensional  space R
2   

and in three  

dimensional  space R
3

. We also study the i r  p roper t ies  r e l a t ed  wi t h  areas and volume.  We w i l l  also 

use these Cantor type sets to construct e x a m p l e s  of Lebesgue integrable functions which are not 

Riemann integrable. 

In this paper section 2 is devoted for construction of Cantor type sets �[	,�]
�  in square and 

evaluation of its surface area. In section 3, we will construct Cantor type set ��
(��)

 in rectangle and 

evaluate its area. Section 4, is devoted for construction of Cantor type sets �[	,�]���  in cube and evaluation 

of its volume. In section 5, we will see construction of   Cantor type sets ��
(���)

 in parallelepiped and 

evaluate of its volume. 

2.   Construction of Cantor type sets �[�,�]��  and computation of its area in a closed and 

bounded square of area � = (� − �)� : 

Step 1: Divide square [�, �] × [�, �] = [�, �]� of area ! in nine equal parts then remove middle open square "#,# 

of area  $� . This will give eight closed squares %#,# , %#,� , … %#,& each of area 
$
�. 

Step 2: Divide each of these eight squares "�,# , "�,� ,... "�,& in nine equal parts, that is in all 72 squares each of 

area 
$
�
. This will gives sixty four (8�) closed squares  %�,# , %�,� , …, %�,() each of area 

$
�
. 

Step 3 : Divide each of these sixty four squares in nine equal parts that is in all  8� × 9 = 576 squares and 

remove the middle open squares "�,# , "�,� ,... "�,&
 each of area 
$
�� . This will gives (8�) closed squares %�,# , 

%�,� , …, %�,&� each of area 
$
��. 

Step 4: Continue the process. At .�/ step remove the middle open squares 

 "0,1 , 2 = 1,2, … , 8(06#) of area 
$

�7 from %0,1  , 2 = 1,2, … , 8(06#) respectively then it will gives 80 closed squares 

%0,1  , 2 = 1,2, … , 80 each of area 
$

�7 . 

Step 5: Define   80 = 9 %0,1  &7
1:#   , ∀.  

Step 6: Define    �[	,�]
� =  < 80=0:#  

This is our Cantor type set in [�, �]� 

Property 1:  Cantor type set �[�,�]��   is of area zero. 

Proof: By construction of Cantor type set  

> = ?�[	,�]
� @A =  B B "0,1
&(7CD)

1:#

=

0:#
 

is open set formed by countable number of disjoint open squares where  

                           !EF01G = HE"0,1G =  $
�7   , ∀2 = 1,2, 3, … , 8(06#) . 
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Therefore  

H(>) =  J J H("0,1)
&(7CD)

1:#

=

0:#
 

H(>) =  J J !
90

&(7CD)

1:#

=

0:#
 

H(>) =  ! J 8(06#)
90

=

0:#
 

H(>) =  !
8 . 8

9 J 80
90

=

0:L
 

H(>) =  !
8 . 8

9 1
1 − 8

9
 

H(>) =  ! 

Now, H(>M) = H �[	,�]
� = H[�, �]� − H(>) = ! − ! = 0 

Thus Cantor type set �[	,�]
�  is of area zero. 

Example 1: Define O ∶  [�, �]� → ℝ  as  

                                            O(R) = S ,  if (R, T) ∈  �[	,�]
� = V 

                                                = W  if (R, T) ∈  X�[	,�]
� YM  = VM = [�, �]� − V  

This is continuous function at each (R, T) ∈ X�[	,�]
� YM = VM = [�, �]� − V and discontinuous at every 

(R, T) ∈  �[	,�]
� = V , where H? �[	,�]
� = V@ = 0 . Therefore O is continuous function i.e.   on [�, �]�   
and  O is also bounded function . Hence, O is Riemann integrable function on [�, �] . Since any Riemann 

integrable function is Lebesgue integrable. Therefore O is also Lebesgue integrable on [�, �]� . 

Now, 

ℜ [ O
[	,�]


=  ℒ [ O
[	,�]


=   ℒ [ O
]

+  ℒ [ O
]_

=  ℒ [ S
]

+  ℒ [ W
]_

= SH(V) +  WH(VM) 

                                           =  S. 0 + W(� − �)� = W. !  ,  
Where, A is area of square. 

3.   Construction of General Cantor type sets in rectangle ` = [�, �] × [a, b] and computation 

of its area in a closed and bounded rectangle of area � = (� − �)(b − a) :  

Step 1: By using middle vertical strip of length 
�6	

�  on X-axis and horizontal strip of length 
c6A

�  on Y-axis where 

 d, e ≥ 3 , divide rectangle " of area ! in nine parts and then remove middle open rectangle "#,# of area   $
�� . 

This will gives eight closed rectangles %#,# , %#,� , … %#,& each of area ≤  $
� . 

Step 2 ; Divide each of these eight rectangles in nine parts that is in all 72 rectangles by using middle vertical 

strip of length 
�6	
�
  on X-axis and horizontal strip of length on 

c6A
�
  on Y-axis and remove the middle open 

rectangles "�,# , "�,� ,... "�,& each of area 
$

(��)
 . This will gives sixty four (8�) closed rectangles %�,# , %�,� , …, 

%�,() each area ≤ $
�
. 

Step 3 : Divide each of these sixty four rectangles  in nine equal parts that is in all  8� × 9 = 576 rectangles by 

using middle vertical strip of length 
�6	
��  on X-axis and horizontal strip of length 

c6A
��  on Y-axis and remove the 

middle open rectangles "�,# , "�,� ,... "�,&
  each of area 
$

(��)� . This will gives (8�) closed rectangles %�,# , 

%�,� , …, %�,&� each of area ≤ $
��. 

Step 4: Continue the process. At .�/ step remove the middle open rectangles 

 "0,1 , 2 = 1,2, … , 8(06#) of area 
$

(��)7 from %0,1  , 2 = 1,2, … , 8(06#) respectively then it will gives 80 closed 

rectangles %0,1  , 2 = 1,2, … , 80 each of area ≤ $
�7 . 

Step 5: Define   80 = 9 %0,1  &7
1:#   , ∀.  

Step 6: Define    ���� =  < 80=0:#  
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This is our Cantor type set in the rectangle". 

Property 1: Cantor type set ���� is of area  ! − $
��6&  . 

Proof: By construction of Cantor type set  

> =  (����)M =  B B "0,1
&(7CD)

1:#

=

0:#
 

is open set formed by countable number of disjoint open rectangles where  

                                                  !E"0,1G = HE"0,1G =  $
(��)7   ∀2 = 1,2, … , 8(06#)  . 

Therefore, 

H(>) =  J J HE"0,1G
&(7CD)

1:#

=

0:#
 

H(>) =  J J !
(de)0

&(7CD)

1:#

=

0:#
 

H(>) =  ! J 8(06#)
(de)0

=

0:#
 

H(>) =  !
8 . 8

(de) J 80
(de)0

=

0:L
 

H(>) =  !
8 . 8

(de) 1
1 − 8

(de)
 

H(>) =  !
de − 8 

Now, H(>M) = H (����) = H(") −  H(>) = ! −  $
��6&  

Thus, Cantor type set ���� is of area  ! − $
��6& . 

Remark: If d = e = 3 then H (����) = 0 and if d hi e > 3  then  (����) > 0 . 

Example 1: Define O ∶  " → ℝ  as  

                                         O(R , T) = k ,  if (R, T) ∈  ���� = V 

                                                 = l  if (R, T) ∈  [����]M = VM = " − V  

Case i) if d = e = 3 then O  is a continuous function at each (R, T) ∈  VM = " − V as VM  is open set 

containing open rectangles and discontinuous at every (R, T) ∈  V , as V contains no open set. Therefore O is 

continuous a.e. on " as H(V) = 0 , if d = e = 3  and O is also bounded function. Hence, O is Riemann 

integrable function on  ". Since, any Riemann integrable function is Lebesgue integrable. Therefore, O is also 

Lebesgue integrable function on  ". 

Now,  

ℜ [ O
�

=  ℒ [ O
�

=   ℒ [ O
]

+  ℒ [ O
]_

=  ℒ [ k
]

+  ℒ [ l
]_

= kH(V) +  lH(VM) =  k. 0 + l! = l. !  ,    
Where, !  is area of rectangle. 

Case ii) If d hi e > 3  from  d, e ≥ 3 then O is continuous function at each (R, T) ∈  VM  as VM  is open set 

containing open rectangles and discontinuous at every(R, T) ∈ V as V contains no open set. Therefore O is 

not continuous a.e. on " as  H(V) > 0  and hence O is not Riemann integrable function on ".Moreover, O is 

bounded function as range of O is {k, l} . 

                Now, we prove O is measurable function. 

Let i be arbitrary real number and without loss of generality suppose   k < l , then 

Sub case i) If i < k then O6#{(i, ∞)} = O6#{k, l} = " is measurable. 

Sub case ii)  If k ≤ i < l then O6#{(i, ∞)} = O6#{l} = VM  is measurable as any open subset of " is measurable. 

Sub case iii)  If i ≥ l then O6#{(i, ∞)} = O6#{q} =  q  is measurable. 

Thus, for any i ∈ ℝ the set O6#{(i, ∞)}  is measurable subset of ". Therefore, O is measurable and bounded 

function on  ".  

Therefore, O is Lebesgue integrable on ".  

Now,  
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ℒ r O� =   ℒ r O] +  ℒ r O]_ =  ℒ r k] +  ℒ r l]_ = kH(V) +  lH(VM) = k X! − $
��6&Y + l X $

��6&Y ,  
Where,  ! is area of rectangle ". 

Example 2: Define  O: " → ℝ as  

                          O(R, T ) = RT ,  if  (R, T) ∈  VM = " − V 

                                         =  R� − T�  if  (R, T) ∈ ���� = V 

Case i) If d = e = 3 then O is continuous function at each  (R, T) ∈ VM = " − V as VM  is open set containing 

open rectangles and discontinuous at every (R, T) ∈ V, if d = e = 3 as V contains no open set . Therefore O is 

continuous a.e. on " as  H(V) = 0 and O is also bounded function. Hence O is Riemann integrable function on ". 

Since, any Riemann integrable function is Lebesgue integrable. Therefore, O is also Lebesgue integrable function 

on". 

Now, 

ℜ [ O
�

=  ℒ [ O
�

=   ℒ [ O
]

+  ℒ [ O
]_

=  ℒ [ Ot]�
+  ℒ [ Ot]_

�
 

                                         = r r RT WRWT c
A

�
	 + r r 0 WRWT c

A
�

	  , as H(V) = 0  and H(VM) =  !                                                            

                                          =  (�6	)
(c6A)

) + 0 = (�6	)
(c6A)


)   

Case ii) If d or e > 3 from  d, e ≥ 3 then O is continuous function at each (R, T) ∈ VM = " − V as VM  is open set 

containing open rectangles and discontinuous at every (R, T) ∈ V, as V contains no open set. Therefore O is not 

continuous a.e. on "  as H(V) > 0  and hence O is not Riemann integrable function on  ". 

Now u(R, T) = RT and ℎ(R, T) = R� − T� are continuous and bounded functions on ". Moreover, V and VM  are 

measurable subsets of   " . Therefore O = ut] +  ℎt]_   is bounded and measurable function and hence, O  is 

Lebesgue integrable function on  ". 

4.  Construction of General Cantor type sets �[�,�]��w  in a closed and bounded cube of volume  

x = (� − �)� : 

Step 1: Divide square [�, �] × [�, �] × [�, �] =  [�, �]�  of volume y = (� − �)�  in twenty seven (3� = 27) 

equal parts then remove middle open cube "#,# of volume  
z

�� . This will give twenty six closed cubes  %#,# , 

%#,� , … %#,�( each of volume  
z

�� . 

Step 2: Divide each of these twenty six closed cubes in 27 equal parts i.e.in  all  26 × 27   cubes and remove the 

middle open cubes "�,1  , 2 = 1,2,3, … ,26 × 27 , each of volume
z

��
 . This will gives 26�  closed cubes  %�,#  , 

%�,� , …, %�,�(
 each of volume 
z

��
 . 

Step 3: Divide each of these 26� cubes in 27 equal parts that is in all  26� × 27 cubes and remove the middle 

open cubes "�,# , "�,�  ,... "�,�(
  each of volume 
z

��� . This will gives(26�) closed cubes %�,# , %�,� , …, %�,�(� 

each of volume 
z

���. 

Step 4: Continue the process. At .�/ step remove the middle open cubes 

 "0,1 , 2 = 1,2, … , 26(06#) of volume 
z

��7.from %0,1  , 2 = 1,2, … , 26(06#) respectively then it will gives 260 closed 

cubes %0,1  , 2 = 1,2, … , 260 each of volume 
z

��7. 

Step 5: Define   80 = 9 %0,1  �(7
1:#   , ∀.  

Step 6: Define    �[	,�]
�� =  < 80=0:#  

This is our Cantor type set in [�, �]�. 

 

Property 1: Cantor type set �[�,�]��w   is of volume zero. 

Proof: By construction of Cantor type set  

> = X�[	,�]��� YM  =  B B "0,1
�((7CD)

1:#

=

0:#
 

is open set formed by countable number of disjoint open cubes where  

                                          yEF01G = HE"0,1G =  z
��7   , ∀2 = 1,2, 3, … , 26(06#) . 

Therefore  

H(>) =  J J H("0,1)
�((7CD)

1:#

=

0:#
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H(>) =  J J y
270

�((7CD)

1:#

=

0:#
 

H(>) =  y J 26(06#)
270

=

0:#
 

H(>) =  y
26 . 26

27 J 260
270

=

0:L
 

H(>) =  y
26 . 26

27 1
1 − 26

27
 

H(>) =  y 

Now, H(>M) = H �[	,�]��� = H[�, �]� − H(>) = y − y = 0 

Thus, Cantor type set �[	,�]���  is of area zero. 

5.   Construction of General Cantor type sets in parellelopiped  { = [�, �] × [a, b] × [|, }]  and 

computation of its volume in a closed and bounded parellelopiped of volume x =
(� − �)(b − a)(} − |) :  

Step 1 : By using middle vertical strip of length 
�6	

�  on X-axis and horizontal strip of length 
c6A

�  on Y-axis and 

strip of length 
~6�

�  on Z-axis where � , � , � ≥ � , divide parellelopiped  8 of volume y in 27 parts and then 

remove middle open parellelopiped 8#,# of volume 
z

��� . This will gives 27 closed parellelopiped %#,# , %#,� , … 

%#,�( each of volume ≤  z
�� . 

Step 2 : Divide each of these 26 parellelopiped in 27 parts that is in all  26 × 27 parellelopiped by using middle 

vertical strip of length 
�6	
�
  on X-axis and horizontal strip of length on 

c6A
�
  on Y-axis and strip of length on 

~6�
�
  on 

Z-axis and remove the middle open parellelopiped 8�,# , 8�,� ,... 8�,�( each of volume 
z

(���)
 . This will gives 26� 

closed parellelopiped %�,# , %�,� , …, %�,�(
 each volume ≤ z
��
. 

Step 3 : Divide each of these 26� parellelopiped   in 27 equal parts that is in all 26� × 27 parellelopiped by 

using middle vertical strip of length 
�6	
��  on X-axis and horizontal strip of length 

c6A
��  on Y-axis and strip of length 

on 
~6�

�
  on Z-axis and remove the middle open parellelopiped 8�,# , 8�,� ,... 8�,�(
  each of volume 
z

(���)� . This 

leaves (26�) closed parellelopiped %�,# , %�,� , …, %�,�(� each of volume ≤ z
���. 

Step 4: Continue the process. At .�/ step remove the middle open parellelopiped 80,1  , 2 = 1,2, … , 26(06#) of 

volume 
z

(���)7 from %0,1  , 2 = 1,2, … , 26(06#) respectively then it will gives 260  closed parellelopiped %0,1  , 2 =
1,2, … , 260 each of volume ≤ z

��7 . 

Step 5 : Define   80 = 9 %0,1  �(7
1:#   , ∀.  

Step 6 : Define    ����� =  < 80=0:#  

This is our Cantor type set in parellelopiped  8. 

Property 1: Cantor type set ����� is of volume y − z
���6��. 

Proof: By construction of Cantor type set  

> =  (�����)M =  B B 80,1
��(7CD)

1:#

=

0:#
 

is open set formed by countable number of disjoint open parellelopiped where  

                                                   yE80,1G = HE80,1G =  z
(���)7   ∀2 = 1,2, … , 26(06#)  . 

Therefore, 

H(>) =  J J HE80,1G
�((7CD)

1:#

=

0:#
 

H(>) =  J J y
(de�)0

�((7CD)

1:#

=

0:#
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H(>) =  y J 26(06#)
(de�)0

=

0:#
 

H(>) =  y
26 . 26

(de�) J 260
(de�)0

=

0:L
 

H(>) =  y
26 . 26

(de�) 1
1 − 26

(de�)
 

H(>) =  y
de� − 26 

Now, H(>M) = H (�����) = H(8) −  H(>) = y −  z
���6�(  

Thus, Cantor type set ����� is of volume   y − z
���6�( . 

Remark: If d = e = � = 3 then H[�����] = 0 and if d hi e hi � > 3  then H[�����] > 0. 

Example 1 : Define O ∶  8 → ℝ  as  

                                             O(R , T, �) = k ,  if (R , T, �) ∈  ����� = V 

                                                          = l  if (R , T, �) ∈  [�����]M = VM = 8 − V  

Case i) If d = e = � = 3  then O  continuous function at each (R , T, �) ∈  VM = 8 − V  as VM  is open set 

containing open parellelopiped and discontinuous at every  (R , T, �) ∈  V  , as V  contains no open set. 

Therefore O is continuous a.e. on 8 as  H(V) = 0 , if d = e = � = 3 and O is also bounded function. Hence O is 

Riemann integrable function on 8. Since, any Riemann integrable function is Lebesgue integrable. Therefore, O 

is also Lebesgue integrable function on 8. 

Now,  

ℜ [ O
�

=  ℒ [ O
�

=   ℒ [ O
]

+  ℒ [ O
]_

=  ℒ [ k
]

+  ℒ [ l
]_

= kH(V) +  lH(VM) =  k. 0 + ly = l. y  ,   
Where  y  is volume of parellelopiped  8 . 

Case ii) If d hi e hi � > 3  among  d, e � ≥ 3 then O is continuous function at each 

 (R , T, �) ∈  VM = 8 − V  as VM  is open set containing open parellelopiped and discontinuous at every 

(R , T, �) ∈ V, as V contains no open set. Therefore O is not continuous a.e. on 8, as  H(V) > 0  and hence O is 

not Riemann integrable function on 8. As range of O is {k, l} implies O is bounded function. 

                Now, we prove O is measurable function. 

Let i be arbitrary real number and without loss of generality suppose  k < l , then 

Sub case i) If i < k then O6#{(i, ∞)} = O6#{k, l} = 8 is measurable. 

Sub case ii) If k ≤ i < l then O6#{(i, ∞)} = O6#{l} = VM  is measurable as any open subset of 8 is measurable. 

Sub case iii) If i ≥ l then O6#{(i, ∞)} = O6#{q} =  q  is measurable. 

Thus, for any i ∈ ℝ the set O6#{(i, ∞)}  is measurable subset of 8. Therefore, O is measurable and bounded 

function on 8.  

Therefore, O is Lebesgue integrable on 8.  

Now,  

                ℒ [ O
�

=   ℒ [ O
]

+  ℒ [ O
]_

=  ℒ [ k
]

+  ℒ [ l
]_

= kH(V) +  lH(VM) 

                                           = k Xy − z
���6�(Y + X l z

���6�(Y  ,  
Where y is volume of parellelopiped 8. 

Conclusions 

(i) We construct Cantor type sets in ℝ� and ℝ�of zero measure as well as of nonzero measures. 

(ii) We study their properties related with Riemann and Lebesgue integration. 
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