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Abstract
In this paper we consider a new connection called Semi-Symmetric Projective Connection

el = (G;k,G;,O) . The covariant differentiation with respect to this connection is defined and the

commutation formulae for directional differentiation, Berwald covariant differentiation and semi-symmetric
projective covariant differentiation have been obtained. Relations between the curvature tensors and torsion
tensors arising from Berwald connection Bl and semi-symmetric projective g1 connection have also been

obtained. Bianchi identities have also been derived.

1. Introduction

Unlike a Riemannian space, a Finsler space possesses various types of connections. Berwald [1] was
the first man who introduced the concept of connection in the theory of a Finsler space. He constructed a
connection from the standpoint of so-called geometry of paths. He started his theory from the equation of

geodesics and applied the theory of general paths to define the connection Bl = (Gi G;,O). In 1933, E.

k>
Catan [2] produced a connection along the line of his general concept of Euclidean connection. He introduced a

system of axioms to give uniquely a Finsler connection CI" = (F ! G; ,C ;k ) from the fundamental function.

Jjk>
In 1951, a young German H. Rund [4] introduced a new process of parallelism from the standpoint of
Minkowskian geometry to give a connection RI" = (ij, G;,O) , while Cartan introduced parallelism from

the standpoint of Euclidean geometry.
In 1969, Hashiguchi [3] discussed with Matsumoto about a new connection, called Hashiguchi

connection HT = (G;.k , Gj. , C;.k ) .
2. Semi-Symmetric Projective Connection
Let us consider a connection " = ((_;;k , é; , 0) given by
—, def .
@2.1) G, =Gy +pJ,,
def

and G,lC = G;.k)'c /", where D, 1s a covariant vector which is positively homogeneous of degree zero in x'.

Since the /1( /) - torsion tensor Tj;{ of this connection is given by
Fio_ i i i i
T = Gy =Gy =p0; =5,
this connection is semi-symmetric connection.

Transvecting (2.1) with X’ , we have

2.2) G, = G, +px.

Again the transvection by x* gives
. def , .
G 1" =2G =2G +px'.

i.e.

(2.3) G =G+ gx
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def
where p = p, X

Equation (2.3) represents a projective change of the function G" . Therefore we call the connection pl“ as a
semi-symmetric projective connection.
Differentiating (2.2) partially with respect to X’ and using (1.9.3b), we have

- i i i

8J.G =Gy +pjkx + P9,
which in view of (2.1), gives

N i i .
(2.4) 0,G, = G+ p,x,
def

where p ;. = a_jpk.
This gives a relation between the connection coffecients of the semi-symmetric projective connection pl“ .

Differentiating (2.1) partially with respect to X' and using (1.9.4a), we have

de

2.5) 0,G, =f(_?jjj =Gl +p,O.
Transvecting (2.5) by X" and using (1.9.4c), we get

X'Gl =0,
Again transvecting (2.5) by x’ , we get
2.6) X'Gl = p,Xx.
Using this, the equation (2.4) becomes
@.7) 0,G, =G +G X"
Contracting i and j in (2.1), we get
(2.8) G:k =Gy +np,.

By eliminating P, in (2.1) and (2.8), we have
i i r r
G G +— 5 (Grk Grk )9
ie.

G —la‘G:k G, —la;iG:k.
n

Therefore we get n’ quantities 9;1{ defined by

i I e
(2.9) ejk = ij _;5jGrk’

which are invariant under the semi-symmetric projective change (2.1).
Similarly the contraction of i and & in (2.1) gives

~r

(2.10) G,=G,+p,
Eliminating p ; in (2.1) and (2.10), we get

i i i r

Gy =G} +0,(G, —Gp),
ie.

i i i Il

G, -8G, =G, -5Gj.

Again we get n quantities 77j.k defined by

89



Mathematical Theory and Modeling wWww.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) el

Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications “s E
i i i

2.11) My =Gy —0,Gy,,

which are invariant under the semi-symmetric projective change (2.1).
3. Semi-Symmetric Projective Covariant Differentiation

The semi-symmetric projective covariant derivative of an arbitrary tensor T] is defined as

3.1) @I =0,T —(0,T) G, +T, G, - T'G,.

Taking semi-symmetric projective covariant differentiation of y’ , we get

0.y =0,y —(0,y)G, +y'G,

. i ~i
=-5'G/ +G' =0.
Therefore the tangential vector yi is covariant constant with respect to semi-symmetric projective connection
ol
Semi-symmetric projective covariant derivative of g, is given by
_ - ~r ~r ~r
#:8; = 0,8; —(0,8,;)G; — 8,G; — £,G;-
In view of (2.1), (2.2), (1.5.2) and (1.9.5) above equation may be written as
$:8; =B.g; — 2pkgij9
which in view of (1.9.9), can be written as
,
$:8; = yrGijk - 2gijpk :

This shows that the semi-symmetric projective connection is not metrical.

4. Commutation Formula for Semi-Symmetric Projective Covariant Differential Operator and
Directional Differential Operator

Let X' bean arbitrary contravariant vector. Then
(4.1) P X =0,X —-0.X)G +X'G,.
Differentiating (4.1) partially with respect to X / , we have
8,(p,X')=6,(8,X")~0,(0,X)G, —(,X')X0,G))+(8,X")G\, + X" (8,G',).
Using (2.5) and (2.7), we get
8,(p, X')=0,(0,X")~,(0,X)G, ~(6,X')(G, +G

7
J:

;sk xs )
(4.2)

+(0,X")G +X'G,.
The semi-symmetric projective covariant derivative of 6 /X " s given by
(43) 0,(0,X")=0,(0,X)~06,(0,X)G, +(0,X")G', —(8,X)G".
From (4.2) and (4.3), we get
(4.4) 0,(9,X)—,(0,X")=—(0,X")G X" + X" G},
Similarly for a covariant vector and a tensor, we have

8j (X)) — 9, (a]Xz) = _(arX,-)G;SkaS - XrGr.

jik >
and

0,(9,T)—,0,T)=—(0,T)G},y’ +T/G,, ~-T'G},.

The tensor G}:jk is called Av-curvature tensor with respect to the semi-symmetric projective connection.
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5. Ricci Commutation Formula

Applying the semi-symmetric projective covariant differentiation to §0 kX " we get

(5.1 (o (SOkXi) :ah (@kXi) - 6r (SOkXi) G;z + (SOer)Gjh - (SOrXi)él:h'
In view of (4.1), above equation can be written as

P, X' =0,{0,X'—(0,X)G[ + X' G}

-0,{0, X' =(6,X)G, + X°G,|G;
(5.2)
+ {Ger - (ach) (_;lj + XS(_;srk} (_;;h
-{0,X'-(6,X)G + X°G} Gy,
On simplifying, we get
0, X' =0,0,X"=0,(0,X")G; —(0,X')0,G;) +(0,X")Gy,
+X'(0,G,)-0,(0,X)G} +(0,0,X)G,G,
+ (aer)Gih - (aer)Glié;h + Xsésrkéih
- (arXi)(_;l:h + (ach)(_;rS(_;l:h - Xséir(_;l:h'
Interchanging the indices 4 and k, we obtain
(9, X')=0,0,X" - 0,(0,X")G, —(0,X")(0,G,) + (0, X")G,, + X" (6,G,,)
~0,(0,X)G; +(0,0,X)G,G; +(0,X)(0,G})G;
5.4)
~(0,X)G,G; - X'G,,G; +(8,X")G,, - (0,.X")G, G,
+X°G,G,, ~(0,X)Gj, +(0,X)GGy, - X'G,,G,.
From (5.3) and (5.4) we get
9, (0, X) =9, (,X") = X'{0,G,, + G, G, + G, G, + G, Gy, =k hy
(5.5) -0,X'{0,G, + GG, + p,y'G, + GG}, —k/ h}

-0, X'{G], —k/h}.

Using (4.1), above equation may be written as

(5.7) (2, X)) =, (0, X") = Xrl_e;fhk - (8;~Xi)R;k - ((@;‘Xi)z_;z};c )
where
(5.8) E;fhk = akGih + Gthik - G;rhGlf —h/k.
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ro_ ~r WWalAYal
R =0,G/ —(0.G)G: —hlk,
5.9 . .
_ r r S r j N
=9,G, -GG —~G.,%'G; —h/k,
mr o —r
(5.10) I, =G, —G,.
The tensors R’ S thk and Th; are called A-curvature tensor, (v)h- torsion tensor and (%)h- torsion tensor
respectively with respect to semi-symmetric projective connection (2.1).

Transvecting (5.8) by X', we get
rpi i oer i s e i s e
X'R, =0,G,x" =G G X" +G,Gux" —hlk

=0,G. -GG i +G .G —hlk

Therefore
(5.11) R, X" =R,.
Differentiating ﬁ; . partially with respect to X", we obtain

0,R;, =0,{0,G; - G,G., %' + GG, —h/k}
=0,0,G, —(0,G)G.,x' -G, (0,G.,)%’

-G,G.,6! +(0,G})G, +G.,(0,G))~h/k

sjh
which is in view of (2.5)and (2.7) can be written as

(5.12) aR’ =R +E

rhk rhk °
where

rtk

i i s . s .
P = Ostjhx Grkahx -G % thx
(5.13)
~(0,G.,)G% G G + GG i —h k.
6. Relation between Curvature Tensors and Torsion Tensors arising from Berwald Connection and

Semi - Symmetric Projective Connection
In view of (2.1), (2.2) and (2.5) equation (5.8) may be written as

R, =0, (G;h + phé‘;f) +(G,, + phé‘:)(Gik + pké‘s{)

(G + PO+ pX)hk
= (akG}l’h - ?rhGS + ék) + [(akph - Glfpvh)é‘;

+(G hpk5’+ph5 Gs’k+pkph55) hlk],

which in view of (1.10.2), (1.9.4c) and and pshx‘ =0 can be written as

(6.1) Ry =H,y +(0,p, —Gypy, —h/k)S,.
The semi-symmetric projective covariant derivative of P, is given by
(62) @0y =0,0,~(©0,p,)G, — p,Gyy.
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In view of (6.2), equation (6.1) becomes

Erihk = Hihk + 5: {(@kph + prh(_;/: + pr(_;;k -Gy py, — h/k}

= Hihk + 5; {S/‘)kph + Prh((_;/: -G+ P,.(_;;k —h/k}
Using (2.1) and (2.2), we get
Ry =H,y +9, {Sokph +papiX + Gy + P, S, - h/k}

i.e.

(6.3) Erihk = Hihk + 5ri {Sokph — 24Py }
Transvecting (6.3) by X', we get

(6.4) R, =H, +x'{@,p,— 9.0}

7. Bianchi Identities
From (6.3), we have

Rl + Ry + Ry = Hiyy + Hyyy + Hyyy +6,{9, 0, = 9,94}

+ 5, {sa,-ph - mp_,-} +6, {sakpj — ;D }

Using (1.10.10), we get

le'kh + Rllchj + R];jk = 5} {gohpk - Sgkph} +3, {Sojph - Sohpj}
(7.1)

+9, {S/f)kpj _ngpk}-
The (h)h-torsion tensor is given by
lek = G}k - G/lg = (G;'k + pké‘;’) - (G/lg + p_;5/i)
(7.2)
= pk5;' - pjé‘li
This implies
SOthlk = 5;80th - 512801119_;-

Therefore

@thlk + WJT/(; + SOkTh; = 5}80;;]7/( - 51180;!17] + 511@,-1%
(7.3)

- 52@;]71( + 5280kpj - 5;80kph'

In view of (7.3), equation (7.1) becomes
(7.4) R]l‘kh + Rl\ihj + R;gjk = SOthlk + @kalh + ka;z;
This is the first Bianchi identity .

Let X' bean arbitrary contravariant vector. By Ricci commutation formula (5.7) , we have
i i rpi - iNDr iNT
90, X —p 0, X' =X"R,, —(0,X)R, —(,X)T; .

Applying semi-symmetric projective covariant differentiation with respect to X", we get
i i r pi r Di - i pr
(@m(@j(@kX _pmpk@j)( = me 'Rrkj +X '(@mRﬂg _pmarX 'R]g

- i Dr i i Tr

-0, X' 9, R, —9,0.X T, —p.X 0,1,

Similarly
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©,00.X 0 00X =p X' R, +X R —©0X R,

~0,X'0 R ~0,0,X T —0,X 0T,

and

00,0 X -0 0,X =, X R, +X R, —0,0X R,

~ i Dr ir i T
_arX '@kij _Sok@rX T]m _gorX 'SOijm'
Adding these three equations, we get

92,04 X' = 0,0:9,X +9,0,0,X
~ 00,0 X +0,0,0,X —0,0,0,X

=9, X" Rjy+@ X Rl +¢,X R}, |

+ X' [0, Rl +9 R, +9,R], |
(1.5) o
~6,X'[ o, R+ R, + @R, ]

~ (0, X 0,T5 + 0, Ty + 0.7, |
~ 9,0, X R} + 9,0, X R, +0,0,X"R), |
_|:S/‘)mg/‘)rXij_;; +Sojeri']_-;nrk +pkeri']:j:1i|'

Applying the Ricci commutation formula for (0 kX ! , we have

P9 0 X — 9 9,0, X =9, X R, -0, X' R,

~ i pr
= 0,9, X R}, —,9,X".T
The cyclic change of indices m, j, and k in this equation gives

9,00, X —pp9,X =0, X R, -0 X' R

- arsoleI_e/; - gorsnglT;qr9
and

P, X — 0,00 X =9 X R, —0,X"R,,

- 8rt§Oin'Enr1k o Sorz@in-T;;k'

Adding these three equations, we get
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P 0. X = 0,0,0,X + 00, X'

~ 018 19, X'+ 90,80, X' = 0,00 ,X'

=| @ X" Ry, + 0, X R +p X R, |

jm
(7.6) o . .
1 r r r
-9, X'| R}, + R+ R, |
[0, X' R}, +06,0,X R +0,0,X' R, |
—[gorgokX’ T, +9.0,X T, +p,.0,X"T, J
Since the left hand sides of (7.5) and (7.6) are the same, the right hand sides will also be the same. Hence

[goer.Erikj + ngXr.Erimk + gOer.E,ijm } + X' [Somﬁrikj + pjﬁifmk + Sokﬁrijm]

—(;%Xi [@mﬁkr/ + SOJE,Zk + @kﬁfm J - (eri)[me;; + pifmrk + p’jf:”}
_[SomarXi .E,;. + SojarXi R, + SokérXi'E;m]
00, X T+ 0,0, X T +p,0,X'T;, |

=[ka’.I?

rjm

+ 0, X R, +gonrﬁjmk}—gorX" [E’ +R+R’

kjm mkj Jmki|
B [art@leRer + arsom)(lﬁkr] + ar(@IXIR’:’kJ

00 X' T+ 0,0, X T +0,0,X' T} |,

ie.
X’ [SamR}fkj + sajﬁifmk + ka;]mJ - 8rXi [pmﬁkr] + Sojﬁn:k + Sok]_e.;m]

+[{0,0, X" — 0,0, X}R;, +{0,0,X' —0,0,X"}R;
+1{0,00,X =00, X1R, N+ [{p.0, X — 0,0, X T/,
+{0,0,X' —0,0.XVT +{p,0 X -0 ,0, X

(0, X0, Ty + 9,1+ 9,1} — Ry, + R + R}, 3]1=0.

Using the commutation formulae (4.4) and (5.7), the above equation becomes
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X 10, Rly + 0 R + 91 + iR}, + G R+ G R,

hrj ™ *mk

+ R T+ R T + R T 1-0,X 10, R, +0,R)y + 0.,
YRy + R+ R T+ RLT )

ms™ kj

(1.7) +G 'R}, +G, V'R + G

hsj

~ (0, XA, I5 + 9, T +9,Th =R, + R, + R}

~(@, XNT, Ty +T, T, +T,T;,1=0.

ms™— kj Js— mk ks ™ jm
Using (7.2), we get

Ty s s mrs
T;nsT;g‘ +Tjska + ksij :O’
Therefore (7.7) becomes

r Di Di i —~i ph —~i ph —i ph
X [SomRrkj + SOermk + SOerjm + Ghrkij + GhrmRkj + Ghrijk

+R, T +R. T +R, T 1-0,X'[@,R, +@ Rl + @R,

rms™ kj rjs™ mk

+ G;:Skysﬁj}-lm + C_;Zsmysﬁl; + C_;;vyvﬁrﬁk + E}" TS + Er TS + Er ]_-vs ]

ms™ kj js— mk ks jm

- ((@er)[{SOmT;gr + (@jT;rjk + (@kij:n} - {R]:jm + Rr:[]g + R;mk}] = 0
If the vector X' is independent of %' then 3rX =0 , and hence

Dh i ph
R +G,,R,,

hrm '

Xr[@mﬁrikj + Sojﬁrimk + Sokﬁrljm + (_;;lrkﬁjhm + (_;i

+R,, T, +R, T +R, T 1=0.

rms rjs™ mk

Since the vector X is arbitrary, we have
Di Di Di —~i ph ~i ph —~i ph
SOmRrkj + SO_ermk + karjm + Ghrk ij + Ghrm Rk/’ + Ghrijk
(7.8)
Di s Di s Di s _
+ ersT}q’ + Rrjska + Rrksij - 0

This is the second Bianchi identity.
Transvecting (7.8) by X' and using (2.6) and (5.11), we have
Di

Di Di —~i ph er —~i  pher —~i ph -r
t@leg' + SOijk + SOkR + Ghrkijx + GhrmRij + G 'Rmkx

jm hrj

+R' TS +R. T +R. T: =0.

ms™ kj Js— mk ks jm
This is the third Bianchi identity.

8. Commutation formula for Berwald Covariant Differential Operator and Semi-Symmetric Projective
Covariant Differential Operator

The semi-symmetric projective covariant derivative of B, X s given by
(8.1) (2 (BkXi) =0, (BkXi) -0, (BkXi) G, + (Ber)Gih - (BrXi)Gl:h )
which, in view of (1.9.5), may be written as
0, (BX")=0,10,X' = (0,X) G} + X' G} =0,{0, X' —(0,X") G} + X'G};} G;
(8.2)
+0, X" = (0, X") G} + X'G}}G, —{0,X' = (0,X") G} + X'G, } Gy,

96



Mathematical Theory and Modeling wWww.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) b rl
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications “s E

On simplifying we get
(B X")=0,0,X' ~0,(5,X")G] ~(0,X')2,G})+(2,X")G,

+X(0,G,)—-0.(0,X"G| + (0,0 X')G: G| +(0,.X")G.G
(8.3)
-(0,X°)G,G, - X°G, G, +(0,X")G,, —(0,X") GG,

+X°GL G, —(0,X")Gy, +(0,X)G. G}, - X°G, Gy,

Berwald covariant derivative of §0 hX " s given by
(8.4) B, (((OhXi) =0, (@hXi) - 8r (@hXi) G, + (@th)Gik - (SOrXi)GI:k-
which, in view of (3.1), may be written as

B (9,X)=0,{0,X' = (0,X) G} + X'G,,} - 0,{0,X' (0, X) G, + X'G,,} G
(8.5)

+10,X" (0, X" G, + X°G Gl —10,X' ~(8,X) G + X*G! )G,
After simplifying (8.5), we obtain
B(,X")=0,0,X' ~0,(0,X")G} —(8,X")(0,G}) +(8,X")G,

+X7(8,G,,)=0,(8,X")G; +(0,0,X) G,G; +(0,X)(0,G})G;
(8.6)
-(0,X")G,G; - X°G,,G, +(8,X")G, —(0,X") G,G,,
+X°G,Gy —(0,X)Gy, +(0,X") GGy, - X°GGy.
From (8.3) and (8.6), we have
B, ((@hXi) — (BkXi) =X’ {ak(_;;{h - ahGZk - (_;érhGl: +G,

srk(_;z
+ (_;rsh G;k - G:k ééh - G}l’v G}Szk + Gis élfh}
(8.7) -0.X'{0,G, -9,G; +G', G,
~(0,G})G; +G/G,;, -GGy}

i r ~r
o arX {th o Gkh}'
In view of (3.1) and (2.7), (8.7) may be written as

(8:8) B(9,X")~0,(BX") = X"R, —(0,X )R}, — (0, X )Ty,
where

(8.9) mihk = akGih - ahGik + G;rkG; - GirhGIi + Grsh sz - G:ijh >
810 N, = akég —0,G; + G‘fkéﬁ - (C_;:h + é;hx’)Gi

and

g1y T, =G, -G,
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