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Abstract 

The aim of this paper is to obtained a coefficient inequality for the class of starlike function S*(A, B, b) in the 
unit disc U= {z: │z│< 1}, where A and B are two fixed points and b is non zero complex number. 
 

1. Introduction 

Let An denote the class of functions which is the following form 
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∞
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which are analytic in the open unit disc U={ z: │z│< 1} and satisfying the condition w(0)=0 and │w(z)│< 1. 
Further, let Sn denote the subclass of functions in An which are univalent in U. Also Sα

*(n) represents the 
subclasses of An which is starlike functions of order α (0 ≤ α < 1). The starlike function is defined as follows 
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The present paper is devoted to a unified study of various subclasses of univalent functions. For this purpose, we 
introduce the new class of analytic functions S* (A, B, b) 
of the form 
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analytic in the open unit disc U and satisfying the conditions 
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where A and B are arbitrary fixed numbers such that -1 ≤ B < A ≤ 1 and b is non-zero complex number. 
 

2. Preliminaries Lemmas:  
Before stating and proving our main results, we need the following lemmas due to Keogh and Merkes [1] and 
Silverman [3]. 
 
Lemma 1: Let the function w(z) defined by 

    

1

( ) n

n

n

w z b z
∞

=

=∑ ,   

be analytic with w(0)=0 and │w(z)│< 1 in U. If s is any complex number then 

   2
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Lemma 2: Let the function f(z) defined by     
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3. Main Results: (Coefficient inequalities) 

Theorem 1: If the function f (z) defined by 
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 belongs to the class S* (A, B, b). If δ  is any complex number, then   
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The inequality (1.8) is sharp. 
Proof: Since the function f (z) belongs to the class S* (A, B, b), we have  
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where 
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From (1.9), we have   
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and then comparing the coefficients of z and z2 on both sides, we have 
 

 and             

2
1

2 2
3 2

2 2 2 2

( , 2)
( )

( ,3) { ( , 2)}
( ) ( )

a
b

A B b

a B a
b

A B b A B b

α λ
µ

α λ α λ
µ µ

=
−

= +
− −

 

 Thus   

 1
2

( )
( , 2)

A B bb
a

µ
α λ

−
=  

and 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

101 

 
2

2 1
3

( ) ( )
( ,3)

A B b b Bb
a

µ
α λ

− −
=  

Hence 

 2 2
3 2 2 1

( )
( ),

( ,3)
A B b

a a b db
µ

δ
α λ

−
− = −  

where 

 
2

2

{ ( , 2)} ( ) { ( ,3)}
{ ( ,2)}

B A B b
d

α λ µ δ α λ
α λ
+ −

=  

therefore 

   2 2
3 2 2 1

( )
( ,3)

A B b
a a b db

µ
δ

α λ

−
− = −           

Using Lemma 1 in the above equation, we get 

        2
3 2

( )
max{1, },

( ,3)
A B b

a a d
µ

δ
α λ

−
− ≤    . 

Hence the result.  
 
Theorem 2: If the function f (z) defined by 
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 belongs to the class S* (A, B, b), then 
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The estimates are sharp. 
Proof: Since the function f(z) belongs to the class S* (A, B, b), we have 
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where the function w(z) defined by (1.1) is regular in U and satisfies the conditions w(0)=0,│w(z)│< 1 , for z 
belongs to U. Now, from (2.1) we have 
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now equating the corresponding coefficients in (2.2), we observe that the coefficient an on the RHS of (2.2) 
depends only on a2, a3,…..,an-1 on the LHS of (2.2). Hence for n ≥ 2, it follows from (2.2) that 
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This yields 
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Now squaring both sides of (2.3) and integrating round │z│= r , 0 < r <1, we obtain 

 
2 1

22 2 2 2
2

2

( )
k

n

n

n

B
A B n a r

b

−
−

=

− + ∑
1

2 22 2 2 2 2
2

2 1

1 k
n n

n n

n n k

n a r d r
b

− ∞
− −

= = +

≥ +∑ ∑  

by assuming r → 1, we get 
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Since  1 1,B− ≤ < , we obtain from (2.4) 
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This shows the result is sharp. 
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