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Abstract 

Any left R-module M is said to be p-injective if for every principal left ideal I of R and any R-homomorphism g: 

I→M, there exists y ∈M such that bybg =)(  for all b in I.  We find that RM is p-injective iff for each r∈R, 

x∈M if x∉rM then there exists c∈R with cr = 0 and cx ≠0.  A ring R is said to be epp-ring if every projective R-

module is p-injective.  Any ring R is right epp-ring iff the trace of projective right R-module on itself is p-

injective.  A left epp-ring which is not right epp-ring has been constructed.  
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Introduction: Any ring R is said to be QF if every injective left R-module is projective. Villamayor [3] 

characterises a ring R over which every simple R-module is injective Faith call it V-ring. R.R Colby defines a 

ring R as a left (right) IF-ring if every injective left (right) R-module is flat. R.Y.C. Ming[4] characterises the 

rings over which every simple left R-module is p-injective. Motivated by these ideas here we define a ring R as a 

left epp-ring if every left projective R-module is p-injective. Through out, R denotes an associative ring with 

identity and R-modules are unitary.  

Definition: 1.   A left R-module M is called p-injective if for any principal left ideal I of R and any left R-

homomorphism g : I→ M, there exist y ∈ M such that g (b) = by for all b in I. 

Definition : 2. A left R-module  M  is f -injective if, for any finitely generated left ideal I of R and any left R- 

homomorphism g:I  →M , there exists y∈ M such that          g (b) = b y for all b in I. 

Proposition: 3(i) Direct product of p-injective modules is p-injective if and only if each factor is p-injective. 

(ii) Direct sum of p-injective modules is p-injective if and only if each summand is p-injective. [4] 

Proof :-( i) Let the direct product Π
A

Mi be p-injective module, to show each Mi is p-injective. For this consider 

the homomorphism   fi : I → Mi where I = (a) be any principal left ideal of R generated by 'a'. If  ji : Mi → Π
A

Mi  

be  the  inclusion homomorphism then ji o fi : I → Π
A

Mi  is a homomorphism. Since Π
A

Mi  is p-injective, there 

exists   (mi) i∈A∈Π Mi  such that  ji o fi  (x) = x (mi)i∈A for all x∈ I. 

Let qi : Π
A

Mi → Mi be the projection homomorphism.  

  Then qi o ji o fi = fi and qi o ji o fi(a) = qi(a(mi)i∈A) = a mi = fi (a).  Hence Mi is p-injective.  

  Conversely let each Mi is p-injective and f:I→ Π
A

Mi be any R-homomorphism. Consider the 

homomorphism qi o f: I→Mi.  By p-injectivity of  Mi there exists mi for each i ∈ A such that qi o f (a) = a mi.  

Thus f: I → Π
A

Mi is given by f (a) = a (mi)i∈A. Hence Π
A

Mi is p-injective.  

(ii) Its proof is very much similar to (i).  

Corollary: 4. Direct sum of injective module is p-injective.  

Theorem: 5. Following conditions are equivalent for a left R-module M; 

(i) M is left p-injective module. 

(ii) For each r∈R, x∈M of x∉rM then there exists c∈R with cr = 0 and  cx ≠ 0. 

Proof: (i) ⇒ (ii) Suppose (ii) is not true that is for each r∈R, x∈M if x∉rM for some c, cr = 0 and cx = 0. Put I = 

(r) = Rr then there is an R-homomorphism f: I→M defined by f(r) = x.  By p-injectivity of RM there exists x'∈M 

such that f(r) = rx' for all r∈I. 

  Therefore x = f(r) = rx'∈ rm which is a contradiction to the fact that x∉rM.  

(ii) ⇒ (i)   Let I = (r) = Rr be any principal left ideal and f : I → M be any R-homomorphism.  Suppose f(r) ≠ ry 

for some y∈M and cr = 0. This implies that f(r)∉rm and f(cr) = cf(r) = 0 which is a contradiction to the fact that 

cr=0 and cx ≠ 0.  

Definition: 6. A ring R is right (left) epp-ring if every right (left) projective R-module is p-injective.  A ring R is 

epp-ring if it is both right as well as left epp-ring.  

 The trace of an R-module M on M is denoted by  
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  TM(M) = {Imf | f ∈S = EndRM}.  

Lemma: 7. [5] (i) Let A ∈ |MR.  The map ϕ'(A) : Hom (M, A) ⊗ SM → TM (A) is an isomorphism if and only if 

M generates all kernels of homomorphism M
n
 → A, n∈N.  

(ii)  The left S-module SM is flat if and only if generates all kernels of homomorphism M
n
 → M, n∈N.  

Theorem: 8. Following conditions are equivalent for a ring R; 

(i) R is right epp-ring.  

(ii) The trace of projective module MR on itself is p-injective.  

(iii) The trace of right free R-module on itself is p-injective.  

Proof: (i) ⇒ (ii) Let R be any right epp-ring i.e. every right projective R-module is p-injective and M be any 

projective right R-module. Using the fact that every projective is flat and the tensor product of two flat modules 

is flat we get SM ⊗RR ≅ SM is flat. Therefore by Lemma 7 M generates all kernels of the homomorphisms 

M
n→M, n∈N,which implies that ϕ'(M):HomR(M,M)⊗M→ TM(M) is an isomorphism by Lemma 7  that is S ⊗ 

MR is an isomorphic to TM(M) or MR is isomorphic to TM(M) and so TM(M) is p-injective as R is epp-ring.  

(ii) ⇒ (iii) obvious  

(iii) ⇒ (i)  Assume that for every free right R-module M, TM(M) is p-injective. M would be flat too (free ⇒ 

projective ⇒ flat).  Using the same arguments as in (i) ⇒ (ii) we get TM(M) is isomorphic to M therefore M is p-

injective. Let K be any projective R-module than K would be direct summand of some free R-module say               

M but M is p-injective. Since direct summand of p-injective is p-injective [proposition 3(ii)] hence K is p-

injective that is R is a epp-ring.  

 This theorem is true for a left epp-ring and left projective R-module M too.  

Example: 9 [2, R.R. Colby Example 1].  

 A commutative epp-ring which is not a epp-ring modulo its radical. Let R =Z ⊕ 
Q

Z
 with multiplication 

defined by (n1,q1) (n2,q2) = (n1n2, n1q2 + n2q1), ni ∈Z,  qi ∈ Q. Then R is a commutative coherent ring with Jacobson 

radical 

 

J(R) =  
( )n Q

Z

,
,

 q

n
=








= 





0 0  

It is obvious that each finitely generated ideal is principal. Thus R is epp-ring but
R

J(R)
≅ Z which is not a epp-

ring as the homomorphism f: Z → Z defined by f (nx) = x can not be extended to a homomorphism from Z → Z.  

Example 10: A left epp-ring which is not a right epp-ring [2, Example 2].  

          Let R be an algebra over a field F with basis {1, e0, e1, ....x1, x2, .....}  for all  i, j 

 ei ej   =   δi, j ej 

 xiej   =   δi, j+1 xi 

 ei xj   =  δi j xj 

 xixj    = 0 

 

 It can be easily verified that R is left coherent and every R-homomorphism           f: RI → RR extends 

from RR → RR. Thus RR is p-injective that is R is left epp-ring. However R is not right epp-ring, since the 

homomorphism x1R → e0R via x1r→ e0r can not be extended over R.  

Preposition: 11. Let R and S are Marita equivalent ring then R is epp-ring if and only if S is epp-ring. 

Proof: Let F: R|M → S|M and G: S|M → R|M are category equivalences where R|M and S|M denote the categories 

of left R-module and left S-module respectively. Since projectivity is a categorical property we have to show 

only that M is p-injective in   R|M if and only if F (M) is p-injective in  S|M. The sequence with principal ideal I,  

    0→ I → R → 
R

I
→ 0 

is exact in  S|M  if and only if  

  0→ G (I)  → G(R)  → G (
R

I
)  → 0  

is exact in  R|M [1, page 224].   And the sequence  
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  0→ Hom R (G (
R

I
), M) → Hom R (G (R), M) → Hom R (G (I), M) → 0 

is exact in R|M if and only if  

  0→ HomS (
R

I
, F(M) ) → HomS  (R, F( M) ) → HomS  (I, F( M) ) → 0 

is an exact sequence in S|M.  

  That is if M is p-injective in R|M if and only if F(M) is p-injective in S|M.  
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