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Abstract 

The Fixed Point theory is an important and major topic of the nonlinear functional analysis that deals with the 

investigation leading to the existence and approximation of a “Fixed Point”. To enhance its literature, the 

Common Fixed Point Theorem in Q Fuzzy Metric Space, is established as a prime objective of this paper .The 

goal is achieved by taking four self mappings on a Q Fuzzy Metric Space, satisfying the general contractive 

condition along with the definition of occasionally weakly compatible. The theorem is also illustrated with 

example and a unique fixed point is derived. Our result is independent of the continuity requirement of the maps 

and completeness of the space.  
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1. Introduction 

The concept of fuzzy sets introduced by Zadeh [12] in 1965, plays an important role in topology and analysis. 

Since then, there are many author to study the fuzzy set with application. Espectially, Kromosil and Michalek[10] 

put forward a new concept of fuzzy metric spaces. George and Vermani [6] revised the notion of fuzzy metric 

spaces with the help of continuous tnorm. As a result of many fixed point theorem for various forms of mapping 

are obtained in fuzzy metric spaces. Dhage [5] introduced the defination of D metric space and proved many new 

fixed point theorem in D-metric spaces. Recently, Mustafa and Sims[13] presented a new definition of G-metric 

space and made great contribution to the development of Dhage theory. On the other hand, Lopez-Rodrigues  

and Romaguera [11] introduced the concept of Hausdorff fuzzy metric in a more general space .The Q-fuzzy 

metrics spaces is introduced by Guangpeng Sun and kai Yang[7] which can be consider as a Generalization of 

fuzzy metric spaces. The concept of compatible maps by [10] and weakly compatible maps by [8] in fuzzy 

metric space is generalized by A.Al Thagafi and Naseer Shahzad [1] by introducing the concept of occasionally 

weakly compatible mappings. Recent results on fixed point in Q-fuzzy metric space can be viewed in[7].  

The main purpose of our paper is to prove common fixed point theorem in Q fuzzy metric space under general 

contractive conditions satisfying the definition of occasionally weakly compatible 

(owc)  map. It   extends the scope of study common fixed point theorems from the class of weakly compatible 

mapping to wider class of mappings. This result generalizes and extends several known fixed point theorems for 

owc maps on G metric space. 

Our improvements in this paper are five-fold as; 

(i) Relaxed the continuity of maps completely 

(ii) Completeness of the space removed 

(iii) Minimal type contractive condition used 

(iv) The condition �(�, �, �)� →�
�
�  =1 not used 

(v) Weakened the concept of compatibility by a more general concept of occasionally weakly  

     Compatible (owc) maps. 

 

2. Preliminary Notes 

Definition 2.1[2]  

A binary operation *:[0,1]×[0,1]→[0,1] is a continuous t norm if it satisfy the following  condition: 

( i ) * is associative and commutative . 

(ii) * is continous function. 

(iii) a *1=a for all a ℇ[0,1] 

(iv) a *b ≤ c*d whenever a ≤ c and b ≤ d and a, b, c, d ℇ[0,1] 

Definition 2.2  

A 3-tuple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a  continuous t-norm and M is a 

fuzzy set on X
2
 × (0,∞) satisfying the following conditions:  

for all x, y, z є X, s, t > 0, 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

110 

(fm1) M(x, y, t) > 0; 

(fm2) M(x, y, t) = 1 if and only if x = y; 

(fm3) M(x, y, t) = M(y, x, t); 

(fm4) M(x, y, t) *M(y, z, s) ≤ M(x, z, t + s); 

(fm5) M(x, y, *) : (0,∞) →(0, 1] is continuous. 

Then M is called a fuzzy metric on X. 

The function M(x, y, t) denote the degree of nearness between x and y with respect to t. 

Definition 2.3[7]: 

 A 3-tuple (X,Q, *) is called a Q-fuzzy metric space if X is an arbitrary (non-empty) set * is a continuous t -norm, 

and Q is a fuzzy set on X
3
×(0,∞),satisfying the following conditions for each x, y, z, a ℇ X and t ,s> 0 : 

(Qm1)   Q( x,x,y,t)>0 and Q(x,x,y,t)≤ Q(x,y,z,t) for all x,y,z ℇ X with z=y 

(Qm2)   Q ( x,y,z,t)=1 if and only if x =y = z 

(Qm3)   Q(x,y,z,t) = Q(p(x,y,z),t),(symmetry) where p is a permutation function , 

      (Qm4)   Q(x,a,a,t) *Q(a,y,z,s)≤Q(x,y,z,t+s), 

       (Qm5)        Q(x,y,z,. ):( 0 ,∞)→[0,1] is continuous 

  A Q-fuzzy metric space is said to be symmetric if Q(x,y,y,t)=Q(x,x,y,t) for all x,y ℇ X. 

 

Example 2.1: Let X is a nonempty set and G is the G-metric on X. Denote a*b = a.b for all  

                        a,bℇ[0,1]. For each t>0: Q(x,y,z,t) =
�

���(�,�,�,�)
  Then (X,Q,*) is a Q-fuzzy metric 

2.4 Comparative study of Fuzzy Metric Space and Q Fuzzy Metric Space : 

1) In fuzzy metric space the fuzzy set M is defined on  X
2
  x (0,∞) where as in Q  fuzzy metric space the 

fuzzy set Q is defined on  X
3
  x (0,∞).Thus it can be said that a Q Fuzzy Metric Space is the extended 

version of the Fuzzy Metric Space in which Triangle Inequality is replaced by Rectangle  Inequality.  

2) The concept of Q Fuzzy Metric Space is on the G metric space which is a generalization of ordinary 

metric space .Therefore the Q Fuzzy Metric Space is also called as the Generalized Fuzzy Metric Space. 

Example 2.2 :  

Let (X,M,*) be a  Fuzzy Metric Space. If we define Q: X
3
x(0,∞) → [0,1] by   

                       Q(x,y,z,t)= min {M(x,y,t),M(y,z,t),M(z,x,t) } for every x,y,z in X , 

then (X,Q,*) is a Q Fuzzy Metric Space. 

Solution  

We will only verify (Qm5)  

Q(x,y,z,t)= min {M(x,y,t),M(y,z,t),M(z,x,t) }   Q(x,a,a,t) = M(x,a,t) 

Q(a,y,z,t)= min {M(a,y,t),M(y,z,t),M(z,a,t) } 

 

Q(x,a,a,t) * Q(a,y,z,s) = M(x,a,t) *  min {M(a,y,s),M(y,z,s),M(z,a,s) } 

                                   ≤  min { M(x,a,t) *  M(a,y,s), M(x,a,t) *  M(y,z,s), M(x,a,t) *  M(z,a,s) } 

                                   ≤  min { M(x,y,t+s), M(y,z,s),  M(x,z,t+s) } 

                                  ≤  min { M(x,y,t+s), M(y,z,t+s),  M(x,z,t+s) } 

                                   ≤  Q(x,y,z,t+s) 

Thus (Qm5) holds  

Hence (X,Q,*) is a Q Fuzzy Metric Space.  

Definition 2.5[6] 

 Let (X,Q,*) be a Q-fuzzy metric space. A sequence {xn} in X converges to x if and only if Q (xm,xn,x,t) →1 as 

n→∞,for each t>0. It is called a Cauchy sequence if for each  

0 <ε<1 and t>0, there exist n0ℇN such that Q(xm,xn,x1)>1- ε for each ,n,m ≥ n0. 

Definition 2.6[3]: 

 Let X be a set, f and g self maps of X. A point x in X is called a coincidence point of f and g iff fx= gx .We shall 

call w=fx=gx a point of coincidence of f and g. 

Definition 2.7[7]: 

 Let f and g be self maps on a Q-fuzzy metric space (X, Q,*) then the mappings are said to be weakly compatible 

if they commute at their coincidence point, that is, f x = gx implies that 

fgx = gfx . 

Definition 2.8[1]:  

Let f and g be self maps on a Q-fuzzy metric space (X, Q,*) then the mapping are occasionally weakly 

compatible (owc) iff there is a point x in X which is coincidence point of f and g at which f and g commute. 

Al-ThagaW and Naseer [1](2008) shown that occasionally weakly is weakly compatible but converse is not true. 

Example 2.3: Let R be the usual metric space. Define S T: R→R by Sx = x and 

Tx = x
3
 for all x ℇ R. Then Sx = Tx for x = 0, 2 but ST0 = TS0 and  
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ST2 ≠TS2. S and T are occasionally weakly compatible self maps but not weakly compatible  

Lemma 2.7[7]:  

If (X,Q, *) be a Q-fuzzy metric space,then Q(x,y,z,t) is non decreasing with    respect to t for all x,y,z in X . 

Proof : Proof is this is implicated in [7] 

Lemma 2.8:  

Let (X,Q,*) be a Q-fuzzy metric space.,if there exists k ℇ(0,1) such that Q(x, y, k t) ≥ Q(x, y, t )  

for all x, y ℇ X and t>0, then x = y. 

Proof: By the assume lim t→ ∞ Q(x,y,z,t) = 1 and the property of non-decreasing, it is easy to get  the results. 

Lemma 2.9 [1]: Let X be a set, A , B owc self maps of X. If A and B have unique point of coincidence, w = A x 

= B x, then w is the unique common fixed point of A and B.  

 Proof:  

Since A and B are owc, there exists a point x in X such that Ax = Bx = w and ABx = BAx. Thus, AAx = ABx = 

BAx, which says that AAx is also a point of coincidence of A and B. Since the point of coincidence w = Ax is 

unique by hypothesis, BAx = AAx = Ax, and w = Ax is a common fixed point of A and B.  

Moreover, if z is any common fixed point of A and B, then z = Az =Bz = w by the uniqueness of the point of 

coincidence point of A and B. 

Main Result : 

Theorem 3.1 

Let A, B,S ,T be a self mappings of the Symmetric  Q Fuzzy metric space with continuous t norm satisfying the 

following condition  : 

1) The pair {A,S} and {B,T} is Occasionally Weakly Compatible  

2) There exist k ℇ (0,1) such that  

Q(Ax ,By ,By ,k t) ≥ min {Q(Sx, Ty ,Ty,t) , Q(Sx, Ax, Ax,t) , Q(Ty, By,By ,t) ,     

                                        Q(Sx, By, By, t) , Q(Ty, Ax, Ax, t) }……………..(3.1.1) 

 for all x, y in X and t>0. Then A, B, S, T have Unique Common Fixed Point in X. 

Proof: 

Since by hypothesis, the pair {A,S} and {B,T} is Occasionally weakly Compatible then  there exists points x, y in 

X such that Ax = Sx  and  By = Ty. We claim that Ax =By.  

From Equation (3.1) we have  

Q(Ax ,By ,By ,kt) ≥ min {Q(Ax, By ,By,t) , Q(Ax, Ax, Ax,t) , Q(By, By ,By ,t) ,     

                                        Q(Ax, By, By, t) , Q(By, Ax, Ax, t) } 

 Q(Ax ,By ,By ,kt) ≥ min {Q(Ax, By ,By,t) , 1,1, Q(Ax, By, By, t) , Q( Ax, By,By, t) } 

Q(Ax ,By ,By ,kt) ≥ Q(Ax, By ,By,t)  for all x,y in X and t>0. 

By lemma 2.8 we have Ax =By.  

So Ax= By= Sx = Ty 

Moreover, if there is another point z such that Az = Sz, then, using (3.1.1) it follows that Az = Sz = By = Ty or 

Ax = Az and w = Ax = Sx is the unique point of coincidence of A and S. Then by lemma 2.9, it follows that w is 

the unique common fixed point of A and S. By symmetry, there is a unique common fixed point z in X such that 

z = Bz = Tz.  

Now, we claim that w = z. Suppose that w ≠ z.  

Using equation (3.1) we have  

Q(w, z, z, kt) = Q(Aw, Bz, Bz, kt)  

                       ≥ min {Q(Sw, Tz ,Tz,t) , Q(Sw, Aw, Aw ,t) , Q(Tz, Bz ,Bz ,t) ,     

                                                Q(Sw, Bz, Bz, t) , Q(Tz Aw, Aw, t) }  

                       ≥Q(Sw, Tz ,Tz,t)      

                       ≥Q(w, z ,z,t)      

By lemma 2.8 we have w=z  

Therefore w is a unique point of coincidence of A,B, S, T then by lemma 2.9  

 w is the unique common fixed point of A, B ,S, T. 

Example 3.2: 

Let X=[0,1] and G is the G Symmetric metric space on X such that  

G(x, y, z)=max{|x-y|+|y-z|+|z-x|. 

Denote a*b=ab for all a,b in [0,1] and for each t>0 define a fuzzy set Q as  

Q(x,y,z,t)=
�

���(�,�,�)
 

Then (X,Q,*) is a Q Fuzzy Metric Space Define a mappings A,B,S,T as  

Ax=x ,  Bx=3x,   Tx= 
��

�
   and    Sx= �� 

We claim that the pair {A,S} and {B,T} is Occasionally weakly Compatible. 
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At x=0  we have A(0) = 0and S(0)=0 also AS(0)=A[S(0)]=A(0)=0 and SA(0)=S[A(0)]=S(0)=0 

Thus the pair {A,S} is owc map. Similarly we can show the pair {B,T} is owc. 

For k ℇ (0,1) and for all t>0 and x= 0 ℇ X, the mappings satisfy equation (3.1.1)  

Thus all the condition of theorem are verified  

Hence 0 is the Common Fixed Point of A, B ,S ,T. 

Corollary 3.1: Let (X, G) be a Symmetric G-metric space. Suppose that A, B, S, T are self maps on X and that 

the pairs {A , S} and {B , T} are each owc.  

 

 Q(Ax ,By ,By ,kt) ≥ min {Q(Sx, Ty ,Ty,t) , Q(Sx, Ax, Ax,t) , Q(Ty, By ,By ,t) ,     

                                      
�

�
  [Q(Sx, By, By, t) + Q(Ty, Ax, Ax, t) ]} 

for all x, y in X and 0<k < 1, then A,B, S and T have a unique common fixed point in X.  

Proof: Since (3) is a special case of (2), the result follows immediately from Theorem 2.2.  

 

4.1 CONCLUSIONS  

In this paper, as an application of occasionally weakly compatible mappings, we prove common fixed point 

theorems under contractive conditions that extend the scope of the study of common fixed point theorems from 

the class of weakly compatible mappings to a wider class of mappings. Our result substantially generalizes and 

improves a multitude of relevant common fixed point theorems of the existing literature in Fuzzy Metric Space. 
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