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Abstract 

In this paper, we introduce a general class of function and prove the convergence result of Ishikawa iteration 

considered in Banach spaces. 

 

1 Introduction 

The last four decades many papers have been published on the iterative approximation of fixed points for certain 

classes of operators using the Picard and Krasnoselskij iteration methods. Those papers were motivated by the 

fact that under weaker contractive conditions the Picard iteration need not converge to the fixed point of the 

operators.  

Let E be a normed linear space, T: E→E a given operators. Let ���� be arbitrary. 

(i). For any � ∈ �0,1�, the sequence  ��
�
���  ⊆ � defined by �
�� =  �� �
 = �1 − ���
 + �
��
,                                        � = 0,1,2, …,             (1) 

is called Krasnoselskij iteration. 

 

(ii). The sequence ��
�
���  ⊆ � defined by  �
�� = �1 − ���
 + �
��
,                                � = 0,1,2, …,            (2) where  ��
�
���  is a real sequence satisfying 0 ≤ �
 < 1, n=0,1,2,…, is 

called Mann iteration. 

(iii). The sequence ��
�
���  ⊆ � defined by �
�� = �1 − ���
 + �
� 
,                                      � = 0,1,2, …,                  
 = �1 − !��
 + !
��
,            (3)                                � = 0,1,2, …,                
where  ��
�
���  , �!
�
���   are sequences of reals satisfying 0 ≤ �
, !
 < 1, n=0,1,2,…, is called the Ishikawa 

iteration. 

Remark: 

1. If !
 = 0, then Ishikawa iteration reduces to Mann iteration. 

2. If �
 =  �, then Mann iteration reduces to Krasnoselskij iteration. 

3. If �
 = 1, then Mann iteration reduces to Picard iteration. 

In 1972, Zamfirescu [14] obtained the following theorem. 

Theorem 1.  [14] Let (X,d) be a complete metric space and T: X → X a mapping for which there exists real 

numbers a,b,c satisfying " � �0,1�"�# $, % ��0, �
&�  such that for pair �,   � '  at least one of the following 

conditions hold: 

(z1)  #���, � � ≤ " #��,  � 

(z2�         #���, � � ≤ $ (#��, ��� + #� , � �) 
(z3�         #���, � � ≤ % (#��, � � + #� , ���) 
 

Then T has a unique fixed point p and the Picard iteration ��
� defined by �
�� =  � �
 , � = 0,1,2, …                (4) 

Converges to p, for any �� ∈ '.  
An operator T which satisfies the contractive condition (z1 – (z2  of Theorem 1 will be called Zamfirescu 

operators. 

Berinde [3] introduced a new class of operators on an arbitrary Banach spaces X satisfying #���, � � ≤ 2+ (#��, ��� + +#��,  �)         (5) 

For all x, y ∈ ' and + ∈ (0,1�. 
He proved that this class is wider than the class of Zamfirescu operators and used the Ishikawa iteration process 

to approximate fixed points of this class of operators in an arbitrary Banach spaces.The condition (z1) of 
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Zamfirescu operator is the well known contraction condition introduced by Banach [1], the condition (z2) of 

zamfirescu operator is called a Kannan mapping, while the mapping satisfying the condition (z3) is called 

Chatterjea operator. 

Several authors including Rhoades [12,13] employed the Zamfirescu condition to establish several interesting 

convergence results for Mann and Ishikawa iteration processes in a uniformly convex Banach space. Berinde [3] 

extends the results of Rhoades [12,13] to an arbitrary Banach spaces for the same fixed point iteration processes. 

In 1995, Osilike [10] considered the following contractive condition: there is , ≥ 0, " ∈ (0,1� such that for each 

x, y ∈ � .�� − � . ≤ ,.� − ��. + ".� − ��.        (6) 

and established T – stability for such maps with respect to Picard, Mann and Ishikawa iterations. 

In 2003, Imoru and Olatinwo[5] extended the results of Osilike [10] and proved some stability results for Picard 

and Mann iteration process using the following contractive condition: there exists  " ∈ (0,1� and a monotone 

increasing function / ∶ 1�  → 1� with /�0� = 0 such that for each x, y ∈ �, .�� − � . ≤ /.� − ��. + ".� −  .         (7) 

 A lot of “generalizations” and contractive conditions similar to (2) and (3) were also employed by several 

authors Olatinwo       [19 from111], for more details see [2, 3-14]. 

Our aim in this paper is to be introduced the following general class of function considered in Banach spaces. 

We shall employ the following contractive condition. Let ��, .. .� be Banach space, �: � → � a self map of E, 

with a fixed point p such that for each y ∈ � and M>0, 0 ≤ " < 1, and / ∶ 1�  → 1� with /�0� = 0 such that 

for each x, y ∈ �, 
.�� − � . ≤ 45.6786. 9/.� − ��. + ".� −  .

1 + :.� − ��. ; 

      (8) 

This contractive condition is called “general class of function”. 

 

2. Main Result 

Theorem 2.1.  Let E be a arbitrary Banach spaces, K be an arbitrary closed convex subset of E and �: < → < a 

self map of E with a fixed point p, satisfying the condition (8). For �� ∈ �, let �
  be the Ishikawa iteration 

defined by (3) for  � ∈ <, where  ��
� and �!
� are sequence of real numbers in [0,1] with ∑ �
 = ∞. 

then ��
� converges strongly to the fixed point of T. 

Proof: Using the Ishikawa iteration (3), the condition (8) and triangle inequality, we get  .�
�� − ?. =  .�1 − �
��
 + �
� 
 − ?. =  .�1 − �
��
 + �
� 
 − �
? + �
? − ?. =  .�1 − �
���
 − ?� + �
�� 
 − ?�. ≤ �1 − �
�.��
 − ?�. + �
.�� 
 − ?�.     (9) 

On taking x=p and y= 
 in (8), we have 

.�? − � 
. ≤ 45.@78@. 9/.? − �?. + ".? −  
.
1 + :.? − �?. ; 

Since Tp=p, then we have .? − � 
. ≤ ".? −  
.                              (10) 

Substitute (10) in (9), we get .�
�� − ?. ≤  �1 − �
�.��
 − ?�. + �
". 
 − ?.     (11) 

Since  . 
 − ?. = .�1 − !
��
 + !
��
 − ?. 

 .�1 − !
��
 + !
��
 − !
? + !
? − ?. 

=  .�1 − !
���
 − ?� + !
���
 − ?�. ≤ �1 − !
�.��
 − ?�. + !
.���
 − ?�.   (12) 

On taking x=p and y=�
 in (8), we have  

.�? − ��
. ≤ 45.@78@. AB.@78@.�C.@76D.
��E.@78@. F   

Since Tp=p, then we have  .? − ��
. ≤ ".? − �
.                            (13) 

Substitute (13) in (9), we have  . 
 − ?. ≤ �1 − !
�.��
 − ?�. + !
".��
 − ?�.   (14) 

Now from (11) and (14), we get 
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.�
�� − ?. 

≤ G�1 − �
� + �
"(1 − !
�1 − "�)H.��
 − ?�. 

= A1 − �
 I1 − "J1 − !
�1 − "�KLF .��
 − ?�. 

= (1 − �1 − "��
 − �
!
"�1 − "�).��
 − ?�. ≤ (1 − �1 − "��
).��
 − ?�. 

≤ M(1 − �1 − "��
).��
 − ?�.



N��
 

≤ M 47��7C�OP(1 − �1 − "��
).��
 − ?�.



N��
 

                     (15) 

as � → ∞. Since ∑ �N = ∞
N�� , " ∈) and from (12), we have  .�
 − ?. → 0 as � → ∞,  

which implies that Ishikawa iteration process converges to p. 

Uniqueness: We take  p�,p& ∈  FS,  where FS is the set of fixed points of T in E such that p� = Tp� and p& =Tp&. Suppose on the contrary that p� ≠ p&.  Then, by choosing � = p� and y = p& 

In (8), we get easily uniqueness part. 

This completes the proof. 

Consequently, we have the following corollaries: 

Corollary 2.2. Let E be a arbitrary Banach spaces, K be an arbitrary closed convex subset of E and   T: K K a 

self map of E with a fixed point p, satisfying the condition (8). For �� ∈ �, let �
 be the Mann iteration defined 

by (2) for  � ∈ <, where  ��
� and �!
� are sequences of real numbers in [0,1] with ∑��
� = ∞. Then ��
� 

converges strongly to the fixed point of T. 

Corollary 2.3. Let E be a arbitrary Banach spaces, K be an arbitrary closed convex subset of E and   T: K K a 

self map of E with a fixed point p, satisfying the condition (8). For �� ∈ �, let �
 be the Krasnoselskij iteration 

defined by (1) for  � ∈ <, where � ∈ (0,1). Then, the sequence  ��
� converges strongly to the fixed point of T. 

Corollary 2.4. Let E be a arbitrary Banach spaces, K be an arbitrary closed convex subset of E and   T: K K a 

self map of E with a fixed point p, satisfying the condition (8). For �� ∈ �, let �
 be the Picard iteration defined 

by (4)  then, the sequence  ��
� converges strongly to the fixed point of T. 
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