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Abstract: The aim of this paper is to present a common fixed point theorem in Menger Probabilistic Quasi- 

metric space for weakly compatible maps. 

 

Introduction: 1.1: 

K. Menger [1] introduced the notion  of a probabilistic metric space in 1942 and since  then, the theory of 

probabilistic metric spaces has developed in many directions,  especially, in nonlinear analysis and applications 

[2]. The idea of Menger was to use  distribution functions instead of nonnegative real numbers as values of the 

metric.  Schweizer and Sklar [3] studied this concept and gave some fundamental results on this  space. The  

important development of fixed point theory in Menger spaces was due to  Sehgal and Bharucha-Reid [4].  

Jungck [5] introduced the concept of compatible maps.  And this condition has further been weakened by 

introducing the notion of weakly  compatible mappings by Jungck and Rhoades [6]. The concept of weakly 

compatible mappings is most general as each pair of compatible mappings is weakly compatible but  the reverse 

is not true. Recently in this line, Singh and Jain [7] introduced the notion of  weakly compatible maps in Menger 

space to establish a common fixed point theorem. 

 Fixed point theorems for single-valued mappings have appeared in PQM-spaces (see [5, 8, 9, 10, 11]). 

Cho [3] proved common  fixed point  theorems for set-valued mappings in quasi-metric spaces. The theory of 

quasi-metric spaces can be used as an efficient tool to solve so many several problems like theoretical computer 

science, approximation theory and topological algebra (see[2, 7, 10]). 

Definitions: 

2.1: A mapping T : ]1,0[]1,0[]1,0[ →× is t- norm if T is satisfying the following conditions. 

 a. T is commutative and associative. 

 b. T (a, 1) = a,  for all a ∈[0,1] 

 c. T (a, b) ≤  T(c, d), whenever a ≤  c and b ≤  d,  for all a,b,c,d ∈  [0,1]. 

 The following are some basic t- norms: 

 T M (a,b) = min {a,b} ; 

 T P (a,b) = ab; 

 T L (a,b) = max {a+b-1, 0} 

2.2: A mapping F: R→R
+

 is called a ditribution function if it is  non-decreasing and left continuous with 

inf{F(t): t ∈  R} = 0 and sup{F(t):  t ∈  R} = 1. 

2.3: A Menger PQM-space is a triplet (X,F, T), where X is non decreasing empty set, T is continuous t- 

norm and F is probabilistic distance satisfying the following conditions: for  all x, y, z ∈  X. 

 a. F yx, (t) = 0ε (t) and F xy , (t) = 0ε (t)  then x = y. 

 b. F zx , (t+s)  ≥  T (F yx, (t), F zy , (s) 

 A Menger PQM - space is called a Menger PM - space if it satisfies the symmetry condition, i.e. F yx, (t) 

= F xy , (t), for all x, y ∈  X. 

` The notion of a Menger space is a generalization of a notion of a metric space. So Menger PQM - 

spaces offers a wider framework than that of metric space and are better  suited to cover even wider 

statistical situations. 

2.4: Let (X, F, T) be a Menger PQM - space and A be a non-empty subset of X. Then A is  said to be 

probabilistically bounded if )(infsup ,
,0

tF yx
Ayxt ∈>

 = 1. If X itself is probabilistically  bounded , then X is 

said to be a probabilistically bounded space.Throughout this paper,  Β (X) will denote the family of non-

empty bounded subsets of a menger  PQM-space X,  for all A, B ∈  Β (X) and for every t > 0, we define 
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 D BAF , (t) = sup{ F ba , (t): a ∈  A, b ∈  B} 

 and, )(, tF BAδ   = inf {F ba , (t): a ∈  A, b ∈  B} 

 If set A consists of a singe point a, we write )(, tF BAδ  = )(, tF Baδ  

 If  set B also consists of a single point b, we write )(, tF BAδ = F ba , (t) 

 It follows immediately from the definition that )(, tF BAδ  = 1. 

 Thus we conclude that A = B = {a}, for some a ∈  X. 

2.5: Let (X,F,T) be a Menger PQM-space: 

 a. A sequence {x n } is said to be convergent to x ∈  X if for every ε  > 0 and λ > 0,  

  there exists a positive integer N such that  F xxn , (ε  ) > 1-  λ whenever n ≥  N. 

 b. A sequence {x n } in X is said to be Cauchy if for every  ε  > 0 and λ > 0,  ,thwre  

  exists a positive integer N such that F
mnxx (ε ) > 1- λ  whwnever n , m ≥  N. 

 c. A Menger PQM - space in which every Cauchy sequence is convergent is said to  

  be complete. 

2.6: A t- norm T is of Hadzic type (H - type in short) and  Η∈T if the family Nn

nT ∈}{  of its 

 iterates defined, for each x in [0,1], by  1)(0 =xT , )),(()(1 xxTTxT nn =+
 for all n ≥  0 is 

 equicontinuous at x = 1, that is, )1,0(|)1,0( ∈∃∈ δε  : δ−>1x . 

 ⇒ ε−>1)(xT n  for all n ≥  1. 

2.7: If T is a t- norm and 
n

nxxx ]1,0[)..,,.........,( 21 ∈  (n ∈  N), then i

n

i xT 1=  is dfined recurrently  by 1, 

if n =0 and i

n

i xT 1=  = ),( 1

1 ni

n

i xxTT −
=  for all n ≥  1. If Niix ∈)(  is a sequence of numbers  from [0,1], then 

ii
xT

∞

=10  is defined as 
∞→n

lim i

n

i xT 1=  ( this limit always exists) and ini xT ∞
=  as  ini xT +

∞
=1  

2.8: The mapping f: X→  X and g: X→  Β (X) are said to be weakly compatible (or  coincidentally 

commuting) if they commute at their coincidence points, that is , gu = {fu}  for some u ∈X, then fgu = gfu. 
2.9: Proposition: 

 a.  If T ≥  T L , then the following implication holds:  

  
∞→n

lim ini xT +
∞
=1  = 1 ∑

∞

=

∞<−⇔
1

)1(
n

nx  

 b. If  Η∈T then for every sequence (x n ) Nn∈ in [0,1] such that 1lim =
∞→

n
n

x , one has   

  1lim 1 =+

∞

=
∞→

ini
n

xT  

 Note that if T is a t-norm for which there exists (x n ) ⊂  [0,1] such that 1lim =
∞→

n
n

x  and  

 1lim 1 =+

∞

=
∞→

ini
n

xT , then sup 1 <t T(t,t)= 1. 

 

 

2.10: Proposition:  

 Let (x n ) be a sequence of numbers from [0,1] such that 1lim =
∞→

n
n

x  and t - norms T  is of  H- 

type. Then  1limlim 1 == +

∞

=
∞→

∞

=
∞→

ini
n

ini
n

xTxT . 

2.11: Lemma:  

 If a Menger PQM - space (X, F, T) satisfies the follwing condition: F Cty =)(, , for all       t > 0 

with fixed  Xyx ∈, . Then we have, C= 1 and x = y. 
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2.12: Lemma:  

 Let the function φ (t) satisfy the following condition  

 φ (t) : [0, ∞ ) → [0, ∞ ] is non-decreasing and ∑
∞

=1

)(
n

n tφ  < ∞ ,  for all t > 0, when )(tnφ  

 denotes the nth iterative function of φ (t). Then φ (t) < t for all t > 0. 

3.1: Theorem  

Let (X, F, T) be a complete menger PQM - space. Further, let A and B be two weakly compatible self mappings 

with t∗ t ≥  t such that 

i. T is Hadzic type 

ii. g(X) ⊂  f(X) 

iii. F )().( ygxg (φ (t)) ≥  min { F )(),( yfxf (t), F )(),( ygxf (t), F )(),( xfxg (t), F )(),( yfxg (t), F )(),( yfyg (t)} 

      for all x, y ∈  X and t > 0 where the function φ (t) : [ ∞,0 ) ],0[ ∞→ is onto and strictly           

 increasing and satisfying the condition (Φ ) 

iv. f(X) is closed subset of X, then 

 a. g and f have a coincidence point 

 b. the pair (g.f) is weakly compatible. Then ∃  a unique common fixed point z ∈X :           

{z}= {fz} = {gz} 

Proof: 

Let 0x be an arbitrary point in X. By (iii) we can find 1x  such that f( 1x )∈g( 0x ). By induction we can find the 

sequences { nx  } and { ny } such that y n2  = f(x 12 +n ) ∈  g(x n2 ) for n∈  N. 

 Putting x = x n2  and y = x 12 +n  in (iv), we get 

F )(),( 122 +nn xgxg  (φ (t)) ≥  min { F )(),( 122 +nn xfxf (t), F )(),( 122 +nn xgxf (t), F )(),( 22 nn xfxg (t),                          

    F )(),( 122 +nn xfxg (t),F )(),( 1212 ++ nn xgxf (t)} 

F
12,2 +nn yy (φ (t))        ≥  min { F

nn yy 2,12 −
(t), F

12,12 +− nn yy (t), F
12,2 −nn yy (t), F

nn yy 2,2
(t), F

12,2 +nn yy (t)} 

         ≥  F
nn yy 2,12 −

(t)  

Similarly, we can also prove that for n ∈  N and for all t > 0, 

F
22,12 ++ nny

(φ (t))        ≥  F
12,2 +nn yy (t) 

So we have, F
1, +nn yy (φ (t))   ≥  F

nn yy ,1−
(t) 

 F
1, +nn yy (t)                ≥  F

nn yy 1−
( ))(1 t−φ  

          ≥  ...................... ≥  F
1,0 yy

( ))(tn−φ . 

We show that {y n } is a Cauchy sequence. Let ε > 0 be given and λ ∈(0,1) be such that  

T )1.........,,.........1(1 λλ −−−m
  > 1-ε . Also let t > 0 be such that F

10 , yy (t) > 1-λ , ψ  be a positive number 

and n 1 ∈  N be such that ∑
∞

1

)(
n

i tφ ψ≤ . Thus for every n ≥  n 1  and    m ∈  N, we have 

F
mnn yy +, (ψ )    ≥   F

mnn yy +, ∑
−+

=

1

))((
mn

ni

i tφ  

   ≥  T ))(((
1,

1 tF n

yy

m

nn
φ

+

−
............., F

nnmn yy +−+ ,1
(

1−+mnφ (t)) 

   ≥  T
1−m

( λ−1 ,.................., λ−1 ) 

    > ε−1  

Hence, {y n } is a cuchy sequence in X. Since X is complete, {y n } converges to z in X.  

 Thus,  
∞→n

lim  y n  = 
∞→n

lim y n2 = 
∞→n

lim fx 12 +n  = z ∈  
∞→n

lim gx n2  
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Since f(X) is closed subset of X, there exists a point v ∈  X such that z = fv ∈  f(X). 

Putting x = x n2  and y =v in (iv), we get 

F gvngx ,2
(φ (t))   ≥  min { F

fvnfx ,2
(t), F

gvnfx ,2
(t), F

nfxngx 2,2
(t), F

fvngx ,2
(t), F fvgv, (t) } 

F gvny ,2
(φ (t))   ≥  min {F zny ,12 −

(t), F gvny ,12 −
(t), F

12,2 −nyny
(t), F zny ,2

(t), F zgv, (t)} 

⇒  F gvny ,2
(φ (t))   ≥  F zny ,12 −

(t) 

Now taking limit n ∞→ ,we have  

F gvz, (φ (t))    ≥   F zz, (t) = 1 

Hence,   F gvz, (φ (t))  = 1. We obtain g(v) = z. 

It shows that v is a coincidence point of f and g. Since the pair (g,f) is weakly compatible, we have gf(v) = fg (v) , 

hence g (z) = {f(z)}. 

Putting x = x n2   and y = z in (iv), we get 

F
gznxg ),2(

(φ (t))  ≥  min { F
fznxf ),2(

(t), F
gznxf ),2(

(t), F
)2(),2( nxgnxf

(t), F
fznxg ),2(

(t), F gzfz, (t)} 

F gz
n

y ,
2

(φ (t))  ≥  min { F
fzny ,12 −

(t), F gzny ,12 −
(t), F

nyny 2,12 −
(t), F

fzny ,2
(t), F gzfz, (t)} 

F gz
n

y ,
2

(φ (t))  ≥  F gzny ,12 −
(t) 

taking limit n ∞→ , we get 

F gzz, (φ (t))     ≥  F gzz,  (t) 

On the other hand , since F is non decreasing, we get 

  F gzz, (φ (t))    ≤   F gzz,  (t) 

Hence, F zgz , (t) = C for all t > 0. 

By lemma 2.1, we conclude that C= 1 , that is, g(z) = {z}. 

Now combine all the results, we get g(z) = {f(z)} = {z}. 

It implies that z is a common fixed point of f and g in X. 

Uniqueness: 

Let w (≠ z) be another common fixed point of f and g. Taking x = z and y = w in (iv),  we have 

F gwgz , (φ (t))  ≥  min { F fwfz, (t), F gwfz, (t), F fzgz, (t), F fwgz, (t), F fwgw, (t)} 

 F gwgz , (φ (t)) ≥   F fwfz, (t) 

 F wz, (φ (t)) ≥   F wz, (t) 

Since F is non- decreasing we get, 

F wz, (φ (t)) ≤   F wz, (t). 

Hence F wz, (t) = C for all t > 0. From Lemma 2.1, we conclude that C= 1, that is, z = w and so the uniqueness is 

proved. 
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