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                         1 INTRODUCTION 

The concept of fuzzy sets was introduced by Prof. Lofty Zadeh [20] in 1965 at University of California and 

developed a basic frame work to treat mathematically the fuzzy phenomena or systems which due to intrinsic 

indefiniteness, cannot themselves be characterized precisely. Fuzzy metric spaces have been introduced by 

Kramosil and Michalek [7] and George and Veersamani [3] modified the notion of fuzzy metric with the help of 

continuous t-norms. Recently many have proved fixed point theorems involving fuzzy sets [1, 2, 4-6, 8-10, 14, 

16-19]. Vasuki [19] investigated the same fixed point theorems in fuzzy metric spaces for R-weakly commuting 

mappings and Pant [12] introduced the notion of reciprocal continuity of mappings in metric spaces. 

Balasubramaniam et al. and S. Muralishankar, R.P. Pant [1] proved the open problem of Rhoades [15] on the 

existence of a contractive definition which generals a fixed point but does not force the mapping to be 

continuous at the fixed point possesses an affirmative answer. 

The purpose of this paper is to prove fixed point theorem in fuzzy metric spaces for using new continuity 

condition.  

 

2 PRELIMINARIES  

Before starting the main result we need some basic definitions and basic results, which are used to prove our 

main results.  

Definition 2.1: A fuzzy set A in x is a function with domain X and values in [0, 1] 

Definition 2.2: A binary operation *: [0, 1] → [0, 1] is called a continuous t-norm of ([0.1], *) is an abelian 

topological monoid with the unit 1 such that a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d   [0, 1]. 

Example: Two typical examples of continuous t-norm are 

(a)       

(b)      a * b = min {a, b} 

 

Definition 2.3: A 3-tuple (X, M, *) is called a fuzzy metric space if X is non-empty set, * is a continuous t-norm 

and M is a fuzzy set on X
2
× [0, ∞) satisfying the following conditions for each x, y, z   X and t, s > 0. 

 ; 

  ; 

 ; 

  

 

 ( 6)   xyxtyxM
t




,1,,lim  

Then M is called a fuzzy metric on X. A function M(x, y, t) denote the degree of nearness between x and y with 

respect to t.   

Example: (Induced Fuzzy metric) [3] every metric space indices a fuzzy metric space.  Let (X, d) be a metric 

space  

Define a * b = ab 

                                  And  
 yxmdkt

kt
tyxM

n

n

,
,,


  

k, m, n, tR
+
.  Then (X, M, *) is a fuzzy metric space if we put k = m – n = 1. 

We get  
 yxdt

t
tyxM

,
,,


  

The fuzzy metric induced by a metric d is referred to as a standard fuzzy metric.  
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Proposition 2.4 [21] in a fuzzy metric space (X, M, *), if a * a ≥a for all  

a [0, 1].  Then a * b = min {a, b} for all a, b [0, 1].  

Definition 2.5 ([2]): Two self mappings F and S of a fuzzy metric space (X, M, *) are called compatible if 

t
lim M (FSxn, SFxn, t) = 1 when ever {  is a sequence in X such that xSxFx n

t
n

t



limlim  for some x in 

X. 

Definition 2.6 ([19]): Two self mappings A and S of a fuzzy metric space (X, M, *) are called weakly 

commuting if M (FSx, SFx, t) ≥ M (Fx, Sx, t)  x in X and t > 0.   

Definition 2.7 ([19]): Two self mappings A and S of a fuzzy metric space (X, M, *) are called point wise R-

weakly commuting if there exist R > 0 such that  

M (FSx, SFx, t) ≥ M (Fx, Sx, t/R) for all x in X and t > 0. 

Remark 1: Clearly, point R-weakly commutativity implies weak commutativity only when R ≤ 1. 

Definition 2.8 ([1]): Two self maps F and S of a fuzzy metric space (X, M, *) are called reciprocally continuous 

on X if FxFSxn
t




lim  and SxFxn
t




lim when ever {  is a sequences in X such that 

xSxFx n
t

n
t




limlim  for some x  in X. 

Lemma 2.9 ([16]): Let (X, M, *) be a fuzzy metric space. If there exists k(0, 1) such that M(x, y, kt) > M(x, y, 

t) Then x = y. 

Lemma-2.10 ([2]): Let {yn} be a sequence in a fuzzy metric space (X, M, *) with the condition (f6). If there 

exists, k  (0, 1) such that 

M (yn, yn+1, kt) ≥ M (yn-1, yn, t) 

For all t > 0 and nN, Then {yn} is a Cauchy sequence in X. 

The following theorems are basic theorems for our result 

Theorem 2.11[1]: Let (A, S) and (B, T) be point wise R-weakly commuting pairs of self mappings of complete 

fuzzy metric space (X, M, *) such that 

1.  AXTX, BXSX 

2.  M (Ax, By, ht) ≥ M(x, y, t), 0 < h < 1, x, y X and t > 0. 

Suppose that (A, S) and (B, T) is compatible pair of reciprocally continuous mappings X. Then A, B, S and T 

have a unique common fixed point. 

Theorem 2.12[14]: Let (A, S) and (B, T) be point wise R-weakly commuting pairs of self mappings of complete 

fuzzy metric space (X, M, *) such that 

1.  AXTX, BXSX 

2.  M (Ax, By, ht) ≥ M(x, y, t), 0 < h < 1, x, y, x and t > 0. 

Let (A, S) and (B, T) is compatible mappings. If any of the mappings in compatible pairs (A, S) and (B, T) is 

continuous then A, B, S and T have a unique common fixed point. 

Remark 2: In [14], Pant and Jha proved that the theorem 2.12 is an analogue of the theorem 2.11 by obtaining 

connection between continuity and reciprocal continuity in fuzzy metric space. 

Lemma 2.13 [21]: Let (X, M,*) be a complete fuzzy metric space with a*a ≥ a for all a  [0, 1] and the 

condition (f6). Let (A, S) and (B, T) be point wise R-weakly commuting pairs of self mappings of X such that 

(a)AXTX, BXSX 

There exists k   (0, 1) such M (Ax, By, kt) ≥ M (x, y, t) for all x, y   X, and t >0 

Then the continuity of one of the mappings in compatible pair (A, S) or (B, T) on (X, M,*) implies their 

reciprocal continuity. 

3 MAIN RESULTS 
Theorem 3.1: Let (X, M,*) be a complete fuzzy metric space a*a ≥ a, for all a   [0, 1]. 

Let (L, ST) and (M, AB) be point wise R-weakly commuting pairs of self mappings of X such that 

3.1(a). L(x)  ST(x), M(x)  AB(x)  

3.2(b). There exists k(0,1) such that   

 

 

 
      ktMyABxFtSTyABxqFtLxABxpF

ktMySTyFktLxABxFktMyLxF

2,,,,,,,

),,(),,,(*),,(2


 

For all x, yX and t > 0 where p, q (0, 1) such that p + q = 1. 

 Then A, B, S, T, L and M have a unique common fixed point in X.    

Proof. Suppose x0   X.    x1, x2   X such that  

Lx0 = STx1 and Mx1 = ABx2.  
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Inductively, we can construct sequences {xn} and {yn} in X such that  

y2n = Lx2n = STx2n+1 and y2n+1 = Mx2n+1 = ABx2n+2 for n = 0, 1, 2, …… 

Step 1.  Taking x = x2n and y = x2n+1, we have  

      
      ktMxABxFtSTxABxqFtLxABxpF

ktMxSTxFktMxSTxFktLxABxFktMxLxF

nnnnnn

nnnnnnnn

2,,.,,,,

,,.,,,,,*),,(

12212222

1212121222122

2






 

      
      ktyyFtyyqFtyypF

ktyyFktyyFktyyFktyyF

nnnnnn

nnnnnnnn

2,,.,,,,

,,.,,,,,*),,(

122212122

122212212122

2






 

         ktyyFtyyFqpktyyFktyyFktyyF nnnnnnnnnn 2,,.,,)(,,*,,),,( 1212122122212122    

       ktyyFtyyFktyyFktyyF nnnnnnnn 2,,.,,2,,),,( 12122121212122    

Hence, we have  

   tyyFktyyF nnnn ,,,, 212122    

Similarly, we also have  

   tyyFktyyF nnnn ,,,, 1222212    

In general, for all n even or odd, we have  

   tyyFktyyF nnnn ,,,, 11    

for all   x, y X   and t > 0.  Thus by lemma 2.11 {yn} is a Cauchy sequence in X.  Since (X, F, *) is complete, it 

converges to a point z in X.  Also its subsequences converge as follows:  

{Lx2n} → z, {ABx2n} → z, {Mx2n+1} → z and {STx2n+1} → z.  

Suppose AB is continuous, as AB is continuous and (L, AB) is semi-compatible, we get  

LABx2n+2 → Lz and LABx2n+2 → ABz. 

Since the limit in Menger space is unique, we get 

Lz = ABz.  

Step 2.  By taking x = ABx2n and y = x2n+1, we have  

    
      ktMxABABxFtSTxABABxqFtLABxABABxpF

ktMxSTxFktLABxABABxFktMxLABxF

nnnnnn

nnnnnn

2,,.,,,,

.,,.,,*),,(

12212222

121222122

2







 

Taking limit n → ∞ 

     
    ktABzzFtABzzqFp

ktABzzFtABzzqFtABzABzpFktzzFktABzABzFktABzzF

,,,,

2,,),,(),,(),,().,,(*),,(2





     ktABzzqFpktABzzqFpktABzzF ,,,,,,   

  1
1

,, 



q

p
ktABzzF  

For k(0,1) and all t > 0.  Thus we have  

z = ABz.  

Step 3.  By taking x = z and y = x2n+1, we have  

    
      ktMxABzFtSTxABzqFtLzABzpF

ktMxSTxFktLzABzFktMxLzF

nn

nnn

2,,.,,,,

,,.,,*),,(

1212

121212

2






 

Taking limit n → ∞ 

             ktzzFtzzqFtLzzpFktzzFktLzzFktLzzF 2,,.,,,,,,.,,*,,2   

       qtLzzpFktLzzFktLzzF  ,,,,*,,2
 

Noting that   1,,2 ktLzzF , we have  

    qtLzzpFktLzzF  ,,,,2
 

  qtLzzpF  ,,  

  1
1

,, 



p

q
ktLzzF  
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For k (0, 1) and all t > 0.  Thus, we have z = Lz = ABz.  

Step 4.  By taking z = Bz and y = x2n+1, we have  

    
      ktMxABBzFtSTxABBzqFtLBzABBzpF

ktMxSTxFktLBzABBzFktMxLBzF

nn

nnn

2,,.,,,,

,,.,,*),,(

1212

121212

2






 

Since AB = BA and BL = LB, we have  

L(Bz) = B(Lz) = Bz and AB(Bz) = B(ABz) = Bz.  

Taking limit n → ∞, we have  

             ktBzzFtBzzqFtBzBzpFktzzFktBzBzFktBzzF 2,,.,,,,,,.,,*,,2   

      ktBzzFtBzzqFpktBzzF 2,,,,,,2   

    ktBzzFtBzzqFp ,,,,  

   tBzzqFpktBzzF ,,,,   

 ktBzzqFp ,,  

  1
1

,, 



q

p
ktBzzF  

For k(0,1) and all t > 0. 

Thus, we have z = Bz.  

Since z = ABz, we also have  

z = Az. 

Therefore, z = Az = Bz = Lz.  

Step 5. Since L(X)  ST(X) there exists v X such that z = Lz = STv. 

By taking x = x2n and y = v, we get  

      
      ktMvABxFtSTvABxqFtLxABxpF

ktMvSTvFktLxABxFktMvLxF

nnnn

nnn

2,,.,,,,

,,.,,*,,

2222

222

2


 

Taking limit as n → ∞, we have  

             ktMvzFtzzqFtzzpFktMvzFktzzFktMvzF 2,,.,,,,,,.,,*,,2   

       ktMvzFqpktMvzFktMvzF 2,,,,*,,2   

Noting that   1,,2 ktMvzF , we have  

   
 tMvzF

ktMvzFktMvzF

,,

2,,,,




 

Thus we have 

 z = Mv and so z = Mv = STv.  

Since (M, ST) is weakly compatible, we have  

STMv = MSTv 

Thus, STz = Mz.  

Step 6.  By taking x = x2n, y = z and using step 5, we have  

      
      ktMzABxFtSTzABxqFtLxABxpF

ktMzSTzFktLxABxFktMzLxF

nnnn

nnn

2,,.,,,,

,,.,,*,,

2222

222

2


 

Which implies that, as n → ∞ 

             ktMzzFtMzzqFtzzpFktMzMzFktzzFktMzzF 2,,.,,,,,,.,,*,,2   

    )2,,(].,,[,,2 ktMzzFtMzzqFpktMzzF   

    ktMzzFtMzzqFp ,,,,  

   tMzzFqpktMzzF ,,)(,,   

 ktMzzFqp ,,)(   

  1
1

,, 



q

p
ktMzzF  

Thus, we have z = Mz and therefore z = Az = Bz = Lz = Mz = STz.  
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Step 7.  By taking x = x2n, y = Tz, we have  

      
      ktMTzABxFtSTTzABxqFtLxABxpF

ktMTzSTTzFktLxABxFktMTzLxF

nnnn

nnn

2,,.,,,,

,,.,,*,,

2222

222

2


 

Since MT = TM and ST = TS, we have 

MTz = TMz = Tz and ST(Tz) = TS(Tz) = Tz.  

Letting n → ∞, we have  

             ktTzzFtTzzqFtzzpFktTzTzFktzzFktTzzF 2,,.,,,,,,.,,*,,2   

                                              ],,[,, tTzzqFpktTzzF   

                                                              ktTzzqFp ,,  

                                             1
1

,, 



q

p
ktTzzF  

Thus, we have z = Tz.  Since Tz = STz, we also have z = Sz. 

Therefore, z = Az = Bz = Lz = Mz = Sz = Tz, that is, z is the common fixed point of the six maps.  

Step 8. By taking x = LLx2n, y = x2n+1, we have  

      
      ktMxABLxFtSTxABLxqFtLLxABLxpF

ktMxSTxFktLLxABLxFktMxLLxF

nnnnnn

nnnnnn

2,,.,,,,

,,.,,*,,

12212222

121222122

2







Letting n → ∞, we have  

             ktLzzFtLzzqFtLzLzpFktzzFktLzLzFktLzzF 2,,.,,,,,,.,,*,,2   

    )2,,(].,,[,,2 ktLzzFtLzzqFpktLzzF   

   ),,(.,, ktLzzFtLzzqFp   

                                 tLzzqFpktLzzF ,,,,   

 ktLzzqFp ,,  

                                1
1

,, 



q

p
ktLzzF  

Thus, we have z = Lz and using steps 5-7, we have  

Z = Lz = Mz = Sz = Tz.  

Step 9.  Since L is continuous, 

LLx2n  →Lz and LABx2n →Lz 

Since(L, AB) is semi-compatible, 

L(AB)x2n  → ABz. 

Since limit in Menger space is unique, so Lz = ABz and using Step 4, we also have z = Bz. 

Therefore, z = Az = Bz = Sz = Tz = Lz = Mz, that is, z is the common fixed point of the six maps in this case 

also. 

Step 10. For uniqueness, let (w ≠ z)be another common fixed point of A, B, S, T, L and M. 

Taking x = z, y = w, we have  

F
2
(Lz, Mw, kt)

*
[F(ABz, Lz, kt).F(STw, Mw, kt)]  

≥ [pF(ABz, Lz, t)+qF(ABz, STw, t)].F(ABz, Mw, 2kt) 

Which implies that  

F
2
(z, w, kt)  ≥ [p +qF(z, w, t)]F(z, w, 2kt) 

                     ≥ [p + qF(z, w, t)]F(z, w, kt), 

F(z, w, kt)  ≥  p + qF(z, w, t) 

  1
1

,, 



q

p
ktwzF  

Thus, we have z = w. 

This completes the proof of the theorem. 

If we take B = T = IX (the identity map on X) in theorem 3.1, we have the following: 
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