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ABSTRACT 

In the present paper, we shall prove a fixed point theorem by using generalized weak C- contraction of integral 

type. Our result is generalization of  very known results. 
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1    Introduction and Preliminaries 

Let (X, d) be a complete metric space and T: � → � a self-map of X. Suppose that  �� = �� ∈ �| 
��� = �� is 

the set of fixed points of f. The classical Banach’s fixed point theorem is one of the pivotal results of functional 

analysis. by using the following contractive definition: there exists k  [0, 1) such that     x, y ∈ �  , we have    

d�
�, 
�� ≤kd (x,y)  .                                               (1.1) 

 

If the  metric  space  (X,d)  is  complete  then  the  mapping  satisfying   (1.1)  has a  unique  fixed point .  

Inequality (1.1) implies continuity of T. A  natural  question is that  whether  we can find  contractive  conditions  

which  will  imply existence of  fixed point in a  complete  metric space  but  will not imply continuity . 

Kannan [10,11]  established  the  following  result  in which  the  above  question  has been answered  in the  

affirmative. 

If  T : � → �  where  (X,d)  is  complete  metric  space , satisfies  the  inequality  

d�
�, 
�� ≤k[d (x,Tx) +d(y,Ty)]                                                 (1.2) 

where 0< � < �

�
  and  x, y ∈ �, then T has a unique fixed point. 

The mapping T  need not  be  continuous .The mapping  satisfying (1.2)  are called Kannan type mappings. 

There  is a large literature  dealing  with Kannan type  mappings  and their  generalization some of  which  are  

noted in [8] ,[17] and [19]. 

A similar  contractive  condition  has been introduced by  Chatterjee [6]. We call this contraction a C- 

contraction. 

Definition1.1 C-contraction 

Let T : � → �  where  (X,d)  is  a metric space is called a C – contraction if there exists 0< � < �

�
   such that for 

all x, y ∈ �  the following  inequality holds: 

       d�
�, 
�� ≤k[d (x,Ty) +d(y,Tx)]                                                            (1.3) 

Theorem 1.1 A C- contraction defined on a complete  metric  space has a unique fixed point. 

In establishing  theorem 1.1 there is no requirement  of  continuity of the C-contraction. 

It has been established in [15] that  inequalities (1.1),(1.2) and (1.3) are independent of  one another. C- 

contraction  and  its  generalizations  have been discussed in a number of  works some of which are noted in 

[4] ,[8], [9] and [19]. 

Banach’s contraction mapping  theorem  has been  generalized in a number of recent papers. As for example, 

asymptotic  contraction  has been  introduced  by Kirk[12] and  generalized Banach contraction  conjecture  has 

been  proved in [1] and [14]. 

Particularly a weaker contraction  has been  introduced  in Hilbert spaces in[2].The following is the 

corresponding  definition in metric space. 

Definition1.2 Weakly contractive mapping 

A mapping  T : � → �  where  (X,d)  is  complete  metric  space is said to be weakly contractive if   d�
�, 
�� ≤
  d(x,y) −�����, ���,                             (1.4) 

Where x, y ∈ � , � :[0,∞� → [0,∞� is  continuous  and non-decreasing,  

 (x) = 0  if and only if  x = 0  and lim�→ ψ �x� = ∞. 
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There are a number of works in which weakly contractive  mappings have been considered. Some of these works 

are noted in [3],[7],[13], and [16]. 

In the present work in the same spirit we introduce a generalization of C- contraction. 

Definition1.3 Weak C- contraction: 

A mapping T : � → � , where  (X,d)  is  a metric space is  said to be weakly C – contractive or a  weak C- 

contraction if for  all  x, y ∈ � , 

       d�
�, 
�� ≤ 
�

�
  [d (x,Ty) +d(y,Tx)] −��d (x,Ty), d(y,Tx) )                   (1.5)  

where    : [0, ∞�� → [0, ∞�  is a  continuous  mapping such that   (x,y) = 0  if and only if  x = y= 0 . 

If we take   (x,y) = k(x+y)  where 0< � < �

�
  then (1.5) reduces to  (1.4), that is weak C – contractions are  

generalizations  of  C – contractions.   

In a recent paper of Branciari [20]  obtained a fixed point  result for a single mapping  satisfying  an  analogue of 

a Banach’s contraction principle for integral type inequality as  below: there exists  c  [0,1)  such that     x, y 

∈ �  , we have    

% &�'��' (�)�,)*�
+ ≤k% &�'��'  (��,*�

+                                                     

Where  & : ,- → ,-  is a Lebesgue – integrable  mapping which is summable, non-negative  and  such that  for  

each  . >0, % &�'��'0
+ >0 . 

Our main result is extended and modified to  the weak C – contraction mapping in  integral type . 

MAIN RESULT 

Let   T : � → �  where  (X,d)  is  complete  metric  space be a  weak C-contraction,   which is satisfying  the  

following  property: 

% &�'��' (�)�,)*�
+ ≤ 1 % &�'��' (��,)*�-2�*,)��

+   + 3 % &�'��'  456� (��,)��,2�*,)*��
+  

                           − % &�'��'7 � (�6,89�,(�9,86�,(��,)��,2�*,)*��
+                             (2.1)                                                                                                                        

Then T has a unique fixed point. 

Where  1 , 3 ∈ [0,1)  with  21 +  3 ≤1   and  & : ,- → ,-  is a Lebesgue – integrable  mapping which is 

summable,non negative  and  such that  for  each  . >0, % &�'��'0
+ >0   and   : [0, ∞�� → [0, ∞�  is a  

continuous  mapping such that   (x,y) = 0  if and only if  x = y= 0 . 

Proof   :   Let �+ ∈X and for all n≥ 1 , �=-�= T�=  . 

If   �=-�= �== T�=. Then  �=   is a   fixed point of T. 

So we assume,�=-� ≠ �=.  

Putting   x = �=?�  and   y = �= in  (2.1)  we  have  for  all  n =  0,1,2, ……. 

% &�'��' (��@ ,�@AB�
+   =  % &�'��' (�)�@CB ,)�@�

+  

                              ≤ 1 % &�'��' (��@CB,   )�@�-2��@,)�@CB�
+   

                             +   3 % &�'��'456 � (��@CB,)�@CB�,2��@,)�@��
+  

                              − % &�'��'7 � (��@CB,8�@�,(�,�@8�@CB�,(��@CB,)�@CB�,2��@,)�@��
+  

                              =   1 % &�'��' (��@CB,   �@AB�-2��@ ,�@�
+    

                             + 3 % &�'��'456 � (��@CB,�@�,2��@,�@AB��
+  

                             − % &�'��'7 � (��@CB,   �@AB�,(�,�@�@�,(��@CB,�@�,2��@,�@AB��
+  

Since T is Weakly C – contraction, this gives that 

ψ � d��=?�,   �=-��, 0, d��=?�, �=�, ���=, �=-���  = 0   and    

% &�'��' (��@ ,�@AB�
+ ≤ 1 % &�'��' (��@CB,   �@AB�

+    

                              + 3 % &�'��'456 � (��@CB,�@�,2��@,�@AB��
+                             (2.2)                        

Now here arise two cases: 

Case I: -   If we choose   

max � d��=?�, �=�, ���= , �=-�� }  =  d��=?�, �=� 

Then (2.2) can be written as   

% &�'��' (��@ ,�@AB�
+ ≤ 1 % &�'��' (��@CB,   �@�

+    +1 % &�'��' (��@,   �@AB�
+  

                                   +3 % &�'��'(��@CB,�@�
+   



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

182 

(1- 1) % &�'��' (��@ ,�@AB�
+ =  (1 + 3) % &�'��'(��@CB,�@�

+  

            % &�'��' (��@ ,�@AB�
+  =  

F-G

�?F
% &�'��'(��@CB,�@�

+  

           % &�'��' (��@,�@AB�
+ ≤K% &�'��'(��@CB,�@�

+  where k =  
F-G

�?F
≤  1  

HIJK L ∶ : -   If we choose   

max � d��=?�, �=�, ���= , �=-�� }  =  d��=, �=-�� 

Then (2.2) can be written as   

% &�'��' (��@ ,�@AB�
+ ≤ 1 % &�'��' (��@CB,   �@�

+    +1 % &�'��' (��@,   �@AB�
+  

                               +3 % &�'��'(��@,�@AB�
+  

[1 – (1 + 3)]% &�'��' (��@,�@AB�
+   =  1 % &�'��' (��@CB,   �@�

+  

% &�'��' (��@ ,�@AB�
+  =   

F

� – �F-G � 
% &�'��' (��@CB,   �@�

+  

% &�'��' (��@ ,�@AB�
+ ≤ k % &�'��'(��@CB,�@�

+    ,where  k =  
F

� – �F-G � 
≤  1        (2.3)                                    

From above both cases:  

               % &�'��' (��@,�@AB�
+ ≤ �� % &�'��'(��@CO,�@CB�

+  

                                                  ≤ �P % &�'��'(��@CQ ,�@CO�
+  

                                              - - - - - -  

                                           ≤ �= % &�'��'(��R ,�B�
+  

Taking limit as n → ∞ , we get 

limS → % &�'��' (��@,�@AB�
+  = 0 ,  as  k  [0,1)                                            (2.4)                                                                    

Now we prove that  ��=� is a Cauchysequence.  Suppose it is not.Then there exists an  T > 0 and sub sequence 

U�V�W�Xand U�=�W�Xsuch that 

M(p)  n(p)  m(p+1)  with    

���=�W�, �V�W�)≥ T, ���=�W�?�, �V�W� )< T                                                                                                (2.5) 

Now    

���V�W�?� , �=�W�?�)≤ ���V�W�?� , �V�W�)   +   ���V�W�, �=�W�?� )    

 < ���V�W�?� , �V�W�)   +  T                                                                    (2.6)                                                                                                        

From   (2.4), (2.6), we get   

 lim
Y→ 

% &�'��'2��Z�[�CB ,�@�[�CB �
+ ≤ % &�'��'\

+                                                   (2.7)                                                                                          

Using (2.3), (2.5), and (2.7)    we  get ,  

                           % &�'��'\
+ ≤ % &�'��'2��@�[�,�Z�[��

+  

                                          k% &�'��'2��@�[�CB,�Z�[�CB�
+  

                                          k% &�'��'\
+  

Which is contradiction, since k  (0, 1). therefore  ��=� is a Cauchy  sequence  Since  ( X,d) is  complete  metric 

space , therefore  have  call the  limit z . 

From (2.1), we get 

% &�'��' (�)],�@AB�
+ =  % &�'��' (�)],)�@�

+  

                             ≤ 1 % &�'��' (�],)�@�-2��@ ,)]�
+    

                            + 3 % &�'��'456 � (�],)]�,2��@,)�@��
+  

                          − % &�'��'7 � (�^,8�@�,(��@ ,8^�,(�],)]�,2��@,)�@��
+  

Taking limit as n → ∞ , we get 

% &�'��' (�)],]�
+ ≤ 1 % &�'��' (�],)]�

+  + 3 % &�'��' (�],)]�
+  

                           =    (1 + 3 ) % &�'��' (�],)]�
+  

Which is Contradiction 

        Therefore   
_ = z  

That is z is a fixed point of T in X. 
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Uniqueness  : Let w is  another  fixed point  of  T in X  such  that  z  w , then we have  

From (2.1), we get 

% &�'��' (�],`�
+   =  % &�'��' (�)],)`�

+  

                        ≤ 1 % &�'��' (�],)`�-2�`,)]�
+   + 3 % &�'��'456 � (�],)]�,2�`,)`��

+  

                       − % &�'��'7 � (�^,8`�,(�`,8^�,(�],)]�,2�`,)`��
+  

 % &�'��' (�],`�
+ ≤ 21 % &�'��' (�],`�

+  

Which is contradiction  

So  z = w  that is , z  is  unique  fixed  point  of  T  in  X . 
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