A Common Fixed Point of Integral Type Contraction in Generalized Metric Spaces

Pravin B. Prajapati, Ramakant Bhardwaj, Ankur Tiwari
S.P.B. Patel Engineering College, Linch
The Research Scholar of CMJ University, Shillong (Meghalaya)
Truba Institute of Engineering & Information Technology, Bhopal (M.P)
E-mail: pravinprajapati86@gmail.com, drrkbhardwaj100@gmail.com

Abstract
In this paper, we present a common fixed point theorem for two self-mappings satisfying a contractive condition of integral type in G-metric spaces. Our result generalizes some well-known results.

1. Introduction and Preliminaries
Mustafa and Sims [9] introduced the concept of G-metric spaces in the year 2004 as a generalization of the metric spaces. In this type of spaces a non-negative real number is assigned to every triplet of elements. In [11] Banach contraction mapping principle was established and a fixed point results have been proved. After that several fixed point results have been proved in these spaces. Some of these works may be noted in [2-4, 10-13] and [14]. Several other studies relevant to metric spaces are being extended to G-metric spaces. For instance we may note that a best approximation result in these type of spaces established by Nezhad and Mazaheri in [15] the concept of w-distance, which is relevant to minimization problem in metric spaces [8], has been extended to G-metric spaces by Saadati et al. [23]. Also one can note that the fixed point results in G-metric spaces have been applied to proving the existence of solutions for a class of integral equations [26].

Definition 1.1. G-metric Space
Let X be a nonempty set and let G : X×X×X→ R⁺ be a function satisfying the following:
1. G(x, y, z) = 0 if x = y = z.
2. G(x, x, y) > 0; for all x, y, z ∈ X, with x ≠ y.
3. G(x, y, z) ≤ G(x, x, y) + G(y, y, z); for all x, y, z ∈ X, with y ≠ z.
4. G(x, y, z) = G(x, z, y) = G(y, z, x) = - - - - - -
5. G(x, y, z) ≤ G(x, a, a) + G(a, y, z); for all x, y, z, a ∈ X

Then the function is called a generalized metric, or a G-metric on X and the pair (X, G) is a G-metric space.

Definition 1.2
Let (X, G) be a G-metric space. The following are equivalent:
1. (x) is G-convergent to x;
2. G(x, x, y) → 0 as n → ∞;
3. G(x, y, z) → 0 as n → ∞;
4. G(x, y, z) → 0 as n, m → ∞.

Definition 1.3
Let (X, G) be a G-metric space. A sequence {xₙ} is called a G-Cauchy sequence if, for any ε > 0, there exists N ∈ N such that G(xₙ, xₘ, xₙ) < ε, for all n, m ≥ N. That is G(xₙ, xₘ, xₙ) → 0 as n, m → ∞.

Definition 1.4
A G-metric space (X, G) is called G-complete if every G-Cauchy sequence is G-convergent in (X, G).

Every G-metric on X will define a metric dₓ on X by
dₓ(x, y) = G(x, y, y) + G(y, x, x), for all x, y ∈ X

Proposition 1.1
Let (X, G) be a G-metric space. The following are equivalent:
1. (xₙ) is G-convergent to x;
2. G(xₙ, xₙ, x) → 0 as n → ∞;
3. G(xₙ, x, x) → 0 as n → ∞;
4. G(xₙ, xₙ, x) → 0 as n, m → ∞.

Proposition 1.2
Let (X, G) be a G-metric space. Then, for any x, y, z, a ∈ X it follows that
1. If G(x, y, z) = 0 then x = y = z.
2. G(x, y, z) ≤ G(x, x, y) + G(x, x, z)
3. G(x, y, y) ≤ 2G(x, y, x)
4. G(x, y, z) ≤ G(x, a, z) + G(a, y, z)
There has been a considerable interest to study common fixed point for a pair of mappings satisfying some contractive conditions in metric spaces. Several interesting and elegant results were obtained in this direction by various authors. It was the turning point in the “fixed point arena” when the notion of commutativity was introduced by G. Jungck [5] to obtain common fixed point theorems. This result was further generalized and extended in various ways by many authors. In one direction Jungck [6] introduced the compatibility in 1986. It has also been noted that fixed point problems of non-compatible mappings are also important and have been considered in a number of works. A few may be noted in [7, 18]. In another direction weaker version of commutativity has been considered in a large number of works. One such concept is R-weakly commutativity. This is an extension of weakly commuting mappings [16, 24]. Some other references may be noted in [17-20] and [22].

Proposition 1.3 Let f and g be weakly compatible self-mappings on a set X. If f and g have unique point of coincidence $w = fx = gx$, then w is the unique common fixed point of f and g.

Definition 1.6 Let (X, G) be a complete G-metric space and f, g be two self-mappings on (X, G) satisfies the following contraction conditions:

\[G(fx, fy, fz) \leq \alpha G(x, y, z) \]

where $0 \leq \alpha < 1$. It is clear that every self-mapping $T: X \to X$ satisfies the following conditions:

\[\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = z \]

for some $z \in X$.

In particular, now we look in the context of common fixed point theorem in G-metric spaces. Start with the following contraction conditions:

Definition 1.7 Let f and g be two self-mappings on a metric space (X, d). The mappings f and g are said to be compatible if

\[\lim_{n \to \infty} d(fx_n, gx_n) = 0. \]

Whenever \(\{x_n\} \) is a sequence in X such that

\[\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = z \]

for some $z \in X$.

Theorem 1.1 Let (X, G) be a complete G-metric space and f, g be two self-mappings on (X, G) satisfies the following conditions:

1. $G(X) \subseteq g(X)$,
2. $G(x, y, z) \leq \alpha G(x, y, z)$ for all $x, y, z \in X$ where $0 \leq \alpha < 1$.
3. For every $x, y, z \in X$ and $\alpha, \beta, \gamma \geq 0$ with $0 \leq \alpha\beta + \beta + 3 \gamma < 1$.

 Then f and g have a unique common fixed point in X.

2. **MAIN RESULTS**

Theorem 1.1 Let (X, G) be a complete G-metric space and f, g be two self-mappings on (X, G) satisfies the following conditions:

\[G(X) \subseteq g(X), \quad G(x, y, z) \leq \alpha G(x, y, z), \]
\[f_0^{G(fx, fy, fz)} \phi(t) dt \leq \alpha f_0^{G(gx, gy, gz)} \phi(t) dt + \beta f_0^{G(gx, gy, gz)} \phi(t) dt + \gamma f_0^{G(gx, gy, gz)} \phi(t) dt + \eta \]
\[f_0^{G(gx, gy, gz)} \phi(t) dt \]

For every $x, y, z \in X$ and $\alpha, \beta, \gamma \geq 0$ with $0 \leq 3 \alpha + 3 \beta + \eta < 1$.

And $\phi: [0, +\infty) \to [0, +\infty)$ is a Lebesgue integrable mapping which is summable, non-negative and such that for each $\epsilon > 0$, $\int_0^{\infty} \phi(t) dt > 0$. Then f and g have a unique point of coincidence in X. Moreover if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. Let x_0 be arbitrary in X. Since $F(X) \subseteq g(X)$, choose $x_1 \in X$ such that $gx_1 = fx_0$.

Continuing this process, we choose x_{n+1} such that

\[x_{n+1} = g(x_n), \quad n \geq 0. \]
\(y_n = g y_{n+1} = f(x_n), \forall n \in \mathbb{N}. \)

By Inequality \((2.3)\), we have
\[
\int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt = \int_0^G (f(x_{n+1}, y_{n+1}; x_n) + f(x_{n+1}, y_{n+1}; y_n)) \varphi(t) dt \\
\leq \alpha \int_0^G f(x_{n+1}, y_{n+1}; x_n) \varphi(t) dt + \beta \int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt \\
+ \gamma \int_0^G (f(x_{n+1}, y_{n+1}; y_n - 1) + f(x_{n+1}, y_{n+1}; y_n)) \varphi(t) dt
\]
\[
= \alpha \int_0^G f(x_{n+1}, y_{n+1}; y_n - 1) \varphi(t) dt + \beta \int_0^G f(x_{n+1}, y_{n+1}; y_n - 1) \varphi(t) dt \\
+ \gamma \int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt
\]

Now, \(G (y_{n-1}, y_n, y_{n+1}) \leq G (y_{n-1}, y_n, y_{n+1}) + G (y_n, y_{n+1}) \)
\[
\leq G (y_{n-1}, y_n, y_{n+1}) + 2 G (y_n, y_{n+1}, y_{n+1})
\]
(Proposition 1.2)

Then,
\[
\int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt \\
\leq (\alpha + \beta) \int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt \\
+ \sum \int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt \\
\leq (\alpha + \beta) \int_0^G f(x_{n+1}, y_{n+1}; y_n - 1) \varphi(t) dt \\
+ (\alpha + \beta + \gamma) \int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt \\
+ (2\alpha + 2\beta) \int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt
\]
\[
= (1 - 2\alpha - 2\beta) \int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt
\]
where
\[
k = \frac{\alpha + \beta + \gamma}{1 - 2\alpha - 2\beta} \leq 1.
\]

By induction, one can find
\[
\int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt \\
\leq k^n \int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt
\]

Since \(k \in [0, 1) \), so
\[
\lim_{n \to \infty} \int_0^G f(x_{n+1}, y_{n+1}; y_n) \varphi(t) dt = 0.
\]

By a property of function \(\varphi \), we obtain
\[
G (y_{n+1}, y_{n+1}, y_n) = 0. \hspace{1cm} (2.4)
\]

Now, we shall show that \(\{y_n\} \) is a \(G \)-Cauchy sequence in \(g(X) \).

Suppose to the contrary. Then there exist \(\epsilon > 0 \) and sequences of natural numbers \((m(k)) \) and \((l(k)) \) such that for every natural number \(k \), \(m(k) > l(k) \geq k \) and
\[
G (y_{m(k)}, y_{m(k)}, y_{l(k)}) \geq \epsilon. \hspace{1cm} (2.5)
\]

Now corresponding to \(l(k) \) we choose \(m(k) \) to be the smallest for which \((2.5)\) holds. So
\[
G (y_{m(k)}, y_{m(k)}, y_{l(k)}) \leq \epsilon.
\]

Using \((2.5)\) and the rectangle inequality, we have
\[
\epsilon \leq G (y_{m(k)}, y_{m(k)}, y_{l(k)}) \\
\leq G (y_{m(k)}, y_{m(k)}, y_{m(k) - 1}) + G (y_{m(k) - 1}, y_{m(k) - 1}, y_{l(k)}) \\
\leq \epsilon + G (y_{m(k)}, y_{m(k)}, y_{m(k) - 1}).
\]

Letting \(k \to \infty \) in the above inequality and using \[(2.4)\], we get
\[
\lim_{k \to \infty} G (y_{m(k)}, y_{m(k)}, y_{l(k)}) = \epsilon. \hspace{1cm} (2.6)
\]

Again, a rectangle inequality gives us
\[
G (y_{m(k)} - 1, y_{m(k) - 1}, y_{l(k) - 1}) \leq G (y_{m(k) - 1}, y_{m(k) - 1}, y_{l(k)}) \\
+ G (y_{l(k)}, y_{l(k)}, y_{l(k) - 1}) \\
\leq \epsilon + G (y_{l(k)}, y_{l(k)}, y_{l(k) - 1})
\]

By \[(2.4)\], letting \(k \to \infty \), we obtain
\[
\lim_{k \to \infty} G (y_{m(k)}, y_{m(k) - 1}, y_{l(k) - 1}) \leq \epsilon. \hspace{1cm} (2.7)
\]

From \((2.3)\), we have
\[f_0^\int (y_m(k) y_m(k) V_m(k)) \varphi(t) dt = f_0^\int (f(x_m(k) f_x_m(k)) \varphi(t) dt + \beta f_0^\int (g(x_m(k) g_x_m(k)) \varphi(t) dt + \gamma \int (f(x_m(k) g_x_m(k))) \varphi(t) dt \]

\[= \alpha f_0^\int (y_m(k) y_m(k) V_m(k)) \varphi(t) dt + \beta f_0^\int (y_m(k) y_m(k) V_m(k)) \varphi(t) dt + \gamma f_0^\int (y_m(k) y_m(k) V_m(k)) \varphi(t) dt \]

Letting \(k \to \infty \), we find using \((2.6) \) and \((2.7) \)

\[\lim \int (g(x_n(k) g(x_n(k)))) \varphi(t) dt \leq \alpha \int (f(x_n(k) f(x_n(k)))) \varphi(t) dt + \beta \int (g(x_n(k) g(x_n(k)))) \varphi(t) dt + \gamma \int (g(x_n(k) g(x_n(k)))) \varphi(t) dt \]

Which is a contradiction, since \(\alpha + \beta + \gamma + \eta \in (0,1) \). Thus, we proved that \(\{ g x_n \} \) is a G- Cauchy sequence \(g(X) \). Since \(g(X) \) is G- complete, we obtain that \(\{ g x_n \} \) is G- convergent to some \(q \in g(X) \). So there exists \(p \in X \) such that \(\lim g x_n = q \). From Proposition 1.1, we have

\[\lim_{n \to \infty} g(x_n, g x_n, g p) = \lim_{n \to \infty} g(x_n, g p, g p) = 0. \]

(2.8)

We will show that \(g p = f p \). Suppose that \(g p \neq f p \). By \((2.3) \), we have

\[f_0^\int (g f x_n(k) f x_n(k)) \varphi(t) dt = f_0^\int (g f x_n(k) f x_n(k)) \varphi(t) dt \leq \alpha f_0^\int (f x_n(k) f x_n(k)) \varphi(t) dt + \beta f_0^\int (g x_n(k) f x_n(k)) \varphi(t) dt + \gamma f_0^\int (g x_n(k) f x_n(k)) \varphi(t) dt \]

Taking \(k \to \infty \), we obtain

\[f_0^\int (g f p, f p) \varphi(t) dt \leq 0. \]

Which implies that \(G(g f p, f p) = 0 \), so \(g p = f p \). We now show that \(f \) and \(g \) have a unique point of coincidence. Suppose that \(f = g t \) for some \(t \in X \). By applying \((2.3) \), it follows that

\[f_0^\int (g t f p, f p) \varphi(t) dt = f_0^\int (g t f p, f p) \varphi(t) dt \leq \alpha f_0^\int (f t f p, f p) \varphi(t) dt + \beta f_0^\int (g t f p, f p) \varphi(t) dt + \gamma f_0^\int (g t f p, f p) \varphi(t) dt \]

Which holds unless \(G(g t, g p, g p) = 0 \), so \(g t = g p \), that is the uniqueness of coincidence point of \(f \) and \(g \). From Proposition 1.3 , \(f \) and \(g \) have a unique common fixed point .

Acknowledgement: One of the author (Dr. R.K. B.) is thankful to MPCOST Bhopal for the project No 2556

References
This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. **Prospective authors of IISTE journals can find the submission instruction on the following page:** http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar