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Abstract  

In this paper, we present a common fixed point theorem for two self-mappings satisfying a contractive condition 

of integral type in G- metric spaces. Our result generalizes some well-known results. 

 

1. Introduction and Preliminaries 

Mustafa and Sims [9] introduced the concept of G – metric spaces in the year 2004 as a generalization of the 

metric spaces. In this type of spaces a non- negative real number is assigned to every triplet of elements. In [11] 

Banach contraction mapping principle was established and a fixed point results have been proved. After that 

several fixed point results have been proved in these spaces. Some of these works may be noted in [2-4, 10-13] 

and [14]. Several other studies relevant to metric spaces are being extended to G- metric spaces. For instances 

we may note that a best approximation result in these type of spaces established by Nezhad and  Mazaheri in 

[15] .the concept of  w- distance, which is relevant to minimization problem in metric spaces [8], has been 

extended to G-metric spaces by Saadati et al .[23]. Also one can note that the fixed point results in G- metric 

spaces have been applied to proving the existence of solutions for a class of integral equations [26]. 

Definition 1.1. G-metric Space 

Let X be a nonempty set and let G :X X  X→ �� be a function satisfying the following :  

(1) G(x, y, z) = 0 if x=y=z. 

(2) G(x, x, y) > 0 ; for  all x,y,z ∈ �, with  x≠ 	.  

(3) G(x, x, y)  G(x, y, z); for  all x, y , � ∈ �, with  z≠ 	.  

(4)  G(x, y, z)= G(x, z, y)= G(y, z, x)= - - - - --  

(5) G(x, y, z)  G(x, a, a) + G(a, y, z) ;  for all x ,y ,z, a ∈ �  

Then the function is called a generalized metric, or a G- metric on X and the pair (X, G) is a G-metric space. 

Definition 1.2 Let (X, G) be a G –metric space and {�
} be a sequence of points in X. We say that {�
}  is G-

convergent to x∈ �  if  

 lim
,�→� �(�, �
 , ��) = 0. 

That is for any  � > 0 , there exists N∈ ℕ  such that  �(�, �
 , ��) <  � , for all n,m ≥ � . We call x the limit of 

the sequence and write  �
 → � or    lim
,→� �
 = x. 

Definition 1.3    Let (X, G) be a G –metric space. A sequence {�
}  is called a G- Cauchy sequence if, for any  

� > 0 , there exists N∈ ℕ  such that  �(�
 , ��, ��) <  � , for all  

l, n,m ≥ � . That is  �(�
 , �� , ��) → 0 as n, m→ ∞.  

Definition 1.4     A G-metric space (X,G) is called  G –complete  if  every G- Cauchy sequence is  G-convergent 

in (X,G) .  

 Every G-metric on X will define a metric  �  on X by  

� (X, y) = G(x, y,y) + G(y,x,x) , for all  x,y ∈ �  

Proposition 1.1 Let (X, G) be a G –metric space. The following are equivalent: 

(1) (�
) is  G-convergent to x ; 

(2) G(�
 , �
 , �) → 0 as  n → ∞; 

(3) G(�
 , �, �)  → 0 as  n → ∞; 

(4) G (�
 , �
, �) → 0 as n, m→ ∞. 

Proposition 1.2 Let (X, G) be a G –metric space .Then, for any x, y, z, a ∈ �  it follows that  

(1) If G(x, y, z) = 0 then x = y =z. 

(2) G(x, y, z)  G(x, x, y) + G(x, x, z)  

(3) G(x, y, y)  2G(y, x, x) , 

(4) G(x, y, z)  G(x, a, z) + G(a, y, z) , 
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There has been a considerable interest to study common fixed point for a pair of mappings satisfying some 

contractive conditions in metric spaces. Several interesting and elegant results were obtained in this direction by 

various authors .It was the turning point in the “fixed point arena” when the notion of commutativity was 

introduced by G.jungck [5] to obtain common fixed point theorems. This result was further generalized and 

extended in various ways by many authors.In one direction Jungck [6] introduced the compatibility in 1986. It 

has also been noted that fixed point problems of non-compatible mappings are also important and have been 

considered in a number of works. A few may be noted in [7,18]. In another direction weaker version of 

commutativity has been considered in a large number of works. One such concept is R-weakly commutativity. 

This is an extension of weakly commuting mappings [16, 24].Some other references may be noted in [17-20] and 

[22]. 

Proposition 1.3 Let f and g be weakly compatible self-mappings on a set X.  If f and g have unique point of 

coincidence w = fx = gx, then w is the unique common fixed point of f and g. 

 Definition 1.5 Let f and g be two self-mappings on a metric space (X,d).The mappings f and g are said to be 

compatible if lim
→� �(!" �
 ,gf�
) = 0. Whenever {�
}   is a sequence in X such that  lim

→�

 f�
 =  lim

→�

 g�
 = z 

for some z ∈ �  . 

In particular, now we look in the context of common fixed point theorem in G-metric spaces. Start with the 

following contraction conditions: 

Definition 1.6 Let   (X, G) be a G-metric space and T: X → � be a self-mapping on (X, G). Now T is said to be 

a contraction if   

G(Tx,Ty,Tz)  #G(x,y,z) for all  x,y,z ∈ �  where  0 ≤ # < 1.                         (1.1)                                 

It is clear that every self-mapping T: X → �   satisfying condition (1.1) is continuous. Now we focus to 

generalize the condition (1.1)  for a  pair of  self-mappings S and T on X in the  following way :  

G(Sx,Sy,Sz)  # G(Tx,Ty,Tz)   for all  x,y,z ∈ �  where  0 ≤ # < 1.               (1.2)                           

Definition 1.7 Let f and g be two self-mappings on a G-metric space (X,G). The mappings f and g are said to be 

compatible if   lim

→�

 G (fg�
, gf�
, gf�
) = 0. Whenever {�
}   is a sequence in X such that  lim

→�

 f�
 =  lim

→�

 g�
 

= z for some z ∈ �  . 

Theorem 1.1 Let (X,G) be a complete G-metric space and f ,g be two self-mappings  on  (X,G) satisfies the 

following  conditions :  

1. F(X) g(X) , 

2. F or g is  continuous, 

3. G(fx, fy, fz )  # �(!�, gy, gz) + ' G(gx, fy, gz) +( G(gx,gy,fz) 

For every x, y,z ∈ �  and  #, ' , ( ≥ 0  with 0 ≤  #+3 ' +3 ( < 1.               
Then f and g have a unique common fixed point in X provided f and g are compatible maps. 

In 2002, Branciari [21] obtained a fixed point theorem for a single mapping satisfying an analogue of a 

Banach contraction principle for integral type inequality. After the paper of                             

     Branciari, a lot of research works have been carried out on generalizing contractive conditions of integral type 

for different contractive mapping satisfying various known properties. The aim of this paper is to extend and 

modified above theorem in integral type mapping. 

 

2. MAIN REDSULT        

Theorem 1.1 Let (X,G) be a complete G-metric space and f ,g be two self-mappings  on  (X,G) satisfies the 

following  conditions :  

(1) F(X) g(X) ,                                                                                         (2.1)                                                                               

(2)  F or g is  continuous,                                                                             (2.2)                                                                             

(3) ) *(+)�+
 (,-,,.,,/)

0
   #   ) *(+)�+

 (,-,1.,1/)

0
 + '  ) *(+)�+

 (1-,,.,1/)

0
 + (   ) *(+)�+

 (1-,1.,,/)

0
 +  

) *(+)�+
 (1-,1.,1/)

0
                                         (2.3)                                                   

   For every x, y, z ∈ �  and#, ' , ( ≥ 0  with 0 ≤  3 #+3 ' + ƞ < 1.                
   And  * : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping which is  summable, non-negative  and  such 

that for  each  � > 0 ,  ) *(+)�+
3

0
 > 0 . Then f and g have a unique point of coincidence in X. Moreover if f 

and g are weakly compatible, then f and g have a unique common fixed point. 

Proof.  Let  �0 be arbitrary in X. Since F(X) g(X), choose  �4 ∈ �  such that g�4 = f�0 . 

Continuing this process, we choose �
�4 such that  
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 = g�
�4 = f�
, ∀6 ∈ ℕ.  

7	 Inequality (2.3), we have  

 ) *(+)�+
 (.89:.89:,.8)

0
  =   ) *(+)�+

 (,-89:,;-89:,,-8)

0
    

                            #  ) *(+)�+
 (,-89:,1-89:,1-8)

0
 + ' ) *(+)�+

 (1-89:,,-89:,1-8)

0
  

                                      
+ (  ) *(+)�+

 (1-89:,1-89:,,-8)

0
 +  ) *(+)�+

 (1-89:,1-89:,1-8)

0
                                                               

                          =   #  ) *(+)�+
 (.89:,.8,.8<:)

0
 + ' ) *(+)�+

 (.8,.89:,.8<:)

0
  

                    
+ (  ) *(+)�+

 (.8,.8,.8)

0
 +  ) *(+)�+

 (.8,.8,.8<:)

0
  

Now, G (	
=4, 	
 , 	
�4)    G (	
=4, 	
 , 	
)   + G (	
 , 	
, 	
�4)   

                                              G (	
=4, 	
 , 	
)   + 2 G (	
 , 	
�4, 	
�4)   

                                (By using Proposition 1.2)  

Then,  

 ) *(+)�+
 (.89:.89:,.8)

0
    (#+ ' ) ) *(+)�+

>(.8<:,.8,.89:)

0
 

                                       +      ) *(+)�+
 (.8,.8,.8<:)

0
  

                                (#+ ' ) [  ) *(+)�+
>(.8<:,.8,.8)

0
 + ) *(+)�+

?>(.8,.89:,.89:)

0
 ]  

                                        +  ) *(+)�+
 (.8,.8,.8<:)

0
 

                                    =   (#+' + ƞ)  ) *(+)�+
 (.8,.8,.8<:)

0
  

                                     + (2#+2 ') ) *(+)�+
>(.8,.89:,.89:)

0
  

(1-2#-2 ') ) *(+)�+
 (.89:.89:,.8)

0
        (#+ ' + ƞ )  ) *(+)�+

 (.8,.8,.8<:)

0
   ) *(+)�+

 (.89:.89:,.8)

0
         k   

) *(+)�+
 (.8,.8,.8<:)

0
   where  k = 

B� C�ƞ

4=?B=? C
     1.  

By induction, one can find  

           ) *(+)�+
 (.89:.89:,.8)

0
        D
  ) *(+)�+

 (.:,.:,.E)

0
     

Since k ∈ [0,1) , so   lim

→�

  ) *(+)�+
 (.89:.89:,.8)

0
   = 0 . By a property of function   * , we obtain        lim


→�
   

�(	
�4	
�4, 	
)  = 0 .                                                                                         (2.4)                                                        

Now, we shall show that {	
}  is a  G- Cauchy sequence  in  g(X). 

 Suppose to the contrary. Then there  exist  � > 0  and  sequences of  natural numbers (m(k)) and (l(k))  such that  

for  every natural  number k, m(k) > l(k)  ≥ k  and   

        G (	�(G),  	�(G), 	�(G))  �.                                                                        (2.5)                                                                         

Now corresponding to l(k)  we  choose m(k)  to be the smallest for  which (2.5) holds. So 

                     G (	�(G)=4,  	�(G)=4, 	�(G))  �. 

Using (2.5) and the rectangle inequality, we have  

            �     G (	�(G),  	�(G) , 	�(G))  

                  G (	�(G),  	�(G) , 	�(G)=4) +   G(	�(G)=4,  	�(G)=4 , 	�(G))  

                 � + G (	�(G),  	�(G) , 	�(G)=4)   .  

Letting k → ∞ in the above inequality and using (2.4), we get  

        lim
G→�

  G (	�(G),  	�(G) , 	�(G)) =  �   .                                                           (2.6)                                                                                                                    

Again, a rectangle inequality gives us  

  G (	�(G)=4,  	�(G)=4 , 	�(G)=4)   G (	�(G)=4,  	�(G)=4 , 	�(G))  

                                                    + G (	�(G),  	�(G) , 	�(G)=4)    

                                                         � + G (	�(G),  	�(G) , 	�(G)=4)       

By (2.4), letting k → ∞ , we obtain  

       lim
G→�

  G (	�(G)=4,  	�(G)=4, 	�(G)=4)    �.                                                   (2.7)                                     

From (2.3), we have  
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      ) *(+)�+
>(.H(I),.H(I) ,.J(I)) 

0
   =    ) *(+)�+

>(K-H(I),,-H(I) ,,-J(I)) 

0
    

 #   ) *(+)�+
 (,-H(I),1-H(I),1-J(I))

0
 + ' ) *(+)�+

 (1-H(I),,-H(I),1-J(I))

0
        + (  

) *(+)�+
 (1-H(I),1-H(I),,-J(I))

0
  +  ) *(+)�+

 (1-H(I),1-H(I),1-J(I))

0
 

=   #  ) *(+)�+
 (.H(I),.H(I)<:,.J(I)<:)

0
 + ' ) *(+)�+

 (.H(I)<:,.H(I),.J(I)<:)

0
 

                     
+ (  ) *(+)�+

 (.H(I)<:,.H(I)<:,.J(I))

0
 +  ) *(+)�+

 (.H(I)<:,.H(I)<:,.J(I)<:)

0
 

Letting k → ∞  , we find using (2.6) and (2.7)  

0     ) *(+)�+
3

0
        (# + ' ) ) *(+)�+

LMN
I→O

 (.H(I),.H(I)<:,.J(I)<:)

0
  

                                  + (  ) *(+)�+
LMN

I→O
 (.H(I)<:,.H(I)<:,.J(I))

0
  

                                  +     ) *(+)�+
LMN

I→O
 (.H(I)<:,.H(I)<:,.J(I)<:)

0
  

                              (# + ' +  ( +  ƞ) ) *(+)�+
3

0
  

Which is a contradiction, since  # + ' +  ( +  ƞ    [0,1) .  Thus, we proved that { g �
 } is a G- Cauchy 

sequence g(X) . Since g(X) is G- complete, we obtain that { g �
} is  G – convergent to  some q   g(X).  So 

there exists p  X such that gp = q.  From Proposition 1.1, we have   

       lim

→�

  G(g �
, g �
 ,gp ) =   lim

→�

  G(g �
, gp ,gp ) = 0 .                                                      (2.8) 

We will show that gp = fp. Suppose that gp  fp. By (2.3), we have  

       ) *(+)�+
>(P -8 ,KQ ,KQ ) 

0
  =    ) *(+)�+

>(K -8<:,KQ ,KQ ) 

0
 

                                              #  ) *(+)�+
 (,-8<:,1R,1R)

0
 + ' ) *(+)�+

 (1-8<:,,R,1R)

0
  

                                      + (  ) *(+)�+
 (1-8<:,1R,,R)

0
 +  ) *(+)�+

 (1-8<:,1R,1R)

0
 

Taking k → ∞   , we obtain    

                                ) *(+)�+
>(P R,KQ ,KQ ) 

0
  0. 

Which implies that   G(g U, fp , fp) = 0, so gp = fp.  We now show that f and g have a unique point of coincidence. 

Suppose that ft= gt for some t  X   . By applying (2.3), it follows that  

       ) *(+)�+
>(PX,PQ ,PQ ) 

0
  =    ) *(+)�+

>(KX,KQ ,KQ ) 

0
 

                                             #  ) *(+)�+
 (,Y,1R,1R)

0
 + ' ) *(+)�+

 (1Y,,R,1R)

0
  

                                      + (  ) *(+)�+
 (1Y,1R,,R)

0
 +  ) *(+)�+

 (1Y,1R,1R)

0
  

Which  holds  unless  G(gt, gp , gp ) = 0 , so  gt = gp , that is  the  uniqueness  of  coincidence point of  f and g. 

From Proposition 1.3 , f and g have a unique  common  fixed point . 
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