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Abstract

In this paper we established a fixed point and a unique common fixed point theorems in four pair of weakly
compatible self-mappings in complete metric spaces satisfy weakly compatibility of contractive modulus.
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Introduction

The concept of the commutativity has generalised in several ways .In 1998, Jungck Rhoades [3] introduced the
notion of weakly compatible and showed that compatible maps are weakly compatible but conversely. Brian
Fisher [1] proved an important common fixed point theorem. Seesa S [9] has introduced the concept of weakly
commuting and Gerald Jungck [2] initiated the concept of compatibility. It can be easily verified that when the
two mappings are commuting then they are compatible but not conversely. Thus the study of common fixed
point of mappings satisfying contractive type condition have been a very active field of research activity during
the last three decades.

In 1922 the polished mathematician, Banach, proved a theorem ensures, under appropriate conditions, the
existence and uniqueness of a fixed point. His result is called Banach fixed point theorem or the Banach
contraction principle. This theorem provides a technique for solving a variety of a applied problems in a
mathematical science and engineering. Many authors have extended, generalized and improved Banach fixed
point theorem in a different ways. Jungck [2] introduced more generalised commuting mappings, called
compatible mappings, which are more general than commuting and weakly commuting mappings.

The main purpose of this paper is to present fixed point results for two pair of four self maps satisfying a new
contractive modulus condition by using the concept of weakly compatible maps in complete metric spaces.

Preliminaries
The definition of complete metric spaces and other results that will be needed are:
Definition 1: Let fand g two self-maps on a set X. Maps f and g are said to be commuting if
fgx = gfx for all xeX.

Definition 2: Let f and g two self-maps on a set X. If fx = gx, for some x in X then x is called coincidence
point of fand g.
Definition 3: Let f and g two self-maps defined on a set X, then f and g are said to be compatible if they
commute at coincidence points. That is, if fu = gu for some u e X ,then fgu = gfu.
Definition 4: Let f and g be two weakly compatible self-maps defined on a set X, If f and g have a unique point
of coincidence, that is, w = fx = gx ,then w is a unique common fixed point of f and g.
Definition 5: A sequence {x,,} in a metric space (X, d)is said to be convergent to a point xe X,
denoted by lim,_, x, = x,if lim,_ . d(x,, x) = 0.
Definition 6: A sequence {x,,} in a metric space (X, d) is said to be Cauchy sequence if

tlLrg d(xy, %) =0 foralln,m > t.

Definition 7: A metric space (X, d) is said to be Complete if every Cauchy sequence in X is convergent.
Definition 8: A function ¢: [0, ) — [0, ) is said to be a contractive modulus if
¢:[0,00) - [0,00) and ¢p(t) <t fort >0.
Definition 9: A real valued function ¢ defined on X < R is said to be upper semi continuous
if im sup ¢(t,) < ¢(t), for every sequence {t,} e X with t, > tasn - .
n—-oo
Hence it is clear that every continuous function is upper semi continuous but converse may not true.
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MAIN RESULT

In this section we established a common fixed point theorem for two pairs of weakly compatible mappings in
complete metric spaces using a contractive modulus.

Theorem 1: Let (X,d) be a complete metric space. Suppose that the mapping E, F, G and H are four self maps
of X satisfying the following condition:
6)] H(X) €S E(X)and G(X) € F(X)
(i) d(GwHy) < PpAx, )
Where ¢ is a upper semi continuous, contractive modulous and
1
(d(Ey, F,), d(Ey, Gy), d(Fy, Hy),5 [d(Ex, Hy) + d(F, G)] )

1 (d(Ex.Fy)+d(Ex,Gx)+d(Fy,Gy)
A(x,y) = max Z{1+d(Ex,Fy)d(Ex,c;x)d(Fy,c;x)} ’

3 (d(Fy,Hy)+d(Fy,Gx)+d(Fy,Ex) J
E{1+d(Fy'Hy)d(Fyer)d(FyrEX)}

(iii) The pair (G, E) and (H, F) are weakly compatible then E, F, G& H have a unique common fixed point.

Proof : Suppose C is an arbitrary point of X and define the sequence {y,} in X such that
Yn=Gxy = Fxpyy
Yn+1 = Hxpyqy = Expyy
By (ii) we have
d(yn: Yn+1) = d(Gxn: Hxn+1)

< (I) (}\‘ (xn s xn+1 ))
(d(Exnr Fxn+1)' d(Exn' Gxn): d(Fxn+1' Hxn+1):\
1
2 [d(Exnﬁ Hxn+1) + d(Fxn+1' Gxn)] ’
Where A(x,, X,41) = max 1 [d(Exnvan+1)+d(Exanxn)+d(Fxn+1van)
4 L 1+d(Exp,Fxn41)d(Exn,Gxp)d(Fxpe1,Gxn)l ’
3 [d(Fxn+1,Hxn+1)+cl(Fxn+1,Gxn)+d(Fxn+1,Exn)

2 L1+d(Fxn41,Hxn+1)d(FXn+1,6x0)d(FXn41,EXn)
d(Hxn—lﬁ Gxn)' d(Hxn—lt Gxn)' d(Gxn' Hxn+1)'

1

E [d(Hxn—li Hxn+1) + d(Gxn: Gxn)] ’
1[d(Hxp_1,Gxy) + d(Hxp_1,Gx,) + d(Gxy, Gxy)
4 1+d(Hxy_1,Gxp)d(Hxp 1, Gx,)d(Gxy, Gxy) |’
3 [d(Gxn, Hx,.1) +d(Gx,, Gx,) + d(Gx,, Hxn_l)]

-~

= max <

E 1+ d(Gxn: Hxn+1)d(Gxn: Gxn)d(Gxn: Hxn—l)

1 1 (d(Hxy_1,Gx,)) 3 (d(HXp_1, Hxp
Smax{d(Hxn—llGxn): (Gxn:Hxn+1):§[d(Hxn—1:Hxn+1)] { ( Tn-1 7% )}—{ ( *n1 x +1)}}

4 1 2 1

1 1 3
< max {d(Yn—l' Yn)' d()’n' yn+1)ﬁ§ [d(Yn—lﬁ yn+1)]'Z d(Yn—lt Yn)'i [d(Yn—lt Yn+1)]}

< max{d(Yn—1, Yn), dn, Yn+1)}
Since ¢ is a contractive modulus; A(x,, Xp41) = d(Vn, Vne1) is not possible, Thus

d(Yn' Yn+1) < ¢ d(:Vn—lﬁ yn) (1)
Since ¢ is an upper semi continuous contractive modulus, Equation (1) implies that the sequence {d(Vy, Vn+1)}
is monotonic decreasing and continuous.
Hence there exists a real number, say r > 0 such that lim,_., d(Vy, Y1) =T

~asn — o,Eq™(1) implies that
r<¢(r)
Which is possible only If r = 0 because ¢ is a contractive modulus, Thus
Tlll_l;{}o d(yn: Yn+1) =0

Now we show that {y,, }is a Cauchy sequence.
Let If possible we assume that {y, }is not a cauchy sequence , Then there exist an € > 0 and subsequence
{n;} and {m;} such that m; < n; < m;,, and
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d(y,.y,) =€ and d(ym,yn;l)<e

d(y,.y,) =€ and d(ym Y )<e )
So that eéd(ym,y )<d(ym Vo )+d(y Y, )<e+d(y Y, )
Therefore limd(ym,yn )=d(Gx , Hx, )S(I) 7\. ))

n—»o i i

ie. e<o(r(x,.x, )) ©

Where,

( Fx, ).d(
( Hs, ) +d(Fx,.Gr, )|
( )+d( Gx,, )+d(Fx,, me,)]

1+d(Exml_ Fxni)+d(Ex Gx, )d(Fx Gx )

Ex, Gx)( Hx)

-b|>—‘ l\)l»—‘

k(xmi . X, ) = max

3 d(Fxni,Hxni)+d(Fx Gx, ) ( )
§_1+d(Fxni,Hxn‘_)d( ) ( )
d(meH,Gx ) (Hx ) ( )
%:d(Hx +d Gx, }

— max l_d(Hx ,Gx, )+d(Hx )+ (Gx ,Gx,, )
4 1+d(meH Gr,. )d(meH Gx, )d(Gx, .Gx, )
3_d(Gan,Hxni)+d(Gan,Gx )+d(Gx ’me,»,l)
E_ 1+d (Gxn‘_il ,Hx, )d (Gan ,Gx,, )d (Gan ’me,-,l)

A3, 90, ):@ (> ¥m )4 (3, 53):

e
E_d(y’",;l’yn,v)+d(yn,,1’ym, )j|’

=max1 1 d(ym,»,l’yn,»,l)+d(ym,.,laym,.)+d(Gn,.fla)’m,.)
4 I 1+d( VsV )d ( Vo> Vm )d( Vs ymi)

3 d(2,,00,)+d (2,0, )+d (3,0, ]
20 1+d(y, 22, )d (v, 3 )d (3590

By taking limit as i — oo, we get

1 1€ +0+07 370+ 0+€
lim A(x;, xp) = max {E 'O'O'E (e +€) }
1—00

‘41 1+0 1’21 1+0
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Thus we have lim;_q A(xp, x,) =€
Therefore from (3) € < ¢(E)
This is a contraction because 0 <€ and ¢ is contractive modulus.
Thus {y,} is a cauchy sequence in X,
since X is complete ,there exist a point z in X such that lim,_,. ¥, = z.
Thus limGx,, = limFx,,; =z and limHx,,, = limEx,,, =z
n-oo n—oo n-oo

n-oo
i.elimGx, = limFx,,, = limHx,; = limEx,,, =z
n—-oo n—-oo n—-oo n—-oo
since G(X) € F(X),there exist apoint u € X such that z = Eu
Then by (ii), we have
d(Gu,z) < d(Gu,Hx,41) + d(Hxp44,2)

= ¢(A(u' xn+1)) + d(Hxn+1'Z)
(d(Eu: Fxn+1): d(Eur Gu)' d(Fxn+1: Hxn+1):\

1
> [d(Ew, Hxpy 1) + d(Fxyyq, GU,

Where, A(u, x,,+1) = max 1 [d(Eu.Fxn+1)+d(Eu.Gu)+d(FXn+1,Gu)
4 l1+d(Eu,Fxpsq) d(Eu,Gu) d(Fxpeq1,6uw)l’
3 [d(Fxn+1,HXn+1)+d(FxXn41,6W)+d(Fxp41,E0)
2 [1+d(Fxn+1,Hxn+1) d(Fxp4+1,6u) d(Fxp4+1,Eu)

d(z,Gx,),d(z,Gu),d(Gx,, Hx,41),

1

3 [d(z, Hxy 1) + d(Gx,, Gu)],

= max < l d(z,Gx,) + d(z,Gu) + d(Gx,, Gu)
4|1 +d(z Gx,) d(z, Gu) d(Gx,, Gu) |’

3[d(Gx,, Hxpyq) + d(Gxyp, Gu) + d(Gxy, 2)

21+ d(Gx,, Hxpyq1) d(Gxp, Gu) d(Gxy, z)

Taking the limit as n — oo yields

d(z,z),d(z,Gu),d(z, Z),% [d(z,z) + d(z, Gu)],

A, Xpyy) = max 4 wﬂ&@+d&ﬁw+d@ﬁw}

4|1+ d(z,z) d(z,Gu) d(z, Gu)
3[d(z,z) + d(z,Gu) + d(z,z)
5[1 +d(z,2) d(z,Gu) d(z,z)
=d(Gu,z)
Thus as n - 0,d(Gu,z) < q,’)(d(Gu, Z)) + d(z,2) = q,’)(d(Gu, Z))
If Gu # z then d(Gu,z) > 0 and hence as ¢ is contractive modulus ¢(d(Gu, z)) < d(Gu, z).
Therefore d(Gu, z) < d(Gu, z) which is a contradiction.
Thus Gu = z,so Eu = Gu = z.
So uis a coincidence point of E and G .
Since the pair of maps G and E are weakly compatible ,
GEu = EGu, ie.Gz =Ez.
Again since G(X) € F(X), there exist a point v € X such that z = Fv.
Then by (ii), we have
d(z,Hv) = d(Gv, Hv)
< ¢ (A )
(d(Eu, Fv),d(Eu, Gu),d(Fv, Hv),% [d(Eu, Hv) + d(Fv, Gu)],\

1[d(Eu, Fv) + d(Eu, Gu) + d(Fv, Gu)

where,  A(w,v) = max 1 [1 + d(Ew, Fv) d(Ew, Gu) d(Fv,Gu) |’

| 3[d(Fv,Hv) + d(Fv, Gu) + d(Fv, Eu) |
2 [1 + d(Fv,Hv) d(Fv,Gu) d(Fv, Eu)]
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(d(z,2),d(z,z),d(z, Hv),% [d(z, HV) + d(z,2)],)
l [d(z,z)+d(z,z)+d(z,z)
4 l14d(z,2) d(z,2) d(z,z)]’
3 [d(z,Hv)+d(z,z)+d(z,z)
k E [1+d(z,Hv) d(z,z) d(z,z) }
=d(z, Hv)
Thus d(z,Hv) < ¢ d(z,Hv)

If Hv # z then d(z, Hv) > 0 and hence as ¢ is contractive modulus,

¢ d(z, Hv) < d(z, Hv) ,which is a contradiction.

= max

Therefore Hv = Fv = z.
So v is a coincidence point of F and H.
Since the pair of maps F and H are weakly compatible,
FHv = HFv,i.e Fz = Hz.
Now we show that z is a fixed point of G.
Then by (ii),we have d(Gz,z) = d(Gz, Hv)

< ¢ (A(Z, v))
Where,
(d(Ez Fv), d(Ez, G2), d(Fv, Hv),% [d(Ez, Hv) + d(Fv, G2)],)
1[d(Ez, Fv) + d(Ez,Gz) + d(Fv,Gz)
Az,v) = max Z[1+d(Ez,Fv) d(Ez,Gz) d(Fv,Gz)] ’
L 3 [d(Fv, Hv) + d(Fv, Gz) + d(Fv, E2)
2 [1 + d(Fv, Hv) d(Fv, Gz) d(Fv, Ez)]

(d(Gz,z),d(Gz, Gz),d(z, Z)é [d(Gz,2) + d(z,G2)],)
{ 1 [d(Gz,z)+d(Gz,Gz)+d(z,Gz) }
= max

2 1+d(6z.2) d(G2,62) d(z62)l ’
3 [d(z,z)+d(z,Gz)+d(z,Gz) )
2 l1+d(z,2) d(z,Gz) d(z,Gz)
=d(Gz,z)
Thus d(Gz,z) < ¢ (d(Gz, Z))
If Gz # zthen d(Gz,z) > 0 and hence as ¢ is contractive modulus
¢ (d(Gz, z)) < d(Gz, z).

Therefore Gz = z
Hence Gz = Ez =2z
By (ii), we have,
d(z,Hz) = d(Ez,Hz)

<¢(n(z.2))
Where,
(d(EZ, Fz),d(Ez, Gz),d(Fz, Hz),% [d(Ez,Hz) + d(Fz, Gz)],\
1[d(Ez,Fz) + d(Ez,Gz) + d(Fz,Gz)
A(z,2) = max 4 [1 + d(Ez F2) d(Ez,Gz) d(Fz,G2) |’
| 3[d(Fz,Hz) + d(Fz,Gz) + d(Fz,Ez) |
E[l—i—d(Fz,Hz) d(Fz,Gz) d(Fz,Ez) }

d(z, Hz),d(z,2), d(Hz, Hz),5 [d(z, Hz) + d(Hz,2)],
_ 1 [d(z,Hz)+d(z,z)+d(Hz,z)
= max 4 l1+d(z,Hz) d(z,z) d(Hz,2)] ’
E [d(Hz,Hz)+d(Hz,z)+d(Hz,z) J
2 l1+d(Hz,Hz) d(Hz,z) d(Hz,z)

=d(z,Hz)
Thus d(z,Hz) < ¢ (d(z, Hz))
If z # Hz then d(z, Hz) > 0 and hence as ¢ is acontractive modulus,
¢ (d(z, Hz)) < d(z,Hz)
Therefore d(z,Hz) < d(z, Hz) ,which is a contradiction.
Hencez = Hz
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Therefore Hz = Fz = z.

Therefore Gz = Ez = Hz = Fz = z ,ie.z is a common fixed point of E,F,G and H.

Uniqueness : For uniqueness, Let we assume that z and w, (z # w) are common

By (ii), we have,

<o(1(zw))

Where,

(z,w) = max%
\

fixed point of E,F,G and H.

d(z,w) = d(Gz, Hw)

(d(Ez,Fw),d(Ez,Gz),d(Fw, HW),% [d(Ez, Hw) + d(Fw, Gz)]

Z 1+d(Ez,Fw) d(Ez,Gz) d(Fw,Gz)] ’
3 [d(FW,HW)+d(Fw,Gz)+d(Fw,Ez) )
2 Ll1+d(Fw,Hw) d(Fw,Gz) d(Fw,Ez)

)
1 [d(EZ,FW)+d(Ez,Gz)+d(Fw,Gz) }

d(z,w),d(z,2), d(w, ), [d(zw) + d(w, 2)],
= max!

l

1[d(zw)+d(z,2)+d(w,z) l
4 [1+d(z,w) d(z,z) dw,z)] ’

E dww)+d(w,z)+d(w,z) J
2 [1+d(w,w) d(w,z) d(w,z)

=d(z,w)

Thus d(z,w) < ¢ (d(z, w))
Since z # w then d(z,w) > 0 and hence as ¢ is a contractive modulus ,

Therefore z = w

¢ (d(z, W)) <d(z,w)

d(z,w) < d(z,w) which is a contradiction.

Thus z is the unique common fixed point of E, F, G & H .

Hence the theorem.

Corollary 1 : Let (X, d) be a complete metric space suppose that the mappings E,G and H are

self mapsof X,Satisfying the following conditions
(DHX)CEX)and G(X) € E(X)
(i) d(Gx, Hy) < ¢(A(x,y))

Where ¢ is an upper semi continuous , contractive modulus and

Alx,y) = max

(d(Ey Ey), d(Ey, Gy, d(Ey, Hy ), 5 [d(Ex, Hy) + d(Ey, G,)] )
1 (d(Ex.Ey)+d(Ex,Gx)+d(Ey,Gx)
Z{1+d(Ex,Ey)d(Ex,Gx)d(Ey,Gx)} ’

3 (d(Ey,Hy)+d(Ey,Gx)+d(Ey,Ex) J

2 {1+d(Ey'Hy)d(Eyer)d(Ey'EX)}

(iit) The pair (G,E) and (H, E) are weakly compatible

Then E, G and H have a unique common fixed point.
Proof : By taking E = F in main theorem we get the proof.

Corollary 2 : Let (X,d) be a complete metric space, suppose that the mappings E and G are self maps of X,
satisfying the following conditions :

HGEX) SEWX)

(i) d(Gx, Gy) < ¢p(A(x,¥))

Where ¢ is an upper semi continuous , contractive modulus and

Alx,y) = max < 4

Then E and G

1 {d(Ex, E)) + d(E,,G,) + d(E,, Gx)}
1+ d(E,,E,)d(E,,G)d(E,, G,) )’
3 {d(Ey, G,) + d(E,, Gy) + d(E,, Ex)}
2( 1+d(E,,Gy)d(E,, G, )d(E,, Ey)
(iit) The pair (G, E) are weakly compatible
have a unique common fixed point.

Proof : By taking E=F and G = H in theorem 3.1 we get the proof.
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