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Abstract 

In this paper some common fixed point theorem have been proved as  a generalization of result of Seong Hoon 

Cho [1] the conditions for continuous self mappings S,T of complete fuzzy 2-metric space (X, M,*) have been 

characterised to have a unique common fixed point in X.  
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1. Introduction  

The concept of fuzzy sets was developed extensively by many authors[2, 3, 6] and used in various fields. 

Recently sushil Sharma [9], Urmila Mishra and et. al.[8 ] proved fixed point theorems in fuzzy metric space and 

fuzzy 2-metric space. 

Bijendra Singh and M. S. Chauhan [10] introduced the concept of compatibility in fuzzy metric space and 

proved some common fixed point theorems in fuzzy metric spaces in the sence of George and Veeramani [4 ]. 

Recently Seong Hoon Cho[1]  

generalized this results and characterized the conditions for two continuous self mappings of complete fuzzy 

metric space. 

 In this paper, we have a generalization of the result obtained in [1] in fuzzy 2-metric space including a 

continuous function Φ:[0,1] →[0,1]. 

 

2. Preliminaries  

        In this section, we give some definitions and lemmas.  A binary operation *: [0, 1] × [0, 1] → [0, 1] is called 

a continuous t-norm on [0,1] if ([0, 1], *) is an abelian topological monoid with 1 such that a * b ≤ c * d, 

whenever a ≤ c,b ≤ d for all a, b, c, d  [0, 1]. Examples of t-norm are a*b = ab and a*b =min {a, b}.  

 

Definition 2.1: The 3-tuple (X, M, *) is called a fuzzy 2-metric space  if X is an  arbitrary set, * is a continuous t-

norm and M is a fuzzy set on X
3
 × (0, ∞) satisfying the following conditions:  

(1) M(x, y, z, t) > 0,  

(2) M(x, y, z, t) = 1 if and only if at least two out of three points are equal,  

(3) M(x, y z, t) = M(x, z, y, t) = M(y, z, x, t)   

(4) M(x, y, u, t1) *M(x, u, z, t2) * M(u, y, z, t3) ≤ M(x, y, z, t1+t2+t3),  

(5) M(x, y, z ·) : (0, ∞) → [0, 1] is continuous, for all x, y, z  X and t, s > 0.  

.  

A sequence {xn} in a fuzzy 2-metric space (X, M, *) is said to be convergent  

 to a point x  X, if for each  > 0 and each t>0, there exists n0 ≥N such that M(xn, x, c, t)>1− ε  for all c  X 

for all n≥n0. Equivalently,   a sequence {xn} in a fuzzy 2-metric space (X, M, *) converges to a point x  X if  

lim M(xn, x, c, t) = 1, for all c  X and t>0.  

n→∞  

A sequence {xn} in a fuzzy metric space (X, M, *) is called Cauchy sequence  if for each  > 0 and each t > 0, 

there exists n0  N such that M(xn, xm, c, t) > 1−ε for all n, m ≥n0 and for all  c  X. A fuzzy 2-metric space in 

which every Cauchy sequence is convergent is said to be complete.  

 

Self mappings A and B of a fuzzy 2-metric space (X, M, *) is said to be compatible if  

                                     limM(ABxn, BAxn, c, t) = 1 , for all c  X ,for all t > 0, 

                           n→∞  

  



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

201 

Whenever {xn} is a sequence in X such that 

limAxn = limBxn = z, for some z  X. 

n→∞        n→∞ 

Fuzzy 2-metric space version of the following results will be used to prove our main results. 

Lemma 2.1 [5]. Let (X, M, *) be a fuzzy metric space. Then for all x, y  X,   M(x, y, ·) is non-decreasing.  

 

Lemma 2.2[1]. Let (X, M, *) be a fuzzy metric space with limt→∞M(x, y, t) = 1 for all x, y  X and r * r ≥ r for 

all r  [0, 1]. If there exists 0 < q< 1 such that for all                x, y X and t > 0, M(x, y, qt) ≥ M(x, y, t), then x 

= y.  

 

Lemma 2.3 [1]. Let (X, M, *) be a fuzzy metric space with lim M(x, y ,t) = 1  

                                                        t→∞  

for all x, y  X and r * r ≥ r for all r  [0, 1] and let A and S be continuous self  mappings of X and the pair 

[A,S] be compatible. Let {xn} be a sequence in X such that Axn → z and Sxn → z. Then ASxn → Sz.  

Lemma 2.4[7]. The only t-norm * satisfying r * r ≥ r for all r  [0, 1] is the minimum t-norm, that is, a * b = min 

{a, b} for all a, b  [0, 1].  

 

From now on, let (X, M, *) be a fuzzy 2- metric space such that lim M(x, y, z,t) = 1 

     t→∞  

for all x, y  X, r * r ≥ r for all r  [0, 1] and Φ:[0,1] →[0,1]. A continuous function  

Such that Φ(t) > t, o <t<1  

 

3. Main Results:    

In this section, we prove some common fixed point theorems. To prove our main result we will use the next 

Proposition which is a generalization of the result of [1].  

Proposition 3.1: Let A, B, S and T be self maps on a complete fuzzy 2-metric space (X,M, *) where * is a 

continuous t-norm defined by a*b = min{a, b} such that the following conditions are satisfied:  

(i) AX  TX, BX  SX,  

(ii) S and T are continuous, 

(iii) the pairs [A,S] and [B, T] are compatible,  

(iv) there exists q  (0, 1) such that for every x, y  X and t > 0,  

M(Ax, By ,c,qt)≥Φ{M(Sx,Ty,c,t)*M(Ax, Sx,c,t)*M(By,Ty,c,t)*M(Ax,Ty,c,t)}.  

Then A,B, S and T have a unique common fixed point in X.  

 

Proof. Let x0  X. From (i), there exists x1  X such that Ax0 = Tx1 and for this x1  X, from (i), there exists 

x2  X such that Bx1 = Sx2. Inductively, we can find a sequence {yn} in X as follows:  

                 y2n−1 = Tx2n−1 = Ax2n−2 and  y2n = Sx2n = Bx2n−1 for n = 1, 2 · · ·.  

From (iv), we have  

M(y2n+1, y2n+2,c, qt) = M(Ax2n, Bx2n+1,c, qt)  

                            ≥ Φ {M(Sx2n,Tx2n+1,c,t) *M(Ax2n,Sx2n,c,t) *  

                                   M(Bx2n+1,Tx2n+1,c,t)  * M(Ax2n,Tx2n+1,c,t) } 

                             = Φ {M(y2n,y2n+1,c,t) * M(y2n+1,y2n,c,t) * 

                                      M(y2n+2,y2n+1,c,t) *M(y2n+1,y2n+1,c,t) } 

                             ≥ Φ {M(y2n,y2n+1,c,t) *M(y2n+1,y2n+2,c,t)}.  

From Lemma 2.1 and 2.4, we have  

                    M(y2n+1, y2n+2,c, qt) ≥ Φ {M(y2n, y2n+1,c, t)} >M(y2n, y2n+1,c, t).  

Similarly, we have also M(y2n+2, y2n+3,c, qt) > M(y2n+1, y2n+2,c, t).  

Thus we have M(yn+1, yn+2,c, qt) > M(yn, yn+1,c, t) for n = 1, 2 · ·· , and so  

            M(yn, yn+1,c, t) > M(yn, yn−1,c, t/q)  

                                     > M(yn−2, yn−1,c, t/q
2
) 

                                      >···.>M(y1,y2,c,t/q
n
)→1 ,as  n → ∞,  

and hence M(yn, yn+1,c, t) → 1 as n → ∞ for any t > 0 and c  

For each  > 0 and each t > 0, we can choose n0 N such that  

           M(yn, yn+1,c, t) > 1−ε for all n >n0.  

For m, n N, we suppose m ≥ n. Then we have that  

M(yn, ym, c, t) ≥ Φ{M(yn,yn+1,c,t/m−n) *M(yn+1,yn+2,c,t/m−n) *···  

*M(ym−1,ym,c,t/m−n) } 

                                            > (1−ε) * (1 − ε) * ·· · * (1 −ε) ≥ 1 − ε 
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And hence {yn} is a Cauchy sequence in X.  

Since (X, M, *) is complete, {yn} converges to some point z  X, and so  

{Ax2n−2}, {Sx2n}, {Bx2n−1} and {Tx2n−1} also converges to z. From Lemma 2.3 and (iii),  

                                   ASx2n → Sz (3.1) 

and  

                                  BTx2n−1 → Tz. (3.2) 

From (iv),  

 

M(ASx2n, BTx2n−1,c, qt) ≥Φ{M(SSx2n,TTx2n−1,c,t) *  

                                                   M(ASx2n,SSx2n,c,t) *  

                                                                                         M(BTx2n−1,TTx2n−1,c,t) *         

                                                    M(ASx2n,TTx2n−1,c,t)} 

 

Taking limit as n → ∞, and using (3.1) and (3.2),  

 

         M(Sz, Tz,c, qt) ≥ Φ{M(Sz,Tz,c,t)*M(Sz,Sz,c,t)* 

                                     M(Tz,Tz,c,t)*M(Sz,Tz,c,t)}  

                            ≥ Φ{M(Sz,Tz,c,t) * M(Sz,Tz,c,t) } 

                             ≥ Φ{M(Sz,Tz,c,t)}  

                             > M(Sz,Tz,c,t),  

 

and hence,  

                             Sz=Tz. (3.3) 

Now, from (iv),  

M(Az,BTx2n−1,c, qt) ≥ Φ{M(Sz,TTx2n−1,c,t) *M(Az,Sz,c,t) * 

                                      M(BTx2n−1,TTx2n−1,c,t)*M(Az,TTx2n−1,c,t)} 

 

which implies that taking limit as n → ∞, and using (3.2), (3.3),  

 

          M(Az,Tz,c, qt) ≥ Φ{M(Sz,Sz,c,t) *M(Az,Tz,c,t) * 

                                                                 M(Tz,Tz,c,t) * M(Az,Tz,c,t) } 

                               ≥ Φ{M(Az,Tz,c,t)} 

                              > M(Az,Tz,c,t), 

and hence  

                                    Az = Tz. (3.4) 

From (iv), (3.3) and (3.4),  

M(Az, Bz,c, qt) ≥ Φ{M(Sz,Tz,c,t) * M(Az,Sz,c,t) *  

                               M(Bz,Tz,c,t) * M(Az,Tz,c,t)}  

                      = Φ{M(Az,Az,c,t)*M(Az,Az,c,t) *  

                                  M(Bz,Az,c,t) * M(Az,Az,c,t)} 

                       ≥ Φ{M(Az,Bz,c,t)} 

                       > M(Az,Bz,c,t),  

and so  

                                 Az = Bz. (3.5) 

From (3.3), (3.4) and (3.5),  

                                 Az = Bz = Tz = Sz. (3.6) 

 

Now, we show that Bz = z. From (iv),  

M(Ax2n, Bz,c,qt) ≥ Φ{M(Sx2n,Tz,c,t) * M(Ax2n,Sx2n,c,t) *  

                                   M(Bz,Tz,c,t) * M(Ax2n,Tz,c,t)} 

which implies that taking limit as n → ∞ and using (3.9),  

               M(z, Bz,c,qt) ≥ Φ{M(z,Tz,c,t) * M(z,z,c,t) *  

                                             M(Bz,Tz,c,t) * M(z,Tz,c,t)}                        

                                ≥ Φ{M(z,Bz,c,t) * M(Bz,Bz,c,t) * M(z,Bz,c,t) } 

                                ≥ Φ{M(z,Bz,c,t)} 

                                 > M(z,Bz,c,t),  

 

And hence Bz = z. Thus from (3.6), z is a common fixed point of A,B, S and T.  
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For uniqueness, let w be another common fixed point of A,B, S and T. Then  

 

                 M(z, w, c, qt) = M(Az,Bw,c, qt)  

                                 ≥ Φ{M(Sz,Tw,c,t)*M(Az,Sz,c,t)* 

                                         M(Bw,Tw,c,t * M(Az,Tw,c,t)} 

                                   ≥ Φ{M(z,w,c,t)} 

                                   > M(z,w,c,t). 

From Lemma 2.2, z = w. This complete the proof of theorem.    

 

Theorem 3.1: Let (X, M, *) be a complete fuzzy 2- metric space and let A,B, S  

and T be mappings from X into itself such that the following conditions are  

satisfied:  

(i) A
a
X  T

u
X, B

b
X  S

s
X, where a, b, s, u  N,  

(ii) S and T are continuous,  

(iii) AS = SA and TB = BT,  

(iv) there exists q  (0, 1) such that for every x, y  X and t > 0,  

                       M(A
a
x, B

b
y,c, qt) ≥ Φ{M(S

s
x, T

u
y,c, t) *M(A

a
x, S

s
x,c, t) *  

                                                             M(B
b
y, T

u
y,c, t) * M(A

a
x, T

u
y,c, t)}.  

 

Then A, B, S and T have a unique common fixed point in X.  

 

Proof.  From (iii), A
a
S

s
 = S

s
A

a
  and T

u
B

b
 = B

b
T

u
.  We know that commutatively implies compatibility, and from 

Proposition 3.1, there exists a unique zX such that     

z=A
a
z=B

b
z=S

s
z=T

u
z.         (3.1.1) 

Then we have 

  Az = A(A
a
z) = A

a
(Az), Az = A(S

s
z) = S

s
(Az),   

  Bz = B(B
b
z) = B

b
(Bz)   and  Bz = B(T

u
z) = T

u
(Bz).    (3.1.2) 

 

Similarly, 

                Sz=A
a
(Sz),Tz=B

b
(Tz), 

               Sz=S
s
(Sz)   and  Tz=T

u
(Tz).         (3.1.3) 

From (iv), (3.1.1) and (3.1.2), we get 

 

      M(A
a
Az,B

b
Bz,c, qt) ≥ Φ{M(S

s
Az,T

u
Bz,c,t) * M(A

a
Az,S

s
Az,c,t) *  

                                             M(B
b
Bz,T

u
Bz,c,t) *  (A

a
Az,T

u
Bz,c,t)}, 

 

and from (3.1.2) and (3.1.3), 

 

                 M(Az,Bz, qt) ≥ Φ{M(Az,Bz,c,t) * M(Az,Az,c,t) *  

                                            M(Bz,Bz,c,t) * M(Az,Bz,c,t)} 

                                       ≥ Φ{(Az,Bz,c, t)} 

                                       >  (Az,Bz,c, t), 

 

and hence 

                                       Az = Bz.                                                 (3.1.4) 

Similarly, 

                     Sz=Tz   and  Az=Tz.                        (3.1.5) 

 

From (3.1.4) and (3.1.5), we have 

                              Az = Bz = Sz = Tz                                                   (3.1.6)                  

From (iv), (3.1.1) and (3.1.2), we have  

 

                      M(z, Bz, c, qt) = M(A
a
z, B

b
Bz,c, t)  

                                        ≥ Φ{M(S
s
z,T

u
Bz,c,t) * M(A

a
z,S

s
z,c,t) *  

                                                                         M(B
b
Bz,T

u
Bz,c,t) * M(A

a
z,T

u
Bz,c,t)}  

                                       = Φ{M(z,Bz,c,t)*M(z,z,c,t)* 

                                                 M(Bz,Bz,c,t)*M(Bz,Bz,c,t) } 

                                        ≥ Φ{M(z,Bz,c ,t)} 
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                                        > M(z,Bz,c,t),  

and hence  

z = Bz.                                                                                                                                                    (3.1.7) 

             

From (3.1.6) and (3.1.7)       

                                  Z = Az = Bz = Sz = Tz.               (3.1.8) 

Corollary 3.1 [11]:  Let (X, M, *) be a complete fuzzy metric space and let  

A, B, S and T be mappings from X into itself satisfying (i) − (iii) of Theorem  

3.1 and there exists q  (0, 1) such that for every x, y  X ,  t > 0 and c X  

M(A
a
x, B

b
y, c, qt) ≥Φ{M(S

s
x, T

u
y, c, t) * M(A

a
x, S

s
x ,c, t) *  M(B

b
y, T

u
y, c, t)  

 * M(B
b
y, S

s
x, c, 2t) *  M(A

a
x, T

u
y, c, t)}.  

Then A, B, S and T have a unique fixed point in X.  

Proof. We have  

M(A
a
x, B

b
y, qt) ≥ Φ{M(S

s
x, T

u
y, t) * M(A

a
x, S

s
x, t) * M(B

b
y, T

u
y, t)  

 * M(B
b
y,S

s
x,2t) * M(A

a
x,T

u
y,t) } 

 

≥Φ{M(S
s
x,T

u
y,t) * M(A

a
x,S

s
x,t) * M(B

b
y,T

u
y,t)  

* M(S
s
x,T

u
y,t) * M(T

u
y,B

b
y,t) * M(A

a
x,T

u
y,t) } 

 

≥Φ{M(S
s
x,T

u
y,t) * M(A

a
x,S

s
x,t)  

* M(B
b
y,T

u
y,t) * M(A

a
x,T

u
y,t) } 

 

and hence, from Theorem 3.1, A,B, S and T have a unique fixed point in X.    

 

Corollary  3.2 . Let (X, M, *) be a complete fuzzy metric space and let A,B, S and T be mappings from X into 

itself satisfying (i) − (iii) of Theorem 3.1 and there exists q  (0, 1) such that for every x, y  X and t > 0, 

M(A
a
x, B

b
y,c, qt) ≥ Φ{M(S

s
x, T

u
y,c, t)}. Then A, B, S and T have a unique common fixed point in X.  

 

Proof. Choose q  (0, 1) such that for every x, y  X and t > 0,  

                   M(A
a
x, B

b
y, c, qt)  ≥ M(S

s
x, T

u
y, t).  

Then we have  

               M(A
a
x, B

b
y,c, qt)  ≥ Φ{M(S

s
x, T

u
y,c, t)}  

                        =  Φ{M(S
s
x, T

u
y,c, t) * 1} 

                                   ≥ Φ{M(S
s
x,T

u
y,c,t) * M(A

a
x,S

s
x,c,t) *  

                                                                         M(S
s
x,B

b
y,c,2t) * M(B

b
y,T

u
y,c,t)* (T

u
y,A

a
x,c,t)} 

and hence, from Corollary 3.1, A,B, S and T have a unique fixed point in X.  □  

 

Corollary 3.3. Let (X, M, *) be a complete fuzzy metric space and let A,B, S and T be mappings from X into 

itself satisfying (i) − (iii) of Theorem 3.1 and there exists q  (0, 1) such that for every x, y  X and t > 0, 

M(A
a
x, B

b
y,c, qt) ≥Φ{M(S

s
x, T

u
y,c, t) * M(S

s
x, A

a
x,c, t) * M(A

a
x, T

u
y,c, t)}. Then A, B, S and T have a unique 

common fixed point in X.  

 

Proof. Choose q  (0, 1) such that for every x, y, c   X and t > 0,  M(A
a
x, B

b
y,c, qt) ≥ Φ{M(S

s
x, T

u
y,c, t) * 

M(S
s
x, A

a
x,c, t) * M(A

a
x, T

u
y,c, t)}.  

Then we have  

Φ{M(S
s
x, T

u
y,c, t) * M(S

s
x, A

a
x,c, t) * M(A

a
x, T

u
y,c, t)  

                  = Φ{M(S
s
x,T

u
y,c,t) * M(S

s
x,A

a
x,c,t) * M(A

a
x,T

u
y,c,t) * 1}  

                   ≥ Φ{M(S
s
x,T

u
y,c,t) * M(S

s
x,A

a
x,c,t) * M(A

a
x,T

u
y,c,t)  

                            * M(S
s
x,B

b
y,c,2t) * M(B

b
y,T

u
y,c,t) * M(T

u
y,S

s
x,c,t) } 

                    ≥ Φ{M(S
s
x,T

u
y,c,t) * M(S

s
x,A

a
x,c,t) * M(A

a
x,T

u
y,c,t)  

 * M(S
s
x,B

b
y,c,2t) * M(B

b
y,T

u
y,c,t)}  

and hence, from Corollary 3.1, A,B, S and T have a unique fixed point in X.  □  

 

Theorem 3.2. Let (X, M, *) be a complete fuzzy metric space. Then continuous mappings S, T : X → X have a 

common fixed point in X if and only if there exists a mapping A : X → X such that the following conditions are 

satisfied:  

(i) A
a
X  T

u
X ∩ S

s
X, where a, s,u  N,  

(ii) AS = SA and TA = AT,  
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(iii) there exists q  (0, 1) such that for every x, y, c  X, t > 0  

                 M(A
a
x, A

a
y,c, qt) ≥ Φ{M(S

s
x, T

u
y,c, t) *  M(A

a
x, S

s
x,c, t)  

                                                                                         * M(A
a
y,T

u
y,c,t) * M(A

a
x,T

u
y,c,t)}.  

In fact A, S and T have a unique common fixed point in X.  

Proof. First, we show that the necessity of the conditions (i)-(iii). Suppose that            Sz =z =Tz for some z X.  

Let Ax = z for all x  X. Then we have A
a
X  T

u
X ∩ S

s
X for a, s,u  N  

and the condition (i) is satisfied. For any x  X, ASx = z = Sz = SAx and  

ATx = z = Tz = TAx and so AS = SA, AT = TA and hence the condition (ii) is satisfied.  

For some q  (0, 1), we have   

       M(A
a
x, A

a
y,c, qt) = 1 ≥ Φ{M(S

s
x, T

u
y,c, t) * M(A

a
x, S

s
x,c, t)  

                                                                         * M(A
a
y,T

u
y,c,t) * M(A

a
x,T

u
y,c,t) }  

for every x, y  X and t > 0. Thus the condition (iii) is satisfied.  

Now, for the sufficiency of the conditions, let A
a
 = B

b
 in Theorem 3.1. Then A, S and T have a unique 

common fixed point in X.  

 

Corollary 3.4. Let (X, M, *) be a complete fuzzy metric space. Then continuous mappings S, T : X → X have a 

common fixed point in X if and only if there exists a mapping A : X → X satisfying (i)−(ii) of Theorem 3.2 and 

there exists q (0,1) such that for every x,yX and t>0,  

                             M (A
a
x, A

a
y,c, qt) ≥Φ{M(S

s
x, T

u
y,c, t)}.  

In fact A,S and T have a unique common fixed point in X.  

Corollary 3.5. Let (X, M, *) be a complete fuzzy metric space. Then continuous mappings S, T : X → X have a 

common fixed point in X if and only if there exists a mapping A : X → X satisfying (i)−(ii) of Theorem 3.2 and 

there exists q  (0, 1) such that for every x, y  X and t > 0,  

                            M(A
a
x, A

a
y,c, qt) ≥ Φ{M(S

s
x, T

u
y,c, t) * M(S

s
x, A

a
x,c, t)  

                                                                    * M(A
a
x, T

u
y,c, t)}. 

 

 In fact A, S and T have a unique common fixed point in X.  
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