Common Fixed Point Theorems for Four Mappings in Fuzzy 2-Metric Spaces

Rajesh Tokse, Sanjay Choudhari and Kamal Wadhwa

Rajesh Tokse is with the Department of Mathematics, Corporate Institute of Research & Technology, Bhopal, 462021(M.P), India e-mail: tokse.rajesh94@gmail.com
Sanjay Choudhari, Head, Department of Mathematics, Govt. Narmada P.G.College, Hoshangabad (MP), India.
Kamal Wadhwa Department of Mathematics, Govt. Narmada P.G.College, Hoshangabad (MP), India.

Abstract
In this paper some common fixed point theorem have been proved as a generalization of result of Seong Hoon Cho [1] the conditions for continuous self mappings S, T of complete fuzzy 2-metric space (X, M, •) have been characterised to have a unique common fixed point in X.

AMS Mathematics Subject Classification: 47H10, 54H25

Key words and phrases: Compatible mapping, common fixed point

1. Introduction
The concept of fuzzy sets was developed extensively by many authors[2, 3, 6] and used in various fields. Recently sushil Sharma [9], Urmila Mishra and et. al.[8] proved fixed point theorems in fuzzy metric space and fuzzy 2-metric space.
Bijendra Singh and M. S. Chauhan [10] introduced the concept of compatibility in fuzzy metric space and proved some common fixed point theorems in fuzzy metric spaces in the sense of George and Veeramani [4]. Recently Seong Hoon Cho[1]
generalized this results and characterized the conditions for two continuous self mappings of complete fuzzy metric space.

In this paper, we have a generalization of the result obtained in [1] in fuzzy 2-metric space including a continuous function Φ:0, 1 → [0, 1].

2. Preliminaries
In this section, we give some definitions and lemmas. A binary operation •: [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm on [0, 1] if ([0, 1], •) is an abelian topological monoid with 1 such that a • b ≤ c • d, whenever a ≤ c, b ≤ d for all a, b, c, d ∈ [0, 1]. Examples of t-norm are a • b = ab and a • b = min {a, b}.

Definition 2.1: The 3-tuple (X, M, •) is called a fuzzy 2-metric space if X is an arbitrary set, • is a continuous t-norm and M is a fuzzy set on X 3 × (0, ∞) satisfying the following conditions:
(1) M(x, y, z, t) > 0,
(2) M(x, y, z, t) = 1 if and only if at least two out of three points are equal,
(3) M(x, y, z, t) = M(y, z, x, t)
(4) M(x, y, u, t1) • M(x, u, z, t2) • M(u, y, z, t3) ≤ M(x, y, z, t1 + t2 + t3),
(5) M(x, y, z) : (0, ∞) → [0, 1] is continuous, for all x, y, z X and t, s > 0.

A sequence {x_n} in a fuzzy 2-metric space (X, M, •) is said to be convergent to a point x X if for each > 0 and each t>0, there exists n_0 ≥N such that M(x_n, x, c, t)>1− ε for all c X for all n≥n_0. Equivalently, a sequence {x_n} in a fuzzy 2-metric space (X, M, •) converges to a point x X if
lim M(x_n, x, c, t) = 1, for all c X and t>0. n→∞

A sequence {x_n} in a fuzzy metric space (X, M, •) is called Cauchy sequence if for each > 0 and each t>0, there exists n_0 ≥N such that M(x_n, x_n, c, t) >1− ε for all n, m≥n_0 and for all c X. A fuzzy 2-metric space in which every Cauchy sequence is convergent is said to be complete.

Self mappings A and B of a fuzzy 2-metric space (X, M, •) is said to be compatible if
limM(ABx_n, BAx_n, c, t) = 1, for all c X ,for all t>0, n→∞
Whenever \(\{x_n\} \) is a sequence in \(X \) such that
\[
\lim_{n \to \infty} A_{x_n} = \lim_{n \to \infty} B_{x_n} = z, \text{ for some } z \in X.
\]
Fuzzy 2-metric space version of the following results will be used to prove our main results.

Lemma 2.1 [5]. Let \((X, M, \cdot)\) be a fuzzy metric space. Then for all \(x, y \in X \), \(M(x, y, \cdot) \) is non-decreasing.

Lemma 2.2[1]. Let \((X, M, \cdot)\) be a fuzzy metric space with \(\lim_{r \to \infty} M(x, y, t) = 1 \) for all \(x, y \in X \) and \(r \cdot t \geq r \) for all \(r \in [0, 1] \). If there exists \(0 < q < 1 \) such that for all \(x, y \in X \) and \(t > 0 \), \(M(x, y, q t) \geq M(x, y, t) \), then \(x = y \).

Lemma 2.3 [1]. Let \((X, M, \cdot)\) be a fuzzy metric space with \(\lim_{t \to \infty} M(x, y, t) = 1 \)
for all \(x, y \in X \) and \(r \cdot t \geq r \) for all \(r \in [0, 1] \) and let \(A \) and \(B \) be continuous self mappings of \(X \) and the pair \([A, S]\) be compatible. Let \(\{x_n\} \) be a sequence in \(X \) such that \(A_{x_n} \to z \) and \(S_{x_n} \to z \). Then \(A_{S_{x_n}} \to S_z \).

Lemma 2.4[7]. The only t-norm \(* \) satisfying \(r \cdot t \geq r \) for all \(r \in [0, 1] \) is the minimum t-norm, that is, \(a \ast b = \min \{a, b\} \) for all \(a, b \in [0, 1] \).

From now on, let \((X, M, \cdot)\) be a fuzzy 2-metric space such that \(\lim_{t \to \infty} M(x, y, z, t) = 1 \)
for all \(x, y \in X \), \(r \cdot t \geq r \) for all \(r \in [0, 1] \) and \(\Phi:[0,1] \to [0,1] \). A continuous function
Such that \(\Phi(t) > t \), \(0 < t < 1 \)

3. Main Results:

In this section, we prove some common fixed point theorems. To prove our next result we will use the next Proposition which is a generalization of the result of [1].

Proposition 3.1: Let \(A, B, S \) and \(T \) be self maps on a complete fuzzy 2-metric space \((X, M, \cdot)\) where \(* \) is a continuous t-norm defined by \(a \ast b = \min \{a, b\} \) such that the following conditions are satisfied:

(i) \(A X \), \(TX, SX \), \(SX \),
(ii) \(S \) and \(T \) are continuous,
(iii) the pairs \([A, S]\) and \([B, T]\) are compatible,
(iv) there exists q \(\in (0,1)\) such that for every \(x, y \in X \) and \(t > 0 \),
\[
M(Ax, By, c, qt) \geq M\{M(Sx, Ty, c, t) - M(Ax, Sx, c, t) - M(By, Ty, c, t) - M(Ax, Ty, c, t)\}. \]

Then \(A, B, S \) and \(T \) have a unique common fixed point in \(X \).

Proof. Let \(x_0 \in X \). From (i), there exists \(x_1 \) such that \(A_{x_0} = Tx_1 \) and for this \(x_1 \), \(x \in X \) from (i), there exists \(x_2 \) such that \(Bx_1 = Sx_2 \). Inductively, we can find a sequence \(\{y_n\} \) in \(X \) as follows:
\[
y_{2n-1} = Tx_{2n-1} = Ax_{2n-2} \text{ and } y_{2n} = Sx_{2n} = Bx_{2n-1} \text{ for } n = 1, 2, \ldots.
\]

From (iv), we have
\[
M(y_{2n+1}, y_{2n+2}, c, q t) = M(Ax_{2n+1}, Bx_{2n+1}, c, qt) \\
\geq \Phi\{M(Sx_{2n+1}, Tx_{2n+1}, c, t) - M(Ax_{2n}, Sx_{2n}, c, t)\} \\
= \Phi\{M(y_{2n+2}, y_{2n+2}, c, t) - M(y_{2n+1}, y_{2n+1}, c, t)\} \\
\geq \Phi\{M(y_{2n+2}, y_{2n+2}, c, t) - M(y_{2n+1}, y_{2n+1}, c, t)\}.
\]

From Lemma 2.1 and 2.4, we have
\[
M(y_{2n+1}, y_{2n+2}, c, q t) \geq \Phi\{M(y_{2n+1}, y_{2n+1}, c, t)\} > M(y_{2n+1}, y_{2n+1}, c, t).
\]

Similarly, we have also \(M(y_{2n+2}, y_{2n+2}, c, q t) > M(y_{2n+1}, y_{2n+1}, c, t) \).

Thus we have \(M(y_{2n+1}, y_{2n+1}, c, q t) > M(y_{2n+1}, y_{2n+1}, c, t) \) for \(n = 1, 2, \ldots \), and so
\[
M(y_{2n+1}, y_{2n+1}, c, t) > M(y_{2n+1}, y_{2n+1}, c, t/q^k) \\
> M(y_{2n}, y_{2n}, c, t/q^{k^2}) \\
> \cdots > M(y_{2}, y_{2}, c, t/q^{n}) \to 1, \text{ as } n \to \infty,
\]

and hence \(M(y_{2n+1}, y_{2n+1}, c, t) \to 1 \) as \(n \to \infty \) for any \(t > 0 \) and \(c \).

For each \(n \), \(0 \leq t \leq 0 \), we can choose \(n_0 \) \(N \) such that
\[
M(y_{2n+1}, y_{2n+1}, c, t) \geq 1 - \epsilon \text{ for all } n > n_0.
\]

For \(m, n \), \(N \), we suppose \(m \geq n \). Then we have that
\[
M(y_{2m+1}, y_{2m+1}, c, t/m-n) \geq \Phi\{M(y_{2m+1}, y_{2m+1}, c, t/m-n) - M(y_{2m+1}, y_{2m+1}, c, t/m-n) \}
\geq (1-\epsilon) \ast (1-\epsilon) \ast \cdots \ast (1-\epsilon) \geq 1 - \epsilon.
\]
And hence \(\{y_n\} \) is a Cauchy sequence in \(X \).

Since \((X, M, *, t)\) is complete, \(\{y_n\} \) converges to some point \(z \in X \), and so \(\{Ax_{2n-2}\}, \{Sx_{2n}\}, \{Bx_{2n-1}\} \) and \(\{Tx_{2n-1}\} \) also converges to \(z \). From Lemma 2.3 and (iii),

\[
\text{ASx}_{2n} \rightarrow Sz \quad \text{(3.1)}
\]

and

\[
\text{BTx}_{2n-1} \rightarrow Tz. \quad \text{(3.2)}
\]

From (iv),

\[
M(\text{ASx}_{2n}, \text{BTx}_{2n-1}, c, qt) \geq \Phi \left\{ M(\text{SSx}_{2n}, \text{TTx}_{2n-1}, c, t) \cdot M(\text{ASx}_{2n}, \text{SSx}_{2n}, c, t) \cdot M(\text{BTx}_{2n-1}, \text{TTx}_{2n-1}, c, t) \cdot M(\text{ASx}_{2n}, \text{TTx}_{2n-1}, c, t) \right\}
\]

Taking limit as \(n \rightarrow \infty \), and using (3.1) and (3.2),

\[
M(Sz, Tz, c, qt) \geq \Phi \left\{ M(Sz, Sz, c, t) \cdot M(Sz, Tz, c, t) \cdot M(Tz, Tz, c, t) \cdot M(Sz, Tz, c, t) \right\}
\]

and hence,

\[
Sz = Tz. \quad \text{(3.3)}
\]

Now, from (iv),

\[
M(Az, \text{BTx}_{2n-1}, c, qt) \geq \Phi \left\{ M(\text{Sz}, \text{TTx}_{2n-1}, c, t) \cdot M(Az, Sz, c, t) \cdot M(BTx_{2n-1}, \text{TTx}_{2n-1}, c, t) \cdot M(Az, \text{TTx}_{2n-1}, c, t) \right\}
\]

which implies that taking limit as \(n \rightarrow \infty \), and using (3.3), (3.2),

\[
M(Az, Tz, c, qt) \geq \Phi \left\{ M(Sz, Sz, c, t) \cdot M(Az, Sz, c, t) \cdot M(Bz, Tz, c, t) \cdot M(Az, Tz, c, t) \right\}
\]

and hence

\[
Az = Tz. \quad \text{(3.4)}
\]

From (iv), (3.3) and (3.4),

\[
M(Az, Bz, c, qt) \geq \Phi \left\{ M(Sz, Tz, c, t) \cdot M(Az, Sz, c, t) \cdot M(Bz, Tz, c, t) \cdot M(Az, Tz, c, t) \right\}
\]

and so

\[
Az = Bz. \quad \text{(3.5)}
\]

From (3.3), (3.4) and (3.5),

\[
Az = Bz = Tz = Sz. \quad \text{(3.6)}
\]

Now, we show that \(Bz = z \). From (iv),

\[
M(Ax_{2n}, Bz, c, qt) \geq \Phi \left\{ M(Sx_{2n}, Tz, c, t) \cdot M(Ax_{2n}, Sx_{2n}, c, t) \cdot M(Bz, Tz, c, t) \cdot M(Ax_{2n}, Tz, c, t) \right\}
\]

which implies that taking limit as \(n \rightarrow \infty \) and using (3.9),

\[
M(z, Bz, c, qt) \geq \Phi \left\{ M(z, Tz, c, t) \cdot M(z, z, c, t) \cdot M(Bz, Tz, c, t) \cdot M(z, Tz, c, t) \right\}
\]

and hence \(Bz = z \). Thus from (3.6), \(z \) is a common fixed point of \(A, B, S \) and \(T \).
For uniqueness, let \(w \) be another common fixed point of \(A, B, S \) and \(T \). Then

\[
M(z, w, c, qt) = M(Az, Bw, c, qt) \\
\geq \Phi\{M(Sz, Tw, c, t) \cdot M(Az, Sz, c, t) \cdot M(Bw, Tw, c, t) \cdot M(Az, Tw, c, t)\} \\
\geq \Phi\{M(z, w, c, t)\} \\
> M(z, w, c, t).
\]

From Lemma 2.2, \(z = w \). This completes the proof of theorem.

Theorem 3.1: Let \((X, M, \ast)\) be a complete fuzzy 2- metric space and let \(A, B, S \) and \(T \) be mappings from \(X \) into itself such that the following conditions are satisfied:

(i) \(A^aX = T^uX \), \(B^bX = S^sX \), where \(a, b, s, u \in \mathbb{N} \),

(ii) \(S \) and \(T \) are continuous,

(iii) \(AS = SA \) and \(TB = BT \),

(iv) there exists \(q \in (0, 1) \) such that for every \(x, y \in X \) and \(t > 0 \),

\[
M(A^ax, B^by, c, qt) \geq \Phi\{M(S^sx, T^uy, c, t) \cdot M(A^ax, S^sx, c, t) \cdot M(B^by, T^uy, c, t) \cdot M(A^ax, T^uy, c, t)\}.
\]

Then \(A, B, S \) and \(T \) have a unique common fixed point in \(X \).

Proof. From (iii), \(A^aS^s = S^sA^a \) and \(T^uB^b = B^bT^u \). We know that commutativity implies compatibility, and from Proposition 3.1, there exists a unique \(z \in X \) such that

\[
z=A^az=B^bz=S^sz=T^uz. \tag{3.1.1}
\]

Then we have

\[
Az = A(A^az) = A^a(Az), \quad Az = A(S^sz) = S^s(Az), \\
Bz = B(B^bz) = B^b(Bz), \quad Bz = B(T^uz) = T^u(Bz). \tag{3.1.2}
\]

Similarly,

\[
Sz = A^a(Sz), Tz = B^b(Tz), \\
Sz = S^s(Sz) \quad \text{and} \quad Tz = T^u(Tz). \tag{3.1.3}
\]

From (iv), (3.1.1) and (3.1.2), we get

\[
M(A^az, B^bz, c, qt) \geq \Phi\{M(S^sz, T^uz, c, t) \cdot M(A^az, S^sz, c, t) \cdot M(B^bz, T^uz, c, t) \cdot M(A^az, T^uz, c, t)\},
\]

and from (3.1.2) and (3.1.3),

\[
M(Az, Bz, qt) \geq \Phi\{M(Az, Bz, c, t) \cdot M(Az, Az, c, t) \cdot M(Bz, Bz, c, t) \cdot M(Az, Bz, c, t)\} \\
\geq \Phi\{(Az, Bz, c, t)\} \\
> (Az, Bz, c, t),
\]

and hence

\[
Az = Bz. \tag{3.1.4}
\]

Similarly,

\[
Sz = Tz \quad \text{and} \quad Az = Tz. \tag{3.1.5}
\]

From (3.1.4) and (3.1.5), we have

\[
Az = Bz = Sz = Tz. \tag{3.1.6}
\]

From (iv), (3.1.1) and (3.1.2), we have

\[
M(z, Bz, c, qt) = M(A^az, B^bz, c, t) \\
\geq \Phi\{M(S^sz, T^uz, c, t) \cdot M(A^az, S^sz, c, t) \cdot M(B^bz, T^uz, c, t) \cdot M(A^az, T^uz, c, t)\} \\
= \Phi\{M(z, Bz, c, t) \cdot M(z, z, c, t) \cdot M(Bz, Bz, c, t) \cdot M(Bz, Bz, c, t)\} \\
> M(z, Bz, c, t).
\]

203
From (3.1.6) and (3.1.7)
\[Z = Az = Bz = Sz = Tz. \]
(3.1.8)

Corollary 3.1 [11]: Let \((X, M, *)\) be a complete fuzzy metric space and let \(A, B, S\) and \(T\) be mappings from \(X\) into itself satisfying (i) – (iii) of Theorem 3.1 and there exists \(q \in (0, 1)\) such that for every \(x, y \in X\), \(t > 0\) and \(c \in X\),
\[M(A^x, B^y, c, qt) \geq \Phi \{ M(S^x, T^y, c, t) \} \cdot M(A^x, S^x, c, t) \cdot M(B^y, T^y, c, t) \cdot M(B^y, S^x, c, 2t) \cdot M(A^x, T^y, c, t) \}. \]

Then \(A, B, S\) and \(T\) have a unique fixed point in \(X\).

Proof. Choose \(q \in (0, 1)\) such that for every \(x, y \in X\) and \(t > 0\),
\[M(A^x, B^y, c, qt) \geq \Phi \{ M(S^x, T^y, c, t) \} \cdot M(A^x, S^x, c, t) \cdot M(B^y, T^y, c, t) \cdot M(B^y, S^x, c, 2t) \cdot M(A^x, T^y, c, t) \}. \]

and hence, from Theorem 3.1, \(A, B, S\) and \(T\) have a unique fixed point in \(X\).

Corollary 3.2. Let \((X, M, *)\) be a complete fuzzy metric space and let \(A, B, S\) and \(T\) be mappings from \(X\) into itself satisfying (i) – (iii) of Theorem 3.1 and \(q \in (0, 1)\) such that for every \(x, y \in X\) and \(t > 0\),
\[M(A^x, B^y, c, qt) \geq \Phi \{ M(S^x, T^y, c, t) \} \cdot M(A^x, S^x, c, t) \cdot M(B^y, T^y, c, t) \cdot M(B^y, S^x, c, 2t) \cdot M(A^x, T^y, c, t) \}. \]

Then \(A, B, S\) and \(T\) have a unique fixed point in \(X\).

Proof. Choose \(q \in (0, 1)\) such that for every \(x, y \in X\) and \(t > 0\),
\[M(A^x, B^y, c, qt) \geq \Phi \{ M(S^x, T^y, c, t) \} \cdot M(A^x, S^x, c, t) \cdot M(B^y, T^y, c, t) \cdot M(B^y, S^x, c, 2t) \cdot M(A^x, T^y, c, t) \}. \]

and hence, from Corollary 3.1, \(A, B, S\) and \(T\) have a unique fixed point in \(X\).

Corollary 3.3. Let \((X, M, *)\) be a complete fuzzy metric space and let \(A, B, S\) and \(T\) be mappings from \(X\) into itself satisfying (i) – (iii) of Theorem 3.1 and \(q \in (0, 1)\) such that for every \(x, y \in X\) and \(t > 0\),
\[M(A^x, B^y, c, qt) \geq \Phi \{ M(S^x, T^y, c, t) \} \cdot M(A^x, S^x, c, t) \cdot M(B^y, T^y, c, t) \cdot M(B^y, S^x, c, 2t) \cdot M(A^x, T^y, c, t) \}. \]

Then \(A, B, S\) and \(T\) have a unique fixed point in \(X\).

Proof. Choose \(q \in (0, 1)\) such that for every \(x, y, c \in X\) and \(t > 0\),
\[M(A^x, B^y, c, qt) \geq \Phi \{ M(S^x, T^y, c, t) \} \cdot M(A^x, S^x, c, t) \cdot M(B^y, T^y, c, t) \cdot M(B^y, S^x, c, 2t) \cdot M(A^x, T^y, c, t) \}. \]

and hence, from Corollary 3.1, \(A, B, S\) and \(T\) have a unique fixed point in \(X\).
(iii) there exists $q \in (0, 1)$ such that for every $x, y, c \in X$, $t > 0$
\[M(A^a x, A^a y, c, qt) \geq \Phi\{M(S^s x, T^u y, c, t) \cdot M(A^a x, S^s x, c, t) \cdot M(A^a y, T^u y, c, t) \cdot M(A^a x, T^u y, c, t)\} \]

In fact A, S and T have a unique common fixed point in X.

Proof. First, we show that the necessity of the conditions (i)-(iii). Suppose that $S z = z = T z$ for some $z \in X$.

Let $A x = z$ for all $x \in X$. Then we have $A^a X \cap T^u X \cap S^s X$ for $a, s, u \in N$ and the condition (i) is satisfied. For any $x \in X$, $A S x = z = S z = S A x$ and $A T x = z = T z = T A x$ and so $A S = S A$, $A T = T A$ and hence the condition (ii) is satisfied.

For some $q \in (0, 1)$, we have
\[M(A^a x, A^a y, c, qt) = 1 \geq \Phi\{M(S^s x, T^u y, c, t) \cdot M(A^a x, S^s x, c, t) \cdot M(A^a y, T^u y, c, t) \cdot M(A^a x, T^u y, c, t)\} \]

for every $x, y \in X$ and $t > 0$. Thus the condition (iii) is satisfied.

Now, for the sufficiency of the conditions, let $A^a = B^b$ in Theorem 3.1. Then A, S and T have a unique common fixed point in X.

Corollary 3.4. Let $(X, M, *)$ be a complete fuzzy metric space. Then continuous mappings $S, T : X \to X$ have a common fixed point in X if and only if there exists a mapping $A : X \to X$ satisfying (i)-(ii) of Theorem 3.2 and there exists $q \in (0, 1)$ such that for every $x, y \in X$ and $t > 0,$
\[M(A^a x, A^a y, c, qt) \geq \Phi\{M(S^s x, T^u y, c, t) \cdot M(S^s x, A^a x, c, t) \cdot M(A^a x, T^u y, c, t) \cdot M(A^a x, T^u y, c, t)\} \]

In fact A, S and T have a unique common fixed point in X.

Corollary 3.5. Let $(X, M, *)$ be a complete fuzzy metric space. Then continuous mappings $S, T : X \to X$ have a common fixed point in X if and only if there exists a mapping $A : X \to X$ satisfying (i)-(ii) of Theorem 3.2 and there exists $q \in (0, 1)$ such that for every $x, y \in X$ and $t > 0,$
\[M(A^a x, A^a y, c, qt) \geq \Phi\{M(S^s x, T^u y, c, t) \cdot M(S^s x, A^a x, c, t) \cdot M(A^a x, T^u y, c, t) \cdot M(A^a x, T^u y, c, t)\} \]

In fact A, S and T have a unique common fixed point in X.

References:
This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org

CALL FOR PAPERS

The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library , NewJour, Google Scholar