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1. Introduction and Preliminaries  

 Impact of fixed point theory in different branches of mathematics and its applications is immense. The first 
result on fixed points for contractive type mapping was the much celebrated Banach’s contraction principle by S. 
Banach [37] in 1922. In the general setting of complete metric space, this theorem runs as the follows, Theorem 

1.1(Banach’s contraction principle) Let (X, d) be a complete metric space, c∈ (0, 1) and f: X→X be a mapping 
such that for each x, y∈X, d (��, ��) ≤ c d(x, y) Then f has a unique fixed point a∈X, such that for each x∈
X,lim�→
 ��� = �. After the classical result, R.Kannan [46] gave a subsequently new contractive mapping to 
prove the fixed point theorem. Since then a number of mathematicians have been worked on fixed point theory 
dealing with mappings satisfying various type of contractive conditions. In 2002, A. Branciari [1] analyzed the 
existence of fixed point for mapping f defined on a complete metric space (X,d) satisfying a general contractive 
condition of integral type.  
Theorem 1.2(Branciari) Let (X, d) be a complete metric space, c∈ (0, 1) and let f: X→X be a mapping such 

that for each x, y ∈ X,  � ������ ≤ � � ���������,�������,���� . Where �: [0,+∞) →[0,+∞) is a Lebesgue integrable 

mapping which is summable on each compact subset of [0,+∞) , non negative, and such that for each � >o, � ������,��  then f has a unique fixed point a∈X such that for each x∈X, lim�→
 ��� = � After the paper of 

Branciari, a lot of a research works have been carried out on generalizing contractive conditions of integral type 
for a different contractive mapping satisfying various known properties. A fine work has been done by Rhoades 
[2] extending the result of Brianciari by replacing the condition [1.2] by the following � ������ ≤ � �������������,��,���,���,���,���, �!,"#�$ �#,"!�% &�����,���� (1.3) The aim of this paper is to generalize 

some mixed type of contractive conditions to the mapping and then a pair of mappings, satisfying a general 
contractive mappings such as R. Kannan type [46], S.K. Chatrterjee type [38], T. Zamfirescu type [48], etc.The 
concept of fuzzy sets was introduced initially by Zadeh [50] in 1965. Since then, to use this concept in topology 
and analysis, many authors have expansively developed the theory of fuzzy sets and applications. For example, 
Deng [12], Ereeg [13], Fang [18], George [19], Kaleva and Seikkala [28], Kramosil and Michalek [29] have 
introduced the concept of fuzzy metric spaces in different ways. In fuzzy metric spaces given by Kramosil and 
Michalek [29], Grabiec [20] obtained the fuzzy version of Banach’s contraction principle, which has been 
improved, generalized and extended by some authors. Sessa [35] defined a generalization of commutativity 
introduced by Jungck [24], which is called the weak commutativity. Further, Jungck [25] introduced more 
generalized commutativity, so called compatibility. Mishra et al. [30] obtained some common fixed point 
theorems for compatible mappings in fuzzy metric spaces. Recently, Jungck et al. [26] introduced the concept of 
compatible mappings of type (A) in metric spaces, which is equivalent to the concept of compatible mappings 
under some conditions, and proved common fixed point theorems in metric spaces. Cho [09] introduced the 
concept of compatible mappings of type (a) in fuzzy metric spaces. Again, Pathak et al. [32] introduced the 
concept of compatible mappings of type (B) in metric spaces and Cho et al. [10] introduced the concept of 
compatible mappings of type (b) in fuzzy metric spaces. Pathak et al. [33] introduced the concept of compatible 
mappings of type (I) and (II) in metric spaces. On the other hand, George and Veeramani [19], Kramosil and 
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Michalek[29] introduced the concept of fuzzy topological spaces induced by fuzzy metrics which have very 
important applications in quantum particle physics particularly in connections with both string and '�
� theory 
which were given and studied by El Naschie [14–17,49]. Many authors [21,31,39,40,41] have also proved some 
fixed point theorems in fuzzy (probabilistic) metric spaces (see [2–7,18,20,22,23,36]). 
Definition 1.1: A binary operation *: [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if it satisfies the following 
conditions: 
(1) * is associative and commutative, 
(2) * is continuous, 
(3) a * 1 = a for all a ∈ [0, 1], 
(4) a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1],  
Two typical examples of continuous t-norm are a * b = ab and a * b = min (a, b). 
 
Definition 1.2: A 3-tuple (X, M,*) is called a fuzzy metric space if X is an arbitrary 
 (Non-empty) set, * is a continuous t-norm and M is a fuzzy set on *+ × �0, ∞�satisfying the following 
conditions: for all x, y, z ∈ X and t, s > 0, 
(1) M(x, y, t) > 0. 
(2) M(x, y, t) = 1  if and only if x = y, 
(3) M(x, y, t) = M�y, x, t�.   
(4) M(x, y, t) ∗ M�y, z, s� ≤ M�x, z, t + s�. 
(5) M(x, y, .) ∶ �0, ∞� → [0,1] is continuous. 
 
Let M(x, y, t)  be a fuzzy metric space. For any t > 0, the open ball B(x, r, t) with center x∈  X and radius 0 < r < 
1 is defined by B(x, r, t) = {y ∈ X: M(x, y, t) > 1 − =}. Let (X, M,*) be a fuzzy metric space. Let s be the set of 

all A S⊂   with x ∈ A if and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ∁  A. Then s is a topology 
on X (induced by the fuzzy metric M). This topology is Hausdorff and first countable. A sequence {��} in X 
converges to x if and only if M (��, �, t) → 1 as n → ∞ for all t > 0. It is called a Cauchy sequence if, for any 0 < 
e < 1 and t > 0, there exits 
 ?� ∈ N such that M (�� , �� , t) > 1 − �  for any n, m ≥ ?� The fuzzy metric space (X, M,*) is said to be 
complete if every Cauchy sequence is convergent. A subset A of X is said to be F-bounded if there exists t > 0 
and 0 < r < 1 such that M(x, y, t) > 1 − = for all x, y ∈ A. 
Example 1.3 [11]: Let X = R and denote a * b = ab for all a, b ∈ [0, 1]. For any t ∈ (0,∞), define    

M(x, y, t) = AA B |�D�|  for all x, y ∈ X. Then M is a fuzzy metric in X. 

Lemma 1.4 [11]: Let (X, M,*) be a fuzzy metric space. Then M(x, y, t)  is non-decreasing with respect to t for 
all x, y in X. 
Definition 1.5: Let (X, M,*) be a fuzzy metric space. M is said to be continuous on *+ × �0, ∞�  if lim�→
 M ��� , �� , tE� = M�x, y, t�  
   Whenever a sequence {��� , �� , tE�} in *+ × �0, ∞� converges to a point (x, y, t) ∈ *+ × �0, ∞�, 
      
          i.e. lim�→
 M ��� , �, t� =  lim�→
 M ���, �, t� = 1   and     lim �→
 M ��, �, tE� = M�x, y, t�  
Lemma 1.6: Let (X, M,*) be a fuzzy metric space. Then M is continuous function on *+ × �0, ∞�.  
Proof: See Proposition 1 of [36]. 
Lemma 1.7 [11]: Let (X, M,*) be a fuzzy metric space. If we define  F λ ,G: *+ → HBI{0} 

         F λ ,G = inf{ � > 0: M(x, y, t) > 1 − λ } for all λ∈ �0,1� and x, y ∈ X. Then we have 

(1)  For all M ∈ �0,1�, there exists λ∈ �0,1� such that  
        Fµ ,G��N, ��� ≤  F λ ,G��N, �+� +  F λ ,G��+, �O� + ⋯ +  F λ ,G���DN, ��� , �Q= �RR �N, �+, �O … . �� ∈ *. 

(2) The sequence {��}�∈T is convergent in fuzzy metric space (X, M,*) if and only if F λ ,G��� , �� → 0. Also, 

the    
       Sequence {��}�∈T is a Cauchy sequence if and only if it is a Cauchy sequence with F λ ,G. 
 

Lemma 1.8 [11]: Let (X, M,*) be a fuzzy metric space. If a sequence {��} in X is such that, for any n ∈ N, M  
 
(��,��BN, �) ≥ M ���, �N, U���  for all k > 1, then the sequence {��}  is a Cauchy sequence. 
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2. Some definitions of compatible mappings 

In this section, we give some definitions of compatible mappings with types, some properties and examples of 
compatible mappings in fuzzy metric spaces. 
Definition 2.1: Let A and S be mappings from a fuzzy metric space (X, M,*) into itself. Then the mappings are 
said to be weak compatible if they commute at their coincidence point, that is, Ax = Sx implies that ASx = SAx. 
Definition 2.2 [30]: Let A and S be mappings from a fuzzy metric space (X, M,*) into itself. Then the mappings 
are said to be compatible if, for all t > 0, lim�→
 M �AS�� , SA��, t� = 1 

Whenever  {��} is a sequence in X such that  lim�→
 A�� = lim�→
 S�� = � ∈ *. 
Proposition 2.3 [40]: If the self-mappings A and S of a fuzzy metric space (X, M,*) are compatible, then they 
are weak compatible. 
The converse is not true as seen in following example. 
Example 2.4 [11]: Let (X, M,*) be a fuzzy metric space, where X = [0, 2] with t-norm defined a * b = min {a, 

b}, for all a, b ∈ [0,1] and M(x, y, t) = AA B |�D�| , for all x, y ∈ X. Define the self-mappings A and S on X as 

follows: 

Ax = 

2   if 0 1,

     
  if 1 2,

2

x

x
x

≤ ≤



≤ ≤

Sx = 

2   if  1,

3
 if  otherwise

5

x

x

=


+


 

Then we have S1 = A1 = 2 and S2 = A2 = 1. Also SA1 = AS1 = 1 and SA2 = AS2 = 2. Thus 
(A, S) is weak compatible. Again, 

  A�� = 1 − NX� , S�� = 1 − NN�� ,  

Thus we have   A�� → 1,  S�� → 1. Further, it follows that SA��=   XY − N+�� ,   AS�� = 2. 

Therefore, we have lim�→
 M �AS�� , SA�� , t� = lim�→
 M �2, 45 − 120? , t� = tt + 65 < 1        for all t >  0.    
 Hence (A, S) is not compatible. 
 
Definition 2.5 [9]: Let A and S be mappings from a fuzzy metric space (X, M,*) into itself. The mappings A and 
S  
are said to be compatible of type (c) if, for all t > 0, lim�→
 M �AS�� , SS��, t� = 1 , lim�→
 M �SA�� , AA�� , t� = 1 

Whenever  {��} is a sequence in X such that  lim�→
 A�� = lim�→
 S�� = � ∈ *. 
Definition 2.6 [10]: Let A and S be mappings from a fuzzy metric space (X, M,*) into itself. The mappings A 
and S are said to be compatible of type (d) if, for all t > 0, lim�→
 M �AA�� , SS��, t� = 1 

Whenever  {��} is a sequence in X such that  lim�→
 A�� = lim�→
 S�� = � ∈ *. 
Proposition 2.7 [09]: Let (X, M,*) be a fuzzy metric space with t * t = t for all t ∈ [0,1] and A, S be continuous 
mappings from X into itself. Then A and S are compatible if and only if they are compatible of type (c). 
Proposition 2.8 [10]: Let (X, M,*) be a fuzzy metric space with t * t = t for all t ∈ [0,1] and A, S be continuous 
mappings from X into itself. Then A and S are compatible if and only if they are compatible of type (d). 
Proposition 2.9 [10]: Let (X, M,*) be a fuzzy metric space with t * t = t for all t ∈ [0,1] and A, S be continuous 
mappings from X into itself. Then A and S are compatible of type (c) if and only if they are compatible of type 
(d). 
Now, Turkoglu et al. [45] introduced the following definitions: 
Definition 2.10: Let A and S be mappings from a fuzzy metric space (X, M,*) into itself. Then the pair (A, S) is 
called A-compatible if, for all t > 0, lim�→
 M �AS�� , SS�� , t� = 1 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

215 

Whenever  {��} is a sequence in X such that  lim�→
 A�� = lim�→
 S�� = � ∈ *. 
Definition 2.11: Let A and S be mappings from a fuzzy metric space (X, M,*) into itself. Then the pair (A, S) is 
called S-compatible if and only if (S, A) is S-compatible. 
Definition 2.12: Let A and S be mappings from a fuzzy metric space (X, M,*) into itself. Then the pair (A, S) is 
said to be compatible of type (I) if, for all t > 0, lim�→
 M �AS��, �, t� ≤ M �S�, �, t� 

Whenever  {��} is a sequence in X such that  lim�→
 A�� = lim�→
 S�� = � ∈ *. 
Remark  2.13: in [47], the above Definition was introduced as follows: lim�→
 M �AS�� , �, λ t� ≤ M �S�, �, t� 

Whenever λ∈ �0,1] and {��} is a sequence in X such that  lim�→
 A�� = lim�→
 S�� = � ∈ *. 
If λ  = 1, then, by Lemma 1.4, it is easily verified that, for all λ∈ �0,1] by using above Definition, we have 
Definition of [48]. 
 
Definition 2.14: Let A and S be mappings from a fuzzy metric space (X, M,*) into itself. Then the pair (A, S) is 
said to be compatible of type (II) if and only if (S, A) is compatible of type (I). 
Remark 2.15: In [25, 26, 33, 34], we can find the equivalent formulations of above Definitions and their 
examples in metric spaces (see [25, 26, 33, 34]). Such mappings are independent of each other and more general 
than commuting and weakly commuting mappings (see [25, 35]). 
Proposition 2.16: Let A and S be mappings from a fuzzy metric space (X, M,*) into itself. Suppose that the pair  
(A, S) is compatible of type (I) (respectively, (II)) and A z = S z for some z ∈  X.Then, for all t > 0, M �Az, eez, t� ≥ M �Az, fez, t�(Respectively,  M �Sz, ffz, t� ≥ M �Sz, efz, t�). 
Proof: See Proposition 7 of [47]. 
Definition 2.17: (S.GÄahler [43]) Let X be a nonempty set. A real valued function d on X×X×X is said to be a 
2-metric on X if 
(1) Given distinct elements x; y of X, there exists an element z ∈ X such that d(x, y, z) ≠0, 
(2) d(x, y, z) = 0 when at least two of x, y, z ∈ X are equal, 
(3) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z ∈ X, 
(4) d(x, y, z) ≤ d(x, y, w)+d(x, w, z)+d(w, y, z) for all x, y, z, w ∈ X. 
The pair (X, d) is called a 2-metric space. 
Example 2.18 [27]: Let X = HO and let d(x, y, z):= the area of the triangle spanned by x, y and z which may be 
given explicitly by the formula, d(x, y, z) =|�N��+hO − �Oh+� − �+��NhO − �OhN� + �O��Nh+ − �+hN�|,  
Where x = (�N, �+, �O�  y =��N, �+, �O�, z = �hN, h+, hO�.  Then (X, d) is a 2-metric space. 
Definition 2.19: (S. Sharma [44]) the 3-tuple (X, M,*) is called a fuzzy 2-metric space if X is an arbitrary set, * 
is a continuous t-norm of H-type and M is a fuzzy set in *O × [0, ∞�  satisfying the following conditions: for all 
x, y, z, u ∈ X and �N, �+, �O > 0, 
(1) M(x, y, z, 0) = 0, 
(2) M(x, y, z, t) = 1 for all t > 0 if and only if at least two of the three points are equal, 
(3) M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t) for all t > 0, 
     (Symmetry about first three variables) 
(4) M(x, y, z,�N + �+ + �O) ≥∗ {(M(x, y, u, �N ), M(x, u, z,�+), M (u, y, z,�O))}, 
     (This corresponds to tetrahedron inequality in 2-metric space. The function value 
    M(x, y, z, t) may be interpreted as the probability that the area of triangle is less than t.) 
(5) M(x, y, z,.): [0, 1) × [0, 1] is left continuous. 
Example 2.20 [27]: Let (X, d) be a 2-metric space and denote *(a, b) = ab for all a, b ∈ [0, 1]. For each h, m, n ∈ HB and t > 0, define M(x, y, z, t) = 

iAjiAjB����,�,k� . Then (X, M,*) is a fuzzy -2 metric space. 

Definition 2.21 [27]: Let (X, M,*) be a fuzzy- 2 metric space. 
(1) A sequence {��}  in fuzzy-2 metric space X is said to be convergent to a point x ∈  X (denoted by   lim�→
 �� = �   Q=   �� → � 

 if for any  λ∈ �0,1� and  t > 0, there exists ?� ∈ N such that for all n ≥ ?� and a ∈ X, M (�� , �, a, t) > 1 − λ .  
That is          lim�→
 M ���, �, a, t� = 1  for all a ∈ X  and  t > 0. 
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(2) A sequence {��} in fuzzy- 2 metric space X is called a Cauchy sequence, if for any λ∈ �0,1� and t > 0, there 
exists  ?� ∈ N such that for all m, n ≥ ?� and a ∈ X, M (�� , ��, a, t) > 1 − λ .  

(3) A fuzzy- 2 metric space in which every Cauchy sequence is convergent is said to be complete. 
 
Definition 2.22 [27]: Self mappings A and B of a fuzzy- 2 metric space (X, M,*) is said to be compatible, if  lim�→
 M �AB�� , BA�� , a, t� = 1 �Q= �RR � ∈ * �?� � > 0, 
 Whenever {��} is a sequence in X such that  lim�→
 A�� = lim�→
 B�� = h   �Q= pQqr  h ∈ *.  sℎr?    lim�→
 AB�� = uh. 
Lemma2.23 [27]: Let (X, M,*) be a fuzzy- 2 metric space. If there exists q ∈ (0, 1) such that  
M(x, y, z, qt + 0) ≥ M(x, y, z, t) for all x, y, z ∈ X with z ≠ x, z ≠ y and t > 0, then x = y, 
3. The main results 
In this section, we prove a fixed point theorem for four mappings under the condition of compatible mappings of 
types (I) and (II). 
Let �  be the set of all continuous and increasing functions ∅: [0,1]w → [0,1]  in any coordinate and ∅��, �, �, �, �, �, �� > � for all � ∈ [0,1�. 
Theorem 3.1: Let (X, M,*) be a complete fuzzy-2 metric space with t * t = t for all � ∈ [0,1].  Let A, B, S and T 
be mappings from X into itself such that 
(i) A(X) ⊆T(X), B(X) ⊆ S(X), 

(ii) There exists a constant k ∈ �0 , N+� such that  

{ }{ }      (  ,By ,  , kt) min        

0 0
( ) ( )

M(Sx, Ty, a,  t), M(Ax, Sy, a, t), M  (By, Ty, a, t), M(Ax, Tx, a, t), 
M Ax a

M(By, Sx, a, (2- )t), M(Ax, Tx, a, t), M(Ax, Sx, a, t)
t dt t dt

αφ α
ζ ζ≥∫ ∫

  
 
for all x, y, � ∈ X, c ∈ �0,2�, � > 0 �?� ∅ ∈ �.                                           
If the mappings A, B, S and T satisfy any one of the following conditions: 
(iii) The pairs (A, S) and (B, T) are compatible of type (II) and A or B is continuous, 
(iv)The pairs (A, S) and (B, T) are compatible of type (I) and S or T is continuous, then A, B, S and T have a 
unique common fixed point in X. 
Proof: Let �� ∈ X be an arbitrary point. Since A(X) ⊆T(X), B(X) ⊆ S(X), there exist �N, �+ ∈ X such that 

 A�� = T�N, B�N = S�+. Inductively, construct the sequences {��}  and {��} in X such that 
 �+� = f�+� = s�+�BN , �+�BN = u�+�BN = e�+�B+ 

for n = 0, 1, 2. . . Then by c = 1 − x  and x ∈ �N+ , 1�, if we set ����� = y���, ��BN, �, U�� �Q= � > 0, then we 

prove that {�����} is increasing with respect to m. setting m = 2n, then we have 
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0 0

0

0

( ) ( ,  ,  ,  )2 2 2 1

( ,  ,  ,  )2 2 1

( ,  ,  ,  ),  ( ,  ,  ,  )2 2 1 2 2 1
( ,  ,  ,  ), ( ,  2 1 2 1 2min

( ) ( )

( )

( )

                   

                    

d t M y y a tn n n

M Ax Bx a ktn n

M Sx Tx a t M Ax Sx a tn n n n
M Bx Tx a t M Axn n n

t dt t dt

t dt

t dt

ζ ζ

ζ

φ

ζ

+

+
=

+ +
+ +

=

≥

∫ ∫

∫

0

,  ,  (1 ) )2
( ,  ,  ,  (1 ) ), ( ,  ,  ,  )2 1 2 2 2
( ,  ,  ,  )2 2

( ,  ,  ,  ), ( , ,  ,  ), ( , ,  ,  2 1 2 2 2 1 2 1 2
min

= ( )                      

Tx a q tn
M Bx Sx a q t M Ax Tx a tn n n n
M Ax Sx a tn n

M y y a t M y y a t M y y a tn n n n n n

t dt

φ

ζ

  
    
  
  

    

−
++

− − +

∫

{ }{ }
0

)
( , ,  ,(1 ) ), ( , ,  ,  (1 ) ),2 2 2 1 2 1
( , ,  ,  ), ( , ,  ,  )2 2 1 2 2 1

min{ ( ),  ( ),  ( ),  1,  ( ),  ( ),  ( )2 1 2 1 2 2 1 2 1 2 1
= ( )                      

M y y a q t M y y a q tn n n n
M y y a t M y y a tn n n n

d t d t d t d t d t d tn n n n n n
t dt

φ
ζ

  
  
  
    

− ++ −
− −

− − − − −

∫
.∫

 
The above inequality is true ∅ is an increasing function. 
We claim that for all n ∈ N, 

                   0 0

( ) ( )2 2 1
( ) ( ) .  

d t d tn n
t d t t d tζ ζ≥

−∫ ∫  

In fact, if    
0 0

( ) ( )2 2 1
( ) ( ) .   

d t d tn n
t d t t d tζ ζ

−
<∫ ∫  

We have             

{ }
0 0

( ) ( ( ), ( ), ( ), ( ), ( ), ( ), ( ))   ( )2 2 2 2 2 2 2 2 2
( ) ( ) ,  

d kt d qt d qt d qt d qt d qt d qt d qt d qtn n n n n n n n n
t dt t dt

φ
ζ ζ

>
≥∫ ∫  

 

That is    
0 0

( ) ( )2 2
( ) ( )

d kt d qtn n
t dt t dtζ ζ>∫ ∫     which is a contradiction. 

 

Hence    
0 0

( ) ( )2 2 1
( ) ( )      

d t d tn n
t d t t d tζ ζ

−
≥∫ ∫     for all ? ∈ N and � > 0. 

 

Similarly, for m = 2n+1, we have 
0 0

( ) ( )2 1 2
( ) ( )   

d t d tn n
t dt t dtζ ζ

+
≥∫ ∫  and so {�����} is an 

increasing in [0, 1].  

Similarly, for m = 2n+1, we have   
0 0

( ) ( )2 1 2
( ) ( )  

d kt d qtn n
t dt t dtζ ζ

+
≥∫ ∫  and so 

0 0

( ) ( )1
( ) ( )  

d kt d qtn n
t dt t dtζ ζ≥

+∫ ∫  for all ? ∈ N, that is  

0 0 0

( , , , )0 1( , , , ) ( , , , )1 1
( ) ( ) ( )..... .

n
q

M y y a tq
M y y a t M y y a tn nn n kk

t dt t dt t dtζ ζ ζ
+ −

≥ ≥ ≥

 
 
 ∫ ∫ ∫  

Hence {��} is a Cauchy sequence and, by the completeness of X, {��} Converges to a point z in X. Let  
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lim�→
 �� = h.   zr?�r {r ℎ�|r 

  lim�→
 �+� = lim�→
 f�+� = lim�→
 s�+�BN = lim�→
 �+�BN = lim�→
 u�+�BN = lim�→
 e�+�B+ = h. 
 
Now, suppose that T is continuous and the pairs (A, S), (B, T) are compatible of type (I). Hence we have 
 lim�→
 ss�+�BN = sh, lim�→
 us�+�BN = sh ,     lim�→
 es�+�BN = sh    
Now, for c = 1,  setting � = �+� and � = s�+�BN in the inequality (3.1), we have 
   

2 2 1 2 2 1

2 1 2 1 2 2

2 1 2 2 2

2 2

( ,  ,  ,  ),  ( ,  ,  ,  )
( ,  ,  ,  ), ( ,  ,  , )

m in ( ,  ,  ,  ), ( ,  ,  ,  )
( ,  ,  ,  )

0 0

( ,  ,  ,  )2 2 1
( ) ( )

n n n n

n n n n

n n n n

n n

M Sx TTx a t M Ax STx a t
M BTx TTx a t M Ax TTx a t
M BTx Sx a t M Ax TTx a t
M Ax Sx a tM Ax BTx a ktn n

t dt t dt

φ

ζ ζ

+ +
+ +

+





+
≥∫ .

 
 
 
  

 ∫  

Letting n→ ∞, we have 
 

} ( )t dtζ  ≥ } ( )t dtζ
∅~���~G�k ,�k,�,A�,  G�k ,�k,�,A�,   G� ���j→� ���%j$�,�k ,�,A�}G� ���j→� ���%j$�,�k ,�,A�,G�k ,�k,�,A�,   G�k ,�k ,� ,A�   G�k ,k,� ,A� ��

�
G�k , ���j→� ���%j$�,� ,�A�

�  

 
Now using (2.22) and (2.23), we have  
 

} ( )t dtζ  ≥ } ( )t dtζ
∅�����G�k ,�k,�,A�,  G�k ,�k,�,A�,   G��k,��  ,� ,A�G���,�k ,�,A�,G�k ,�k,�,A�,   G�k ,�k ,� ,A�   G�k ,k,� ,A� ��

�
G�k ,�k,� ,�A�

�  

 
Therefore, } ( )t dtζ  ≥ } ( )t dtζ

G�k ,�k,�,A�
�

G�k ,�k,� ,�A�
�  

 So it follow that T z = z. 
Again, replacing  �  ��  �+�  and �  ��  h  in (1), for all c = 1, we have 

2 2
2 2 2

2 2 2 2 2

0 0
( ) ( )

M (Sx , T z,  a ,  t), M (A x , S z, a , t), M  (B z, T z, a , t), n n
m in M (A x , T x , a , a t), M (B z, Sx , a , t), n n n

M (A x  , B z , a , kt) M (A x , T x ,  a , t), M (A x , Sx , a , t)n n n n n
t d t t d t

φ

ζ ζ

  
  
  
    ≥∫



∫  

 
And so, letting n→ ∞, we have   } ( )t dtζ > } ( ) .t dtζ

G��k ,k,�,A�
�

G��k ,k,� ,�A�
�  

 
Which implies that B z = z. Since B(X) ⊆ S(X), there exist  � ∈ X such that S u = z = B z. So, for c = 1, we 
have 
 

0 0
( ) ( )

M (Su , T z,  a ,  t), M (A u , S z, a , t), M  (B z, T z, a , t), 
m in M (A u , T u , a , a t), M (B z, S u , a , t), 

M (A u  , B z , a  , k t) M (A u , T u ,  a , t), M (A u , Su , a , t)
t d t t d t

φ

ζ ζ

    
  
    ≥∫ ∫  

 
And so, } ( )t dtζ > } ( ) .t dtζ

G�k ,��,�,A�
�

G��� ,k,� ,�A�
�  

 
Which implies that Au = z. Since the pair (A, S) is compatible of type (I) and Au = Su = z, by proposition 2.16, 
we have  
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} ( )t dtζ > } ( ) .t dtζ
G��� ,���,�,A�

�
G��� ,���,� ,�A�

�  

 
And so, } ( )t dtζ > } ( ) .t dtζ

G�k ,�k,�,A�
�

G�k ,��,� ,�A�
�  

Again, for c = 1, we have 

0 0
( ) ( )

M (S z , T z ,  a ,  t ) , M (A z , S z , a , t) , M  (B z , T z , a , t) , 
m in M (A z , T z , a , a t) , M (B z , S z , a , t) , 

M (A z  , B z  , a  , k t) M (A z , T z ,  a , t) , M (A z , S z , a , t)
t d t t d t

φ

ζ ζ

     
   
     ≥∫ ∫  

 
Hence we have  } ( )t dtζ > } ( ) .t dtζ

G�k ,�k,�,A�
�

G��k ,�,� ,�A�
�  

 
And so A z = z. Therefore, A z = B z = S z = T z = z and z is a common fixed point of the self-mappings A, B, S 
and T. The uniqueness of a common fixed point of the mappings A, B, S and T be easily verified by using (3.1) 
In fact, if h� be another fixed point for A, B, S and T, then, for c = 1, we have 

' '

' ' ' '

'

0 0

0

( ) ( )

                                     ( )

M(z , z , a , kt) M(Az , Bz , a , kt)

M(Sz, Tz , a, t), M(Az, Sz , a, t), M  (Bz , Tz , a, t), 

min M(Az, Tz, a, at), M(Bz , Sz, a, t), 

M(Az, 

t dt t dt

t dt

φ

ζ ζ

ζ

=

≥

∫ ∫

'

'

0
> ( )                        

Tz, a, t), M(Az, Sz , a, t)

M(z , z , a , kt)

t dtζ

  
  
  
  

  ∫

∫
 

 so z = h�. 
Example 3.2: Let (X, d) be a fuzzy-2 metric space and denote *(a, b) = ab for all a, b ∈ [0, 1]. For each h, m, n ∈ HB and t > 0 and x, y, � ∈ X define M(x, y,�, t) = 

iAjiAjB����,�,�� . Define the self-mappings A, B ,S ,T on X by 

Ax= Bx =1, 

S x =  OD�+   , T x =
+�BOY  

                             

 

If we define a sequence {��} in X by 1 − 1 ?� , then we have  
 lim�→
 A�� = lim�→
 S�� = 1,         lim�→
 M �SA�� , 1, a, t� ≤ M �A1,1, a, t� = 1. 
 lim�→
 B�� = lim�→
 T�� = 1, lim�→
 M �TB�� , 1, a, t� ≤ M �B1,1, a, t� = 1. 
 
This is the pairs (A, S), (B, T) are compatible of type (II) and A, B are continuous. Consider a function  
 ∅: [0,1]w → [0,1] defined by  ∅��N, �+, �O, �X, �Y, ��, �w� = �min {��}�i for some 0 < h <1. Then we have 
 
M (Ax, By,�, t) ≥  ∅��N, �+, �O, �X, �Y, ��, �w�. 
 
Therefore, all the conditions of theorem 3.1 are satisfied and so A, B, S and T have a unique common fixed point 
in X. 
 
Corollary 3.3: Let (X, M,*) be a complete fuzzy-2 metric space with t * t = t for all � ∈ [0,1].  Let A, B, S and T 
be  
mappings from X into itself such that 
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(i) A(X) ⊆T(X), B(X) ⊆ S(X), 

(ii) There exists a constant k ∈ �0 , N+� such that  

1 2 3

4 5 6

7

( )     ( ) ( )  
min ( )  ( )    ( )   

( )  

0 0

( , ,  , kt)

( ) ( )

a t M( Sx, Ty, a,  t) a t  M( Ax, Sy, a, t)  a t M ( By, Ty, a, t)
a t M( Ax, Tx, a, t)  a t M( By, Sx, a, (2- )t) a t M( Ax, Tx, a, t)

a t M( Ax, Sx, a, t)
M Ax By a

t dt t dt

α α

ζ ζ

+ + +
+ +

+
≥∫

1

2    
  
    ∫   

for all x, y, � ∈ X, c ∈ �0,2�, � > 0 �?� ��: HB → �0 ,1] p��ℎ �ℎ�� ∑ ����� = 1.w��N                                             
If the mappings A, B, S and T satisfy any one of the following conditions: 
(iii) The pairs (A, S) and (B, T) are compatible of type (II) and A or B is continuous, 
(iv) The pairs (A, S) and (B, T) are compatible of type (I) and S or T is continuous, then A, B, S and T have a 
unique common fixed point in X. 
Proof: By Theorem 3.1, if we define 

 ∅��N, �+, �O, �X, �Y, ��, �w� = {��N����N + �+����+ + �O����O + �X����X + �Y����Y + ������� + �w����w�}�% , 
 
Then we have conclusion. 
 
Corollary 3.4: Let (X, M,*) be a complete fuzzy-2 metric space with t * t = t for all � ∈ [0,1].  Let A, B, R, S, H 
and T be mappings from X into itself such that 
(i) A(X) ⊆TH(X), B(X) ⊆ SR(X), 

(ii) There exists a constant k ∈ �0 , N+� such that  

{ }{ }      min        

0 0

(  ,By ,  , kt)

( ) ( )

M(SRx, Ty, a,  t), M(Ax, SRy, a, t), M (By, THy, a, t), M(Ax, THx, a, t), 
M(By, SRx, a, (2- )t), M(Ax, THx, a, t), M(Ax, SRx, a, t)

M Ax a

t dt t dt

αφ α
ζ ζ≥∫ ∫   

for all x, y, � ∈ X, c ∈ �0,2�, � > 0 �?� ∅ ∈ �.                                            
If the mappings A, B, SR and TH satisfy any one of the following conditions: 
(iii) The pairs (A, SR) and (B, TH) are compatible of type (II) and A or B is continuous, 
(iv)The pairs (A, SR) and (B, TH) are compatible of type (I) and SR or TH is continuous, 
(v) TH= HT, AR = RA, BH = HB and SR = RS, then A, B, R, S, H and T have a unique common fixed point in 
X. 
Proof: By theorem 3.1 A, B, TH and SR have a unique common fixed point in X. That is, there exists z ∈ X Such 
that A z = B z =THz = SR z = z. Now, we prove that R z = z. In fact, by the condition (ii), it follows that 
 
 

{ }{ }      min        

0 0

(  ,Bz ,  , kt)

( ) ( )

M(SRRz, THz, a,  t), M(ARz, SRRz, a, t), M (Bz, THz, a, t), M(ARz, THz, a, t), 
M(Bz, SRRz, a, (2- )t), M(ARz, THz, a, t), M(ARz, SRRz, a, t)

M ARz a

t dt t dt

αφ α
ζ ζ≥∫ ∫  

 
For c = 1, we have 

{ }{ }      (  ,z ,  , kt) min        

0 0

(  ,z ,  , 

0

( ) ( )

> ( )                          

M(Rz, z, a,  t), M(Rz, Rz, a, t), M  (z, z, a, t), M(Rz, z, a, t), 
M Rz a

M(z, Rz, a, t), M(Rz, z, a, t), M(Rz, Rz, a, t)

M Rz a

t dt t dt

t dt

φ
ζ ζ

ζ

≥∫ ∫
t)

∫
  

 
Which is a contradiction. Therefore, it follows that R z = z. Hence S z = SR z = z. Similarly, we get T z = H z = 
z. 
 
Corollary 3.5: Let (X, M,*) be a complete fuzzy-2 metric space with t * t = t for all � ∈ [0,1].  Let S and T be 
mappings from X into itself such that 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

221 

(i) There exists a constant k ∈ �0 , N+� such that  

{ }{ }      (  ,y ,  , kt) min        

0 0
( ) ( )

M(Sx, Ty, a,  t), M(x, Sy, a, t), M  (y, Ty, a, t), M(x, Tx, a, t), 
M x a

M(y, Sx, a, (2- )t), M(x, Tx, a, t), M(x, Sy, a, t)
t dt t dt

αφ α
ζ ζ≥∫ ∫   

 
for all x, y, � ∈ X, c ∈ �0,2�, � > 0 �?� ∅ ∈ �. Then A, B, S and T have a unique common fixed point in X. 
 
Proof: If we get A = B = I (: the identity mapping) in theorem 3.1, then it is easy to check that the pairs (I, S) and 
(I, T) 
are compatible of type (II) and the identity mapping I is continuous. Hence, by theorem 3.1, T and S have a 
unique common fixed point in X.  
Corollary 3.6: Let (X, M,*) be a complete fuzzy-2 metric space with t * t = t for all � ∈ [0,1].  Let A and S be 
mappings from X into itself such that 
(i)f��*� ⊆  e��*�,  
(ii) There exists a constant k ∈ �0 , N+� such that  

      (  , y ,  , kt) min
       

0 0
( ) ( )

m m n m n m n m
n n

n m n m n m
M(S x, S y, a,  t), M(A x, S y, a, t), M (A y, S y, a, t), M(A x, S x, a, t), 

M A x A a
M(A y, S x, a, (2- )t), M(A x, S x, a, t), M(A x, S y, a, t)

t dt t dt

αφ
αζ ζ

   
  
   ≥∫ ∫

  
for all x, y, � ∈ X, c ∈ �0,2�, � > 0 �?� ∅ ∈ � �?� �Q= pQqr ? , q ∈ �.                                            
If the mappings f� �?� e� satisfy any one of the following conditions: 
(iii) The pairs (f�,e�) is compatible of type (II) f�and is continuous, 
(iv)The pairs (f�,e�) is compatible of type (I) and e� is continuous,  
(v) f�e = ef� �?� fe� = e�f, then A and S have a unique common fixed point in X. 
Proof: If we set A = B = f� and S = T = e� in theorem 3.1, then f� �?� e� have a unique fixed point in X. 
That is, 
There exists h ∈ X such that f�h =  e�h = h. since f�fh = f f�h = fh �?� e�fh = fe�h = fh, it follows 
that A z is a fixed point of f� �?� e� and hence A z = z. Similarly, we have S z = z. 
Theorem 3.7: Let (X, M,*) be a complete fuzzy-2 metric space with t * t = t for all � ∈ [0,1].  Let S, T and two 
sequences{f�}, �u�� for all i, j ∈ � be mappings from X into itself such that 

(i) There exists ��, �� ∈ � such that f� (X) ⊆T(X), u� (X) ⊆ S(X), 

(ii) There exists a constant k ∈ �0 , N+� such that  

 

      
(  ,B y ,  , kt) min        

0 0
( ) ( )

i j i
i j

j i i

M(Sx, Ty, a,  t), M(A x, Sy, a, t), M  (B y, Ty, a, t), M(A x, Tx, a, t), 
M A x a

M(B y, Sx, a, (2- )t), M(A x, Tx, a, t), M(A x, Sy, a, t)
t dt t dt

α
φ α

ζ ζ

  
  

  ≥∫ ∫   

 
for all x, y, � ∈ X, c ∈ �0,2�, � > 0 �?� ∅ ∈ �.                                            
If the mappings f�  , u�   , e �?� s satisfy any one of the following conditions: 

(iii) The pairs (f�  , S) and (u�  , T) are compatible of type (II) and f�   or u�   is continuous, 

(iv)The pairs (f�  , S) and (u�  , T) are compatible of type (I) and S or T is continuous, thenf�,u�  ,S and T have a 
unique common fixed point in X for i, j = 1 ,2 ,3… 
Proof: By theorem 3.1, the mappings S, T and f�   and u�   for some ��, �� ∈ � have a unique common fixed point 
in X. 
That is, there exists a unique point z∈ X such that S z = T z =f� z = u�   z = z. Suppose that there exists i ∈ � 
such that 
 ¡ ≠ ¡�. Then we have 
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0

0

0

( z ,z ,  , kt) ( z ,B z ,  , kt)

0 0

   B    
min B   

0

( ) ( )

                                         ( )

i i j

i j i

j

M A a M A a

M(Sz, Tz, a,  t), M(A z, Sz, a, t), M ( z, Ty, a, t), M(A z, Tz, a, t), 

M( z, Sz, a, (

t dt t dt

t dt

α
φ

ζ ζ

ζ

=

≥

∫ ∫
     i i2- )t), M(A z, Tz, a, t), M(A z, Sz, a, t)α

   
  
   ∫

 

 
For c = 1, we have 
 

 

{ }      ( z ,z ,  , kt) min        

0 0
( ) ( )

                                        

i i
i

i i

M(z, z, a,  t), M(A z, z, a, t), M  (z, z, a, t), M(A z, z, a, t), 
M A a

M(z, z, a, t), M(A z, z, a, t), M(A z, z, a, t)
t dt t dt

φ
ζ ζ

 
 
 ≥∫ ∫

( z ,z ,  ,t)

0
   > ( ) ,

iM A a

t dtζ∫
 

 
Which is a contradiction. Hence, for all i∈ �, it follows that f�h = h. similarly, for j∈ �, we have u�h = h. 
Therefore, for all i, j∈ �, we have f�h = u�h = eh = sh = h. 
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