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Abstract 
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1. Introduction   

Impact of fixed point theory in different branches of mathematics and its applications is immense. The first result 

on fixed points for contractive type mapping was the much celebrated Banach’s contraction principle by S. 

Banach [28] in 1922. In the general setting of complete metric space, this theorem runs as the follows, Theorem 

1.1(Banach’s contraction principle) Let (X, d) be a complete metric space, c∈ (0, 1) and f: X→X be a mapping 

such that for each x, y∈X, d (��, ��) ≤ c d(x, y) Then f has a unique fixed point a∈X, such that for each x∈

X,lim	→� �	� = 
. After the classical result, R.Kannan [23] gave a subsequently new contractive mapping to 

prove the fixed point theorem. Since then a number of mathematicians have been worked on fixed point theory 

dealing with mappings satisfying various type of contractive conditions. In 2002, A. Branciari [1] analyzed the 

existence of fixed point for mapping f defined on a complete metric space (X,d) satisfying a general contractive 

condition of integral type.  

Theorem 1.2(Branciari) Let (X, d) be a complete metric space, c∈ (0, 1) and let f: X→X be a mapping such 

that for each x, y ∈ X,  � ������ ≤ � � ���������,��
�

����,���
� . Where �: [0,+∞) →[0,+∞) is a Lebesgue integrable 

mapping which is summable on each compact subset of [0,+∞) , non negative, and such that for each � >o, 

� ������,�
�  then f has a unique fixed point a∈X such that for each x∈X, lim	→� �	� = 
 After the paper of 

Branciari, a lot of a research works have been carried out on generalizing contractive conditions of integral type 

for a different contractive mapping satisfying various known properties. A fine work has been done by B.E. 

Rhoades [2, 4] extending the result of Brianciari by replacing the condition [1.2] by the following 

� ������ ≤ � ��������� ���,��,���,���,���,���,!�",#$�%!�$,#"�
& '

�
����,���

� (1.3) The aim of this paper is to generalize 

some mixed type of contractive conditions to the mapping and then a pair of mappings, satisfying a general 

contractive mappings such as R. Kannan type [23], S.K. Chatrterjee type [34], T. Zamfirescu type [36], etc. The 

concept of fuzzy sets was introduced initially by Zadeh [17] in 1965. Since then, to use this concept in topology 

and analysis many authors have expansively developed the theory of fuzzy sets and applications. Especially, 

Deng [39], Erceg [19], Kaleva and Seikkala [22], Kramosil and Michalek [13] have introduced the concept of 

fuzzy metric space in different ways. Grabiec [20] followed Kramosil and Michalek [13] and obtained the fuzzy 

version of Banach contraction principle. Moreover, it appears that the study of Kramosil and Michalek [13] of 

fuzzy metric spaces pave the way for developing smoothing machinery in the field of fixed point theorems, in 

particular for the study of contractive type maps. Fang [14] proved some fixed point theorems in fuzzy metric 

spaces, which improve, generalize, unify and extend some main results of Banach [28], Edelstein [18], Istratescu 

[12], Sehgal and Bharucha-Reid [37]. Sessa [30] defined a generalization of commutativity, which is called weak 

commutativity. Further Jungck [10] introduced more generalized commutativity, so called compatibility. Mishra 

et al. [29] obtained common fixed point theorems for compatible maps on fuzzy metric spaces. Recently, Jungck 

et al. [11] introduced the concept of compatible mappings of type (�) in metric spaces, which is equivalent to the 

concept of compatible mappings under some conditions and proved common fixed point theorems in metric 

spaces. Cho [38] introduced the concept of compatible mappings of type (�) in fuzzy metric spaces. Many 

authors have studied the fixed point theory in fuzzy metric spaces. The most interesting references in this 

direction are [14,15,16,20,24,26,32] and fuzzy mappings [6,3,7,25,27]. Recently, George and Veeramani [13] 

modified the concept of fuzzy metric space introduced by Kramosil and Michalek [14] and defined the 

Hausdorff topology on the fuzzy metric spaces. They showed also that every metric induces a fuzzy metric. In 

this paper, we prove common fixed point theorems for six mappings satisfying some conditions in fuzzy metric 
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spaces in the sense of Kramosil and Michalek [14]. Our main theorems extend, generalize and fuzzify some 

known results in fuzzy metric spaces, probabilistic metric spaces and uniform spaces 

[9,11,21,31,33,38]. We also give an example to illustrate our main theorem. 

2. Preliminaries 

 

Definition 2.1 [5]: A binary operation *: [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if it satisfies the 

following conditions: 

(1) * is associative and commutative, 

(2) * is continuous, 

(3) a * 1 = a for all a ∈ [0, 1], 

(4) a * b ≤ c * d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1],  

Two typical examples of continuous t-norm are a * b = ab and a * b = min (a, b). 

Definition 2.2 [14]: A 3-tuple (X, M,*) is called a fuzzy metric space if X is an arbitrary 

 (Non-empty) set, * is a continuous t-norm and M is a fuzzy set on *+ × �0, ∞�satisfying the following 

conditions: for all x, y, z ∈ X and t, s > 0, 

(1) M(x, y, t) > 0. 

(2) M(x, y, t) = 1  if and only if x = y, 

(3) M(x, y, t) = M�y, x, t�.   
(4) M(x, y, t) ∗ M�y, z, s� ≤ M�x, z, t + s�. 
(5) M(x, y, .) ∶ �0, ∞� → [0,1] is continuous. 

 

Let M(x, y, t)  be a fuzzy metric space. For any t > 0, the open ball B(x, r, t) with center x∈  X and radius 0 < r < 

1 is defined by B(x, r, t) = {y ∈ X: M(x, y, t) > 1 − =}. Let (X, M,*) be a fuzzy metric space. Let s be the set of 

all A S⊂   with x ∈ A if and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ∁  A. Then s is a topology 

on X (induced by the fuzzy metric M). This topology is Hausdorff and first countable. A sequence {�	} in X 

converges to x if and only if M (�	, �, t) → 1 as n → ∞ for all t > 0. It is called a Cauchy sequence if, for any 0 < 

e < 1 and t > 0, there exits 

 ?� ∈ N such that M (�	 , �� , t) > 1 − �  for any n, m ≥ ?� The fuzzy metric space (X, M,*) is said to be 

complete if every Cauchy sequence is convergent. A subset A of X is said to be F-bounded if there exists t > 0 

and 0 < r < 1 such that M(x, y, t) > 1 − = for all x, y ∈ A. 

Example 2.1 [8]: Let X = R and denote a * b = ab for all a, b ∈ [0, 1]. For any t ∈ (0,∞), define    

M(x, y, t) = A
A B |�D�|  for all x, y ∈ X. Then M is a fuzzy metric in X. 

Lemma 2.1 [20]: Let (X, M,*) be a fuzzy metric space. Then M(x, y, t)  is non-decreasing with respect to t for 

all x, y in X. 

Definition 2.3 [20]: Let (X, M,*) be a fuzzy metric space. M is said to be continuous on *+ × �0, ∞� if 

lim
	→�

M ��	 , �	 , tE� = M�x, y, t�  
   Whenever a sequence {��	 , �	 , tE�} in *+ × �0, ∞� converges to a point (x, y, t) ∈ *+ × �0, ∞�, 

       

         i.e. lim
	→�

M ��	 , �, t� =  lim
	→�

M ��	 , �, t� = 1   and     

lim
 	→�

M ��, �, tE� = M�x, y, t�  
 

Lemma 2.2 [29]: Let {�	} be a sequence in fuzzy metric space (X, M,*) with the condition (FM-6). If there 

exists a number H ∈ �0 ,1� such that I��	B+, �	BJ, H�� ≥ I��	BJ , �	 , �� for all � > 0 and n =1, 2, 3….then 

{�	} is a Cauchy sequence in X. 

Lemma 2.3 [29]: Let (X, M,*) be a fuzzy metric space. If there exists k ∈ (0, 1) such that  

M(x, y, kt) ≥ M(x, y, t) for all x, y ∈ X and t > 0, then x = y, 

3. Some definitions of compatible mappings 

 

In this section, we give some definitions of compatible mappings with type (�� in fuzzy metric spaces. 

 

Definition 3.1 [29]: Let A and B be mappings from a fuzzy metric space (X, M,*) into itself. The mappings A 

and B are said to be compatible of   if, for all t > 0, 

lim
	→�

M �AB�	 , BA�	, t� = 1  
Whenever  {�	} is a sequence in X such that  

lim
	→�

A�	 = lim
	→�

B�	 = M ∈ *. 
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Definition 3.2 [38]: Let A and B be mappings from a fuzzy metric space (X, M,*) into itself. The mappings A 

and B are said to be compatible of type (�) if, for all t > 0, 

lim
	→�

M �AB�	 , BB�	 , t� = 1 , lim
	→�

M �BA�	 , AA�	 , t� = 1 

Whenever  {�	} is a sequence in X such that  

lim
	→�

A�	 = lim
	→�

B�	 = M ∈ *. 
Proposition 3.1 [38]: Let (X, M,*) be a fuzzy metric space with t * t = t for all t ∈ [0,1] and A, B be continuous 

mappings from X into itself. Then A and B are compatible of type (�) and Az = Bz for some M ∈ *, then            

NOM = OOM = ONM = NNM. 
Proposition 3.2 [38]: Let (X, M,*) be a fuzzy metric space with t * t = t for all t ∈ [0,1] and A, B be continuous 

mappings from X into itself. Then A and B are compatible of type (�) and {�	} is a sequence in X such that  

lim
	→�

A�	 = lim
	→�

B�	 = M ∈ *. 
lim

	→�
BA�	 = NM P� N PQ �R?�P?SRSQ 
� M  
?� NOM = ONM, NM = OM, P� N 
?� O 
=T �R?�P?SRSQ 
� M. 

 

4. Main results 

In this section, we prove a fixed point theorem for six mappings satisfying some conditions. 

Theorem 4.1: Let (X, M,*) be a complete fuzzy metric space with t * t = t for all � ∈ [0,1] and the condition 

(FM-6) Let A, B, S, T, P and Q be mappings from X into itself such that 

(1) P(X) ⊆AB(X), Q(X) ⊆ ST(X), 

 

(2) AB = BA, ST = TS, PB = BP, QS = SQ, QT = TQ, 

(3) A, B, S and T are continuous, 

(4) the pair (P , AB) and (Q , ST) are compatible of type (�), 

(5) there exists a number H ∈ �0 , 1� such that 

{ }       ( 2 )
     

0 0

( , , )

( ) ( )

M (ABx, Px, t) M (STy, Qy, t) M (STy, Px, t) M (ABx,Qy, t)  
M (ABx, STy, t) M (Px, Qx, t)

M Px Qy kt

t dt t dt

β β

ζ ζ

∗ ∗ ∗ − ∗
∗

≥∫ ∫  
 

for all x, y ∈ X, U ∈ �0,2�, � > 0.                                           
Then A, B, S, T , P and Q have a unique common fixed point in X. 

Proof: By (1), Since P(X) ⊆AB(X), Q(X) ⊆ ST(X), there exist �J, �+ ∈ X such that 

 

 P�� = AB�J, Q�J = ST�+. Inductively, construct the sequences {�	}  and {�	} in X such that 

 

�+	 = W�+	 = NO�+	BJ , �+	BJ = X�+	BJ = YZ�+	B+ 

for n = 0, 1, 2. . . By (5) Then by U = 1 − [  and [ ∈ �0 ,1�, we have  

 

2 1 2 1 2 2 2 2

2 2 2 1 2 1 2 2

2 1

0 0

( , , )  ( , Q , )  
( , , )  ( , ,(2 ) )
( , 

0

( , , ) ( , Q , )2 1 2 2 2 1 2 2
( ) ( )

( )                               

n n n n

n n n n

n

M ABx Px t M STx x t
M STx Px t M ABx Qx t

M ABx

M y y kt M Px x ktn n n n
t dt t dt

t dt
β β

ζ ζ

ζ

+ + + +
+ + + +
+

∗ ∗
∗ −

∗

+ + + +
=

≥

∫ ∫

{ }

2 2 2 1 2 1

2 2 1 2 1 2 2 2 1 2 1

2 2 2 2 2 1 2 1 2 1

, )  ( , , )

( , , )  ( , , )  ( , ,(1 ) )
( , ,(1 ) )  ( , , )  ( , , )

0
= ( )                                 

n n n

n n n n n n

n n n n n n

STx t M Px Qx t

M y y t M y y t M y y q t
M y y q t M y y t M y y t

t dtζ

+ + +

+ + + + +

+ + + +

  
 

∗  

∗ ∗ −
∗ + ∗ ∗

∫

∫
 

0 0

0

( ,  ,  )  ( , , )  12 2 1 2 1 2 2
( , , )  ( , , )  2 2 1 2 1 2 2

( ,  ,  ) ( , ,  )  12 1 2 2 2 2 1

( ,  ,  )  (2 2 1 2

( ) ( )

( )                                

M y y t M y y tn n n n
M y y t M y y qtn n n n

M y y kt M y y tn n n n

M y y t M yn n n

t dt t dt

t dt

ζ ζ

ζ

 
 
 
  

∗ ∗+ + +
∗ ∗ ∗+ + +

∗+ + +

∗+

≥

≥

∫ ∫
, , )  11 2 2

( , , )2 1 2 2

y tn
M y y qtn n

 
 
 

∗+ +
+ +∫
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Since the t-norm ∗ is continuous and M (x, y, .) is left continuous, letting [ → 1 in above, we have 

 

{ }
0 0

( ,  ,  ) ( ,  ,  )  ( , , )2 1 2 2 2 2 1 2 1 2 2
( ) ( )

M y y kt M y y t M y y tn n n n n n
t dt t dtζ ζ

∗+ + + + +
≥∫ ∫

 
 

Similarly we have also 

 

{ }
0 0

( ,  ,  ) ( ,  ,  )  ( , , )2 2 2 3 2 1 2 2 2 2 2 3
( ) ( )

M y y kt M y y t M y y tn n n n n n
t dt t dtζ ζ

∗+ + + + + +
≥∫ ∫

 
 

Thus  

{ }
0 0

( ,  ,  ) ( ,  ,  )  ( , , )1 2 2 1 1 2
( ) ( )

M y y k t M y y t M y y tnn n n n n
t d t t d tζ ζ

∗+ + + + +
≥∫ ∫

 
 

For n = 1, 2, 3………and so, for positive integers  n, p 

0 0

( ,  ,  ) ( ,  ,  )  ( , , )1 2 1 1 2
( ) ( )

p

t

k
M y y kt M y y t M y ynn n n n n

t d t t d tζ ζ
 
 
 

∗+ + + + +
≥∫ ∫

 
 

Thus, since I��	BJ , �	B+ , A
\]� → 1 as ^ → ∞, we have 

{ }
0 0

( ,  ,  ) ( ,  ,  )1 2 1
( ) ( )

M y y kt M y y tnn n n
t dt t dtζ ζ

+ + +
≥∫ ∫

 
 

By lemma (2.2), {�	} is a Cauchy sequence and, by the completeness of X, {�	} Converges to a point z in X. Let  

 

lim
	→�

�	 = M.   _T?�T `T ℎ
bT 

  

lim
	→�

�+	 = lim
	→�

W�+	 = lim
	→�

X�+	BJ = lim
	→�

�+	BJ = lim
	→�

NO�+	BJ = lim
	→�

YZ�+	B+ = M. 
 

Now, suppose that A, B, S and T are continuous and the pairs (P, AB) and (Q, ST) are compatible of type (�). 

Hence we have 

 

lim
	→�

W�NO��+	BJ = NOM, lim
	→�

�NO�+�+	BJ = NOM ,     lim
	→�

X�YZ��+	B+ = YZM     lim
	→�

�YZ�+�+	B+ = YZM  
 

Now, for U = 1,  setting � = �NO��+	BJ and  � = �+	B+ in the inequality (5), we have 

   

0 0

2(( ) , ( ) , ) ( , Q , ) 2 1 2 1 2 2 2 2
2( , ( ) , ) (( ) , , )2 2 2 1 2 1 2 2

2( ( ) , Q , ) (( ) , , ) ( ( ) , ( ) , )2 1 2 2 2 1 2 2 2 1 2 1
( ) ( )

M AB x P AB x t M STx x tn n n n

M STx P AB x t M AB x Qx tn n n n
M P AB x x kt M AB x STx t M P AB x Q AB x tn n n n n n

t dt t dtζ ζ







∗ ∗+ + + +
∗+ + + +

∗ ∗+ + + + + +
≥∫





 
 ∫

 
Which implies that as ? → ∞ 
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{ }

{ }
0 0

0

( ,  ,  )  ( ,  z ,  )  ( ,  ,  )  
( ,  z ,  )

( ,  ,  ) ( ,  z ,  )  ( ,  ,  )

1 1 ( ,  ,  )  ( ,  ,  ) ( ,  z ,  )  1

( ) ( )

( )                         

     

M ABz ABz t M z t M z ABz t
M ABz kt

M ABz z t M ABz t M ABz ABz t

M z ABz t M ABz z t M ABz t

t dt t dt

t dt

ζ ζ

ζ

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

≥

≥

∫ ∫

∫
{ }

0

 ( ,  ,  )

( )                    
M ABz z t

t dtζ≥ ∫
 

 

Therefore, by lemma (2.3), we have NOM = M.  

By putting  U = 1,  setting � = W�+	 and  � = �+	BJ in the inequality (5), we have 

 

2 2 2 2 2 1

2 1 2 2 2 1

2 2 1 2 2

( ( ),  ( ), )  ( ,  Q , )  
( ,  ( ),  )  ( ( ), ,  )

( ( ),  , )  ( ( ),  ( ), )

0 0

( ( ),  Q , )2 2 1
( ) ( )

n n n n

n n n n

n n n n

M AB Px P Px t M STx x t
M STx P Px t M AB Px Qx t

M AB Px STx t M P Px Q Px t
M P Px x ktn n

t dt t dtζ ζ

+ +

+ +
+

∗ ∗  
∗ 

∗ ∗  
+

≥∫ ∫
 

Taking the limit ? → ∞, we have  

 

{ }

{ }
0 0

0

( ,  ,  )  ( ,  z ,  )  ( ,  ,  )  
( ,  z ,  )

( ,  ,  ) ( ,  z ,  )  ( ,  ,  )

( ,  ,  )  1 ( ,  ,  )  1 1 ( ,  z ,  )

=

( ) ( )

( )                         

                      

M z Pz t M z t M z Pz t
M Pz kt

M z z t M z t M Pz z t

M z Pz t M z Pz t M Pz t

t dt t dt

t dt

ζ ζ

ζ

∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

≥∫ ∫

∫
{ }

0

 ( ,  ,  )

( )          

 

M Pz z t

t dtζ≥ ∫
 

By lemma (2.3), we have WM = M. Therefore  NOM = WM = M. 
 

Now, we show that OM = M. by putting  U = 1,  setting � = OM and  � = �+	BJ in the inequality (5), and using (2) 

we have 

 

 

2 1 2 1

2 1 2 1

2 1

( ( ),  ( ), )  ( ,  Q , )  
( ,  ( ),  )  ( ( ), ,  )

( ( ),  , )  ( ( ),  ( ), )

0 0

( ( ),  Q ,  )2 1
( ) ( )

n n

n n

n

M AB Bz P Bz t M STx x t
M STx P Bz t M AB Bz Qx t

M AB Bz STx t M P Bz Q Bz t
M P Bz x ktn

t dt t dtζ ζ

+ +
+ +

+

∗ ∗  
∗ 

∗ ∗  
+

≥∫ ∫
 

 

 

{ }

{ }
0 0

0

( , , )  ( , z , )  ( , , )  
( , z , )

( , , ) ( , z , )  ( , , )

1  1 ( , , )  ( , z , )  
( , z , ) ( , z , )

=

( ) ( )

( )

( )

                         

                        

M B z B z t M z t M z B z t
M B z k t

M B z z t M B z t M B z z t

M z B z t M B z t
M B z t M B z t

t d t t d t

t d t

t d

ζ ζ

ζ

ζ

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗

≥

≥

∫ ∫

∫
{ }

0

 ( , , )

        

 

M B z z t

t∫
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Therefore, by lemma (2.3), we have  OM = M. since  NOM = M, therefore NM = M. 
By putting  U = 1,  setting � = M and  � = YZ�+	B+  in the inequality (5), we 

 

2
2 2 2 2

2
2 2 2 2

2
2 2

( ,  , )  (( ) , ( ) , )  

(( ) ,  ,  )  ( , ( ) ,  )

( ,  ( ) , )  ( ,  , )

0 0

( , ( ) ,  )2 2
( ) ( )

n n

n n

n

M ABz Pz t M ST x Q ST x t

M ST x Pz t M ABz Q ST x t

M ABz ST x t M Pz z tM Pz Q ST x ktn
t dt t dtζ ζ

+ +

+ +

+

 ∗ ∗
 ∗ 
 ∗ ∗ +

≥∫ ∫
 

Taking the limit ? → ∞, we have 

{ }

{ }
0 0

0

( ,  , )  ( ,  z , )  ( ,  , )  
( ,  z , )

( ,  , ) ( ,  z , )  ( , , )

1  1 ( ,  , )  ( ,  z , )  
( ,  z , ) 1

=

( ) ( )

( )                         

                     

M z z t M ST z ST t M ST z z t
M z ST kt

M z ST z t M z ST t M z z t

M ST z z t M z ST t
M z ST t

t d t t d t

t d t

ζ ζ

ζ

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗

≥∫ ∫

∫
{ }

0

 ( ,  , )

( )           

 

M z ST z t

t d tζ≥ ∫

Therefore, by lemma (2.3), we have  YZM = M.  
By putting  U = 1,  setting � = M and  � = X�+	BJ  in the inequality (5), we have 
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Therefore, by lemma (2.3), we have  XM = YZM = M. Finally , we show that  ZM = M. 
By putting  U = 1,  setting � = M and  � = ZM  in the inequality (5), we have 
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Therefore, by lemma (2.3), we have  ZM = M. Since  YZM = M, therefore YM = M. By combining the above results, 

we have   NM = OM = YM = ZM = WM = XM = M, 
I.e. z is a common fixed point of A, B, S, T, P and Q. 

For uniqueness, let `�` ≠ M� be another common fixed point of A, B, S, T, P and Q and U = 1, then by (5), we 

write 

 

{ }        
     

0 0

       
 

0

( , Qw, kt)

( ) ( )

( )                        

M(ABz, Pw, t) M(STw, Qw, t) M(STw, Pz, t) M(ABz, Qw, t)  
M(ABz, STw, t) M(Pz, Qz, t)

M(z, w, t) M(w, w, t) M(w, z, t)
M(z, w, t)  M(

M Pz

t dt t dt

t dt

ζ ζ

ζ

∗ ∗ ∗ ∗
∗

∗ ∗
∗ ∗

≥

≥

∫ ∫
{ }

{ }

   (   

  1        1

0
= ( )                          

z, w, t) M z, z, t)

M(z, w, t) M(w, z, t) M(z, w, t)  M(z, w, t)

t dtζ

∗

∗ ∗ ∗ ∗ ∗

∫

∫
It follows that 
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Therefore, by lemma (2.3), we have z = w. This completes the proof of theorem. 

Remark (4.1). In Theorem 4.1, if we put P = Q, our theorem reduces to the result due to Cho [38]. 

If we put B = T = I (The identity map on X) in theorem 4.1, we have the following: 

Corollary 4.2: Let (X, M,*) be a complete fuzzy metric space with t * t = t for all � ∈ [0,1] and the condition 

(FM-6) Let A, S, P and Q be mappings from X into itself such that 

(1) P(X) ⊆A(X), Q(X) ⊆ S(X), 

 

(2) A and S are continuous, 

(3) the pair (P , A) and (Q , S) are compatible of type (�), 

(4) there exists a number H ∈ �0 , 1� such that 
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for all x, y ∈ X, U ∈ �0,2�, � > 0.                                           
Then A, S, P and Q have a unique common fixed point in X. 

If we put A= B = S = T = I (The identity map on X) in theorem 4.1, we have the following: 

 

Corollary 4.3: Let (X, M,*) be a complete fuzzy metric space with t * t = t for all � ∈ [0,1] and the condition 

(FM-6) Let P and Q be mappings from X into itself such that 

(1) P(X) ⊆Q(X),  

 

(2) Q is a continuous, 

(3) the pair (P , Q) is compatible of type (�), 

(4) there exists a number H ∈ �0 , 1� such that 
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for all x, y ∈ X, U ∈ �0,2�, � > 0.                                           
Then P and Q have a unique common fixed point in X. 

If we put P = Q, A = S, B = T = I (The identity map on X) in theorem 4.1, we have the following: 

Corollary 4.4: Let (X, M,*) be a complete fuzzy metric space with t * t = t for all � ∈ [0,1] and the condition 

(FM-6) Let P and S be mappings from X into itself such that 

(1) P(X) ⊆ S(X),  

(2) S is a continuous, 

(3) the pair (P , S) is compatible of type (�), 

(4) there exists a number H ∈ �0 , 1� such that 

{ }        (2 )
 S     

0 0

( , y,kt)

( ) ( )
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M Px P

t dt t dt
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ζ ζ
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for all x, y ∈ X, U ∈ �0,2�, � > 0.                                           
Then P and S have a unique common fixed point in X. 
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