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ABSTRACT 
In this paper, we have derived formulae for the Riemann-Liouville fractional integral and fractional derivative of 

the product of the Manoj Sharma’s M-series and the Fox H-function.  Also the fractional integrals defined  by  

Saxena and Kumbhat of the M-series is found with the help of integral of H-function. The M- series is a 

particular case of the �� -function of Inayat-Hussain. Certain special cases of the formulae have also been 

discussed. 
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1. INTRODUCTION 

The purpose of this paper is to establish theorems on the fractional integrals and fractional derivatives of the 

product of M-series and H-function. The theorems derived in this paper provide an extension of the work [6]. 

The Riemann-Liouville Fractional Integral of order  � [3]  is defined and represented as 

  ���� 	
�� = 1�
�� �
� − ��  ����
� 	
����, � > �                                                                      
1.1� 

where  � ∈ �, �
�� > 0, 	
�� ∈ �
�,  � which is the Space of  Lebesgue measurable function. 

 

The Riemann-Liouville Fractional differential of order  � ∈ � [3]  is defined and represented as 

 
!��� "�
�� = 1�
# −  ��   $ ���%&   � "
����
� − �� ��&��
�

�  ,   # = '�
��( + 1; � > �            
1.2� 

Where  '�
 ��(  means  the integral part of  �
 �� ≥ 0 . 

Various definitions of fractional integration have been given from time to time by many authors, viz. Kober 

(1940), Erdélyi (1950-51), Saxena (1967), Kalla (1969) and many others 

The fractional integral operator involving the H-function have been defined and denoted by Saxena and 

Khumbat [7]  in the following manner: 

For - = 1 

��.,�'	
��( = ��.���� � �.
� − ��� 	
���/,01,2 34 $��%5 $1 − ��%& 6789 , :9;�,/7	9, <9;�,0
=>  ��        
1.3��

@  

A�B,�'	
��( = �B � ��B����
� − ��� 	
���/,01,2 34 C��D5 C1 − ��D& 6789, :9;�,/7	9, <9;�,0
=>  ��        
1.4�∞

�  

The conditions of validity of these operators are as follows: 
F�          1 ≤ H, I < ∞, H�� + I�� = 1 


FF�        �8
K� +  L min�P9P1 Q�8 R	9 <9S TU > −I�� 


FFF�        �8
�� +  # min�P9P1 Q�8 R	9 <9S TU > −I�� 


FV�        �8
W + �� +  L min�P9P1 Q�8 R	9 <9S TU > −H�� 


V�        	
�� ∈  �X
0,∞�. 
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Under these conditions  ��.,�'	
��( and A�B,�'	
��( exist and both belong to �X
0,∞�. 

 

2. DEFINITIONS 

FOX’S H-FUNCTION: 

The H-function, defined by Fox[1], in terms of Mellin-Barnes type contour integral as follows: 

 �/,01,2  3� 6789 , :9;�,/7	9, <9;�,0
=> =   12YF  � Z
[��\] �[                                                          
2.1� 

Where Z
[� =    ∏ �7	9 − <9[; ∏ �71 − 89 + :9[;29_�19_�∏ �71 − 	9 + <9[; ∏ �789 − :9[;/9_2��09_1��                                                         
2.2� 

� ≠ 0, and an empty product is interpreted as unity. The integers M,N,P,Q are such that   0 ≤ a ≤ H, 0 ≤ b ≤ I; the coefficients :9
c = 1, … , H�, <9
c = 1, … , I� are all positive; 89
c = 1, … , H�, 	9
c = 1, … , I� are all complex numbers. � is a suitably chosen contour such that all the poles of Z
[� are simple. 

Braksma  has shown that the integral in the right hand side of (2.1) is absolutely convergent when e >0, |arg  j|  < �k eY, where 

e = l :9 − l :9 + l <9
1

9_�
/

9_2��
2

9_� − l <9                                                                                
2.3�0
9_1��  

 

THE M-SERIES: 

This series is a special case of the �-function  of  Inayat-Hussain. The Manoj sharma’s  M-series [6]  is 

interesting because  the Xmn-hypergeometric function and the Mittag-Leffler function follows as its particular 

cases, and these functions have found essential applications in solving problems in physics, biology, engineering 

and applied sciences. 

                                                                                  It is denoted and defined as: oXbn
�� =      oXbn7��, … , �X;  �, … ,  n; �; = l 
���p … 7�X;p 
 ��p … 7 X;p  �p�
 o4 + 1�               
2.4�∞

p_@  

Here,  o ∈ �, �
 o� > 0 and 7�9;p, 7 9;p are the Pochammer symbols. The series (2.3) is defined when none of 

the parameters  9[, c = 1,2, … q, is a negative integer or zero. If any numerator parameter is a negative integer or 

zero, then the series terminatesto a polynomial in �. 

 

3.  MATHEMATICAL PREREQUISITES 

The following results are needed to establish the theorems: 

The Beta function is defined as: 

� r5�� 
1 − r�&�� �r = s
L, #�                                                                                                
3.1��
@  

The modified Beta function is as follows: t 
� − ��5��
 − ��&���� =  
 − ��5�&��s
L, #�u� ,  for �
L� > 0, �
#� > 0             
3.2� 

 

The following integrals of the H-function [7] is also used:  

� �.�� 
� − ��v���/,01,2 3w�x
� − ��y 6789 , :9;�,/7	9 , <9;�,0
=> ���

@ = �.�v���/�k,0��1,2�k 3w�x�y 6
1 − K, z�, 
1 − {, |�, 789 , :9;�,/7	9, <9;�,0 , 
1 − K − {, z + |� =>                     
3.3� 

The conditions of validity of (3.3) are: 
F� z ≥ 0, | ≥ 0 ( not both zero simultaneously), K, { are complex numbers, 
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FF�  �8
K� + z min�P9P1 Q�8 R	9 <9S TU > 0       &              �8
{� + | min�P9P1 Q�8 R	9 <9S TU > 0.
       

� �.�� 
� − ��v���/,01,2 3w�x
� − ��y 6789 , :9;�,/7	9, <9;�,0
=> ��∞

� = �.�v���/�k,0��1��,2�� 3w�x�y 6
1 − {, |�, 789 , :9;�,/, 
1 − K, z�
1 − K − {, z + |�, 7	9 , <9;�,0
=>                                        
3.4� 

The conditions of validity of (3.4) are: 
F�           z ≥ 0, | ≥ 0 ( not both zero simultaneously), K, { are complex numbers, 


FF�         LF# Q�8 $1 − K − {z + | % , min�P9P1 �8 R	9 <9S TU > L�� ~−�8 C{|D , max�P9P2 ~�8 �89 − 1:9 ���. 
 

4.    THEOREMS ON THE PRODUCT OF THE H-FUNCTION AND M-SERIES 

The fractional Riemann-Liouville (R-L) integral operator (for lower limit � = 0, with respect to variable �), of 

the product of the H-function and M-series: 

Theorem1:  

���  � oXbn
���/,01,2'��v(� =   �� oXbn
���/��,0��1,2�� 3��v 6 
−4, {�, 789, :9;�,/7	9, <9;�,0 , 
−� − 4, {�=>                  
4.1�  
Here   o��, �
o� > 0, ���, �
�� > 0, { > 0   and M, N, P and Q are non-negative integers satisfying the 

condition (2.3). Also the uniform convergence of the M-series is discussed above.  

Proof .    Expressing the H-function and the M-series with the help of (2.1) and (2.4) respectively, we get 

��� � oXbn
���/,01,2'��v(� = 1�
�� �
� − ����� l 
���p … 7�X;p
 ��p … 7 n;p  �p�
 o4 + 1� 12YF � �\ Z
[��v\�[��  ]  ∞

p_@
�

@  

Then, using the term by term integration, we obtain ��� � oXbn
���/,01,2'��v(�            
  =  1�
�� 12YF  � �\Z
[�] l 
���p … 7�X;p
 ��p … 7 n;p  1�
 o4 + 1� � 
� − ����� �p�v\�� �[�

@   ∞

p_@  

  =  1�
�� 12YF  � �\Z
[�] l 
���p … 7�X;p
 ��p … 7 n;p  1�
 o4 + 1� ����  � $1 − ��%���  �p�v\�� �[�
@   ∞

p_@  

Using the substitution 
�� = r, the above equation takes the form, 

 =  1�
�� 12YF  � �\Z
[�] l 
���p … 7�X;p
 ��p … 7 n;p  1�
 o4 + 1� �p�v\�� � 
1 − r���� rp�v\�r�[�
@   ∞

p_@  

Using the definition of Beta function from (3.1), we have, 

=  ���
�� 12YF  � �\Z
[�] l 
���p … 7�X;p
 ��p … 7 n;p  �p�
 o4 + 1� �
���
4 + {[ + 1��
� + 4 + {[ + 1� �v\�[  ∞

p_@  

Rearranging the terms follows the right hand side of (4.1). 

Theorem 2: The Riemann-Liouville Fractional differential of order  � ∈ � of the product of H-function and M-

series are 

!�� � oXbn
�� �/,01,2 3��v| =789 , :9;�,/7	9, <9;�,0>�
= ��� oXbn
�� �/��,0��1,2�� 3��v 6 
−4, {�, 789 , :9;�,/7	9, <9;�,0, 
� − 4, {�=>                                                                   
4.2� 

Here   o��, �
o� > 0, ���, �
�� > 0, { > 0   and M, N, P and Q are non-negative integers satisfying the 

condition (2.3). Also the uniform convergence of the M-series is discussed above.  
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Proof .    Expressing the H-function and the M-series with the help of (2.1) and (2.4) respectively, we get 

!�� oXbn
�� �/,01,2 3��v| =789 , :9;�,/7	9, <9;�,0> = 1�
# − �� $ ���%& �
� − ��&�����
@  

l 
���p … 7�X;p
 ��p … 7 n;p
∞

p_@
�p�
o4 + 1� 12YF � �\Z
[��v\�[ ] �� 

Term by term integration leads to 

= 1�
# − �� $ ���%& 12YF � �\Z
[� ] l 
���p … 7�X;p
 ��p … 7 n;p
∞

p_@
1�
o4 + 1� �
� − ��&�����p�v\�� �[]  

Using the modified Beta function (3.2), we get 

= 1�
# − �� $ ���%& 12YF � �\Z
[� ] l 
���p … 7�X;p
 ��p … 7 n;p
∞

p_@
1�
o4 + 1�  s
# − �, 4 + {[ + 1��&���p�v\ �[ 

Differentiating n-times ,the term   �&���p�v\, we get 

= ��� oXbn
�� �/��,0��1,2�� 3��v 6 
−4, {�, 789, :9;�,/7	9, <9;�,0 , 
� − 4, {�=> 

  

FRACTIONAL INTEGRALS OF THE M-SERIES: 

The fractional integral operator of the M-series involving the H-function  defined by Saxena and Khumbat is 

derived in Theorem3 and  Theorem4 as follows: 

THEOREM 3: ��.,v � oXbn7��;�
= oXbn7��; �/�k,0�k1,2�k 34 6 
1 − �4 − K, z�, 
−{, |�, 789 , :9;�,/7	9, <9;�,0 , 
−�4 − K − { − 1, z + |�=>                                          
4.3� 

o ∈ �, �
o� > 0 ,The conditions of validity of this operator is given with (1.3) and the the convergence of M-

series is provided with (2.4). 

Proof: Applying the fractional integral (1.3 ) and expressing the M-series from (2.4), we get 

��.,v � oXbn7��;� = ��.�v�� � �.
� − ��v  l 
���p … 7�X;p
 ��p … 7 n;p
∞

p_@
1�
o4 + 1� ��p.   �

@  

�/,01,2 34��
x�y��x
� − ��y 6 789,:9;�,/7	9, <9;�,0
=> 

Changing the order of summation and integration and applying the integral (3.3 ), we obtain 

= ��.�v�� l 
���p … 7�X;p
 ��p … 7 n;p
∞

p_@
1�
o4 + 1� �
�p�.�v�k���. 

�/,01,2 34��
x�y��x�y 6 
−�4 − K, z�, 
−{, |�789,:9;�,/7	9, <9;�,0, 
−�4 − K − { − 1, z + |�=> 

Rearranging the terms of the above equation we obtain the right hand side of (4.3). 

 

THEOREM 4:  

A�B,v � oXbn7��;� =  oXbn7��; �/,01,2 34 6
−{, |�, 789, :9;�,/ , 
1 + W + { − �4, z�
W − �4, z + |�, 7	9, <9;�,0
=>                                         
4.4� 

o ∈ �, �
o� > 0 ,The conditions of validity of this operator is given with (1.3) and the the convergence of M-

series is provided with (2.4). 

Proof: Applying the fractional integral (1.4 ) and expressing the M-series from (2.4), we get 

A�B,v � oXbn7��;� = �B � ��B�v��
� − ��v l 
���p … 7�X;p
 ��p … 7 n;p
∞

p_@
1�
o4 + 1� ��p.∞

�  
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�/,01,2 34�x��
x�y�
� − ��y 6789, :9;�,/7	9 , <9;�,0
=> 

 Changing the order of summation and integration and applying the integral of H-function (3.4) , we obtain 

= �B l 
���p … 7�X;p
 ��p … 7 n;p
∞

p_@
1�
o4 + 1� ��B�v��p�v����. 

�/,01,2 34�x��
x�y��y 6
−{, |�, 789 , :9;�,/, 
1 + W + { − �4, z�
W − �4, z + |�, 7	9 , <9;�,0
=> 

Rearranging the terms of the above equation we obtain the right hand side of (4.4).  

5. Special Cases 

If in the integral (4.1) we put �9 = 0,  9 = 0, c = 1, … , q the M-series reduces to Mittag-Leffler function [4] we 

arrive at the following result after a little simplification. 

��� ���
�� �/,01,2'��v(� =   ����
���/��,0��1,2�� 3��v 6 
−4, {�, 789, :9;�,/7	9, <9;�,0 , 
−� − 4, {�=>                  
5.1�  
Here   o��, �
o� > 0, ���, �
�� > 0, { > 0 . 
A number of special cases involving functions that are special cases of M-series and Fox H-function can be 

obtained from the above five results but we do not record them here. 
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